Mitigation Plan Banner Branch Mitigation Project

Stokes County, North Carolina FINAL VERSION

NCDEQ DMS Project Identification # 100080

NCDEQ DMS Contract # 7610 and # 7701

Roanoke River Basin (Cataloging Unit 03010103)

USACE Action ID Number: SAW-2018-01760

Contracted Under RFP # 16-007405

DWR Project # 20181154

Prepared for:

North Carolina Department of Environmental Quality Division of Mitigation Services

1652 Mail Service Center Raleigh, NC 27699-1652

Prepared by:

This mitigation plan has been written in conformance with the requirements of the following:

- Federal rule for compensatory mitigation project sites as described in the Federal Register, Title 33, Navigation and Navigable Waters, Volume 3, Chapter 2, Section § 332.8, paragraphs (c)(2) through (c)(14).
- NCDEQ Division of Mitigation Services In-Lieu Fee Instrument, signed and dated July 28, 2010.

These documents govern NCDEQ Division of Mitigation Services operations and procedures for the delivery of compensatory mitigation.

Kayne M. Van Stell

Vice President, Ecosystem Design Services Water & Land Solutions, LLC

7721 Six Forks Road, Suite 130

Koyne Van Stell

Raleigh, NC 27615

Office Phone: (919) 614-5111 Mobile Phone: (919) 818-8481

Email: kayne@waterlandsolutions.com

DEPARTMENT OF THE ARMY

WILMINGTON DISTRICT, CORPS OF ENGINEERS 69 DARLINGTON AVENUE WILMINGTON, NORTH CAROLINA 28403-1343

June 23, 2020

Regulatory Division

Re: NCIRT Review and USACE Approval of the NCDMS Banner Branch Mitigation Site / Stokes Co./ SAW-2018-01760/ NCDMS Project # 100080

Mr. Tim Baumgartner North Carolina Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

Dear Mr. Baumgartner:

The purpose of this letter is to provide the North Carolina Division of Mitigation Services (NCDMS) with all comments generated by the North Carolina Interagency Review Team (NCIRT) during the 30-day comment period for the Banner Branch Draft Mitigation Plan, which closed on May 13, 2020. These comments are attached for your review.

Based on our review of these comments, we have determined that no major concerns have been identified with the Draft Mitigation Plan, which is considered approved with this correspondence. However, several minor issues were identified, as described in the attached comment memo, which must be addressed in the Final Mitigation Plan.

The Final Mitigation Plan is to be submitted with the Preconstruction Notification (PCN) Application for Nationwide permit approval of the project along with a copy of this letter. Issues identified above must be addressed in the Final Mitigation Plan. All changes made to the Final Mitigation Plan should be summarized in an errata sheet included at the beginning of the document. If it is determined that the project does not require a Department of the Army permit, you must still provide a copy of the Final Mitigation Plan, along with a copy of this letter, to the appropriate USACE field office at least 30 days in advance of beginning construction of the project. Please note that this approval does not preclude the inclusion of permit conditions in the permit authorization for the project, particularly if issues mentioned above are not satisfactorily addressed. Additionally, this letter provides initial approval for the Mitigation Plan, but this does not guarantee that the project will generate the requested amount of mitigation credit. As you are aware, unforeseen issues may arise during construction or monitoring of the project that may require maintenance or reconstruction that may lead to reduced credit.

Thank you for your prompt attention to this matter, and if you have any questions regarding this letter, the mitigation plan review process, or the requirements of the Mitigation Rule, please call me at 919-554-4884, ext 60.

Sincerely,

Kim Browning Mitigation Project Manager for Tyler Crumbley

Enclosures

Electronic Copies Furnished:

NCIRT Distribution List Jeremiah Dow, Lindsay Crocker—NCDMS Kayne Van Stell—WLS

DEPARTMENT OF THE ARMY

WILMINGTON DISTRICT, CORPS OF ENGINEERS 69 DARLINGTON AVENUE WILMINGTON. NORTH CAROLINA 28403-1343

CESAW-RG/Browning

June 5, 2020

MEMORANDUM FOR RECORD

SUBJECT: Banner Branch Mitigation Site - NCIRT Comments during 30-day Mitigation Plan Review

PURPOSE: The comments listed below were received during 30-day comment period in accordance with Section 332.8(g) of the 2008 Mitigation Rule in response to the Notice of NCDMS Mitigation Plan Review.

NCDMS Project Name: Banner Branch Mitigation Site, Stokes County, NC

USACE AID#: SAW-2018-01760

NCDMS #: 100080

30-Day Comment Deadline: May 13, 2020

DWR Comments, Mac Haupt & Erin Davis:

- 1. DWR appreciates that WLS is conducting pre- and post-restoration benthic and water quality sampling for this project.
- 2. Page 8, Table 1 As noted in below comments, DWR has questions about the proposed approach for UT1-R1, credit ratio for UT4-R1, and the credit lengths for UT1B and UT3.
- 3. Page 31, Section 3.4.5 When were WLS' field investigations completed? Please include wetland determination data forms in Appendix 9.
- 4. Page 31, Section 3.5 DWR considers easement breaks as site constraints since fragmentation impacts the site's potential functional uplift. Please include a discussion on the coordination completed to minimize the quantity and width of proposed stream crossings. Also, please explain why an additional crossing is proposed on UT4-R1 that was not part of the original concept plan.
- 5. Page 31, Section 3.5.4 Since proposed wetland restoration credit areas abuts the conservation easement, have you evaluated the risk of hydrologic trespass that may result in the landowner ditching outside the easement?
- 6. Page 39, Table 14
 - a. The UT1B existing to mitigation footage increases from 391 LF to 488 LF, with a EII approach please explain this stream length increase.
 - b. Please confirm that the section of UT4-R1 within Wetland W3 will be Priority 1. Page 45 appears to indicate that P2 is proposed for this lower reach, which may affect wetland hydrologic uplift.
- 7. Page 47 This section notes that proposed BMPs will be located outside of the conservation easement; however, Section 6.7 states that BMPs will be located inside easement. If no long-term maintenance is required, then DWR prefers BMPs be located inside the easement.
- 8. Page 49, Section 6.2.2 Please include the location of reference wetland (coordinates/map).

- 9. Page 55, Section 6.4 DWR expects that the narrow right side buffer adjacent to the agriculture/recreational pond will limit the potential functional uplift of the restored stream section. To reflect the reduced functional uplift DWR supports a credit ratio of 1.25:1 for the 233LF section of UT4-R1 with buffers of less than 30 feet.
- 10. Page 57, Section 6.5 Please indicate the total planted area.
- 11. Page 58, Table 21 DWR appreciates the species and stratum diversity; however, we recommend a slight adjustment to the percentages so at least 50% of stems are canopy species.
- 12. Page 60, 6.5.2 Please indicate if fescue will be treated prior to or during site construction. DWR recommends early treatment based on observations of fescue impeding planted vegetation establishment and vigor.
- 13. Page 62, Section 6.8.1 DWR recommends depressional areas, which are not called out as vernal pools, not exceed 6-8 inches.
- 14. Page 63 Please include a discussion/section on evaluated Project Risks and Uncertainties.
- 15. Page 68 DWR requests flow gauges be installed in the upper one-third of subject intermittent reach.
- 16. Page 69 Please confirm that 16 veg plots represent 2% of the proposed planted area. Since a large area of supplemental planting is proposed, DWR requests an additional 2-3 plots to track survival rates not necessarily tied to success criteria.
- 17. Figures Please either show property boundaries on one of the included figures or an additional figure.
- 18. Figure 9 It is very difficult to see the restoration and preservation stream color lines over the aerial at this scale.
- 19. Figure 10
 - a. Please include flow gauges on the intermittent Restoration reach of UT1C and Enhancement I reach of UT2A. Also, please shift the location of the flow gauge on UT2 upstream at least 150 feet.
 - b. In order to demonstrate enhancement please include veg plots within wetlands W5 and W5A; and to demonstrate reestablishment please include veg plots within wetlands W9 and W8A.
 - c. Please include additional cross-sections on UT2 and UT3.
- 20. Sheet 2 Please add legend icons for vernal pool and the hatching shown on plan view indicating to grade, seed, mat and live stake areas.
- 21. Sheet 3 DWR recommends that benches be at least two times bankfull width for C type stream restoration.
- 22. Sheets 14, 23 & 33 Please callout stream crossings/easement breaks on the profile views.
- 23. Sheet 18 Based on the proposed work, UT1-R1 appears to align more as an Enhancement I approach compared to Restoration, where the full length of stream will have dimension, pattern and profile improvements. Additionally, only partial buffer planting is proposed. Further justification is needed for DWR to support this reach for restoration credit.
- 24. Sheet 13 Please confirm the profile callouts for existing ground and design thalweg are indicating the correct features.
- 25. Sheet 15 The CE crosses the southwest corner of the existing pond. Please show how this area will be graded within and immediately adjacent to the CE line.
- 26. Sheet 22 The tributary connecting with UT1-R3 at Station 43+00 is not mentioned anywhere in the plan. Since a section of this trib. it is located within the project site and may be potential sediment source for BB-R1, please include a brief description of the channel condition.
- 27. Sheet 26 DWR echoes DMS' question regarding UT3 and BB-R2 parallel alignment through an existing wetland. At one point the two channels are less than 25 feet apart. Please provide justification why it's not feasible to tie in UT3 further upstream on BB-R2 near Station 68+00. Additionally, please note that channel maintenance measures such as sediment or veg removal should not be completed after MY3 in order to properly evaluate how the system is trending.

28. Appendix 12 - Since reach names have changed, please include the concept figure that corresponds to the IRT site visit meeting minutes.

NCWRC Comments, Travis Wilson:

- The generic permanent stream crossing detail does not illustrate or mention the possible need for culverts set above bankfull elevation. It would be beneficial to including a cross section detail specific to each culverted stream crossing. That will allow a better assessment of the culvert sizing and configuration within the crossing.
- 2. Note: duel lines of smaller diameter pipe in the channel are not preferred. Pipes typically have to be placed 12"-18" apart causing the channel flow to split and potentially over widen at the inlet and outlet
- 3. UT 1 R3 Station 34.32 permanent crossing is set at 7% that is extremely steep, aquatic passage will not occur, and downstream scour is almost certain.

USACE Comments, Kim Browning:

- 1. When submitting the PCN, please combine all impacts by reach. For example, if there are three 60' culverts on reach 1, list it as 180' of permanent impact rather than listing it as three separate impacts. But permanent and temporary impacts still need to be separated. Also, please estimate the number or acres of trees to be cleared to address the NLEB 4(d) rule.
- 2. Section 6.4: It would be beneficial to add some coarse woody debris to the depressional areas in the buffers and throughout the adjacent wetlands for habitat, and to help store sediment, increase water storage/infiltration, and absorb water energy during overbank events. I was pleased to see the inclusion of wood in the stream design for habitat.
- 3. Section 3.5: Please add a section regarding potential future adjacent development or logging.
- 4. Though Stokes County is considered a mountain county, all analysis and data are based on piedmont ecoregion categorization. I recognize that the conservation easement has probably already been finalized, but It seems more appropriate for 50' buffers on this site.
- 5. Considering the very small watershed drainage areas for UT1A and UT2A, there is concern for loss of flow. It would be beneficial to supplement with photo-points to document flow.
- 6. In the future, please maintain the same reach names throughout the project, including the JD. It's difficult to refer to our field notes when reaches are renamed. Additionally, it's difficult to see the channel lines with the colors selected on Figures 9 and 10. Please use the same colors throughout the life of the project to designate the different mitigation approaches.
- 7. The IRT site visit notes indicate that UT1-R1 above UT1C should be enhancement II, rather than restoration. Section 3.4.1 indicates that this reach is mostly stable with a mature woody buffer. Please explain why restoration is proposed here, especially since the listed functional uplift is only 8% and it scored a Medium NCSAM rating.
- 8. NCSAM: UT3 was not mentioned in the text on page 30. An interesting observation is that many of the reaches proposed for enhancement II score a Low SAM rating while reach BBR3, which scored Medium, is proposed for restoration. Perhaps cattle exclusion on the EII reaches will provide the most uplift, but it would be interesting to compare the scores of NCSAM and SQT to see the results of the functional assessments.
- 9. Table 14: The wetland comments section does not distinguish the difference between the different levels of work being performed on wetland rehabilitation versus re-establishment. For example, the work performed is the same for W1 and W1A, but they're receiving different credit ratios.
- 10. Table 21: Considering the inclusion of riparian wetlands proposed for this site, it would be beneficial to add additional FACW species to the overstory and understory list.
- 11. Ephemeral/vernal pools should be 8-14" depressions that dry up yearly so that predatory species cannot colonize, and should not be so numerous that trees do not grow in large areas of the buffer.

- 12. Please show the location of the rain gauge and fixed photo points on Figure 10. If cross-sections are to be used for photo points, please indicate in the text. Additionally, it would be helpful to have photo points at crossings to show the condition of the culverts.
- 13. Please show the location of the reference wetland on Figure 11.
- 14. I'm glad to see the inclusion of water quality and benthic monitoring. Are these reaches proposed for additional credit? If so, please add this to Table 1. Also, please add the monitoring locations to Figure 10.

USEPA Comments, Todd Bowers:

I have completed my review for the Banner Branch wetland and stream mitigation site. I have no site-specific comments to submit at this time.

Kim Browning Mitigation Project Manager Regulatory Division

July 24, 2020

US Army Corps of Engineers Regulatory Division, Wilmington District Attn: Kim Browning 3331 Heritage Trade Drive, Suite 105 Wake Forest, NC 27587

RE: WLS Responses to NCIRT 30-day Review Comments Regarding Task 3 Submittal, Final Mitigation Plan Approval for the Banner Branch Mitigation Project, USACE AID# SAW-2018-01760, NCDEQ DMS Full-Delivery Project ID #100080, Contract #7610 and 7701, Roanoke River Basin, Cataloging Unit 03010103, Stokes County, NC

Dear Ms. Browning:

Water & Land Solutions, LLC (WLS) is pleased to provide our written responses to the North Carolina Interagency Review Team (NCIRT) review comments dated June 5th, 2020 regarding the Final Draft Mitigation Plan for the Banner Branch Mitigation Project. We are providing our written responses to the NCIRT's review comments below, which includes editing and updating the Final Draft Mitigation Plan and associated deliverables accordingly. Each of the NCIRT review comments is copied below in bold text, followed by the appropriate response from WLS in regular text:

DWR Comments, Mac Haupt & Erin Davis:

- **1. DWR appreciates that WLS is conducting pre- and post-restoration benthic and water quality sampling for this project.** Response: WLS appreciates this comment as we believe that the WQ sampling will help us determine the associated functional lift that may be achieved considering site constraints and existing conditions.
- 2. Page 8, Table 1 As noted in below comments, DWR has questions about the proposed approach for UT1-R1, credit ratio for UT4-R1, and the credit lengths for UT1B and UT3. Response: Table 1 has been updated to reflect the credit changes to UT1B per DWR Response #6a, UT4-R1 for the 1.25:1 for the 233 LF adjacent to the pond (DWR Response #9), and revising UT-R1 upper from Restoration to Enhancement I per DWR Response #23. WLS has addressed UT3 per DWR response #27 and there are no changes in Table 1 for UT3.
- **3. Page 31, Section 3.4.5 When were WLS' field investigations completed? Please include wetland determination data forms in Appendix 9.** Response: The field investigations were completed by WLS and George Lankford during March 2018 and September 2019. Section 3.4.5 has been updated and the data forms have been included in Appendix 9.
- 4. Page 31, Section 3.5 DWR considers easement breaks as site constraints since fragmentation impacts the site's potential functional uplift. Please include a discussion on the coordination completed to minimize the quantity and width of proposed stream crossings. Also, please explain why an additional crossing is proposed on UT4-R1 that was not part of the original concept plan. Response: WLS has added additional language to Section 3.5.7 that discusses the location and number of stream crossings across the project area. We have coordinated

with all four landowners to locate the crossings as shown on the plans. The adjoining landowners requested an additional crossing along UT4-R1 after the concept plan stage to accommodate current farm operations and future access if the property was ever sold or subdivided. We understand that stream crossings and easement breaks (i.e. fragmentation) are not favorable and impacts the sites functional uplift potential. However, they are often a landowner requirement for property access and many restoration sites could not be implemented without proper planning and incorporating these crossings. The functional impacts are considered minimal and only account for 1.5% of the total stream length to be permanently protected in the easement as a result of the project.

5. Page 31, Section 3.5.4 – Since proposed wetland restoration credit areas abuts the conservation easement, have you evaluated the risk of hydrologic trespass that may result in the landowner ditching outside the easement? Response: WLS has evaluated the risks of hydrologic trespass from potential changes in adjacent land use. We have discussed the proposed design approach with the landowners and explained how the post-restoration conditions will increase groundwater tables and saturation levels within the valley bottom. Fortunately, all the creditable wetland areas within the easement boundary abut pasture areas and not agricultural fields, therefore crop loss will not be a concern. We have taken necessary measures to ensure that project features/elements are not adversely affected by external perturbations. Should situations arise that warrant corrective action, WLS will deal with those issues swiftly and judiciously and in coordination with the IRT.

6. Page 39, Table 14 -

- a. The UT1B existing to mitigation footage increases from 391 LF to 488 LF, with an EII approach please explain this stream length increase. Response: The increase in stream length along UT1B is the result of extending the reach to connect to UT1-R2. The existing channel terminates in an existing wetland and has lost channel definition. The enhancement approach is to create a natural stable connection to UT1-R2 through a constructed channel with in-stream structures to provide grade control and bedform diversity. WLS has revised Table 14 to split this reach into upper and lower sections. Upper UT1B will match the existing stream length of 391 LF with a proposed Enhancement II approach. Lower UT1B (97 LF) is the extension of this reach needed to connect with UT1-R2, and we propose an EI approach at 1.5:1 credit ratio.
- b. Please confirm that the section of UT4-R1 within Wetland W3 will be Priority 1. Page 45 appears to indicate that P2 is proposed for this lower reach, which may affect wetland hydrologic uplift. Response: The portion of UT4-R1 within Wetland W3 is being proposed as Priority Level 1 restoration. Language has been added to this section to better describe the proposed design approach in lower UT4-R1 above the ponded area.
- 7. Page 47 This section notes that proposed BMPs will be located outside of the conservation easement; however, Section 6.7 states that BMPs will be located inside easement. If no long-term maintenance is required, then DWR prefers BMPs be located inside the easement. Response: The BMPs are located inside the conservation easement. WLS has revised Section 6.1.2 and Section 6.7 to state that all BMPs will be within the conservation easement and require no maintenance.
- **8.** Page 49, Section 6.2.2 Please include the location of reference wetland (coordinates/map). Response: The reference wetland 'W8' location has been added with coordinates as an insert to Figure 11.

- 9. Page 55, Section 6.4 DWR expects that the narrow right side buffer adjacent to the agriculture/recreational pond will limit the potential functional uplift of the restored stream section. To reflect the reduced functional uplift DWR supports a credit ratio of 1.25:1 for the 233LF section of UT4-R1 with buffers of less than 30 feet. Response: WLS has updated Section 6.1.2, page 46 to reflect the reduced credit ratio for the 233 LF. Tables 1 and 14 have been updated accordingly. Table 14 has a note about the reduced credit ratio for this 233 LF of UT4-R1.
- **10. Page 57, Section 6.5 Please indicate the total planted area.** Response: WLS has included the total planted area in Section 6.5.1, page 59, of the mitigation plan. 24.3 acres are restoration planting and 5.10 acres are supplemental planting for a total of 29.4 acres.
- 11. Page 58, Table 21 DWR appreciates the species and stratum diversity; however, we recommend a slight adjustment to the percentages so at least 50% of stems are canopy species. Response: Table 21 has been adjusted to increase the canopy species to approximately 76% of the total stems planted.
- **12.** Page 60, 6.5.2 Please indicate if fescue will be treated prior to or during site construction. DWR recommends early treatment based on observations of fescue impeding planted vegetation establishment and vigor. Response: WLS understands DWR's concern with fescue impeding planted areas. We do not believe that herbicide treatment of fescue is appropriate for this site due to the adverse environmental impacts. The site preparation includes clearing and grubbing which will help reduce fescue pressure. Grading activities will also remove much of the fescue seed/root source. The combination of these two techniques will help control fescue regeneration. If fescue becomes pervasive within the conservation easement, WLS will address the issue through a remedial action plan. Language has been added to Section 6.5.2 to address this concern.
- **13.** Page 62, Section 6.8.1 DWR recommends depressional areas, which are not called out as vernal pools, not exceed 6-8 inches. Response: There are no depressional areas other than those created by common floodplain grading activities as part of this project. The depressional areas will not exceed 8 inches and this language has been added to Section 6.8.1.
- **14.** Page 63 Please include a discussion/section on evaluated Project Risks and Uncertainties. Response: Section 6.8.4 Future Project Risks and Uncertainties has been added to the mitigation plan.
- **15.** Page **68** DWR requests flow gauges be installed in the upper one-third of subject intermittent reach. Response: Section 8.2.3 has been revised to state that flow gauges will be installed in the upper one-third of subject intermittent reaches. On Figure 10 (Monitoring Features), flow gauges have been added to reaches UT1C and UT2A per Comment #19.
- 16. Page 69 Please confirm that 16 veg plots represent 2% of the proposed planted area. Since a large area of supplemental planting is proposed, DWR requests an additional 2-3 plots to track survival rates not necessarily tied to success criteria. Response: Section 8.4 has been updated to 20 vegetation plots, which is 2% of the estimated riparian planting area (24.3 ac). The planting plan in the design plans has also been revised to reflect Proposed Riparian Planting and Riparian Supplemental Planting Zones. The estimated supplemental planting area is 5.1 acres and dispersed throughout the project areas. These areas will be included in the visual assessment each monitoring year. Based on the final planting locations documented in the as-built report, WLS may add two 50m x 2m transects in the supplemental planting areas to track survival rates that will not be tied to success criteria. These two possible transects have been added to Figure 10 on reaches UT1B and UT4-R2.

- **17.** Figures Please either show property boundaries on one of the included figures or an additional figure. Response: The property boundaries have been added to Figure 6 Current Conditions.
- **18.** Figure 9 It is very difficult to see the restoration and preservation stream color lines over the aerial at this scale. Response: Figure 9 has been revised to clearly depict the stream mitigation types/colors.

19. Figure 10 -

- a. Please include flow gauges on the intermittent Restoration reach of UT1C and Enhancement I reach of UT2A. Also, please shift the location of the flow gauge on UT2 upstream at least 150 feet. Response: Flow gauges have been added to UT1C and UT2A. While reach UT1C is intermittent in the upper part of the reach, the project only captures the lower third of this reach. The entire jurisdictional reach is 527 LF, but only 227 LF are in the easement area; the first 69 feet are preservation and the last section is 151 ft of restoration. The location of the flow gauge on UT2 has been moved upstream a bit, but it is already well within the upper third of the reach. UT2 continues past the easement break and is currently 1,315 LF.
- b. In order to demonstrate enhancement please include veg plots within wetlands W5 and W5A; and to demonstrate reestablishment please include veg plots within wetlands W9 and W8A. Response: Vegetation plots have been added to these four wetland areas.
- **c. Please include additional cross-sections on UT2 and UT3.** Response: There was one riffle cross-section shown on UT2 below the crossing, but an additional cross-section has been added. Also, cross-sections have been added to UT3.
- **20.** Sheet 2 Please add legend icons for vernal pool and the hatching shown on plan view indicating to grade, seed, mat and live stake areas. Response: Legend icons for vernal pool and the hatching shown on plan view indicating to grade, seed, mat and live stake areas have been added to sheet 2 of the construction plans.
- **21. Sheet 3 DWR recommends that benches be at least two times bankfull width for C type stream restoration.** Response: Floodplain benches have been minimally designed equal to or greater than an entrenchment ratio of 2.2.
- **22.** Sheets 14, 23 & 33 Please callout stream crossings/easement breaks on the profile views. Response: Stream crossings/easement breaks have been noted in the profile views.
- 23. Sheet 18 Based on the proposed work, UT1-R1 appears to align more as an Enhancement I approach compared to Restoration, where the full length of stream will have dimension, pattern and profile improvements. Additionally, only partial buffer planting is proposed. Further justification is needed for DWR to support this reach for restoration credit. Response: WLS has revised the approach along UT1-R1 to Enhancement Level I with a 1.5:1 credit ratio. The original concept approach was to relocate and re-establish the incised channel away from the right toe of slope. We have updated Table 1, Table 14, and Section 6.1.2, pg 47 accordingly.
- **24.** Sheet 13 Please confirm the profile callouts for existing ground and design thalweg are indicating the correct features. Response: WLS has revised sheet 13 profile callouts and confirmed other sheets have correct profile callouts as well.

- **25.** Sheet **15 The CE crosses the southwest corner of the existing pond. Please show how this area will be graded within and immediately adjacent to the CE line.** Response: WLS has revised the pond grading so that the entire CE break is a flat crossing and does not include the pond or any part of the pond water surface.
- 26. Sheet 22 The tributary connecting with UT1-R3 at Station 43+00 is not mentioned anywhere in the plan. Since a section of this trib. it is located within the project site and may be potential sediment source for BB-R1, please include a brief description of the channel condition. Response: The tributary shown on sheet 22 is Banner Branch which flows from the east and connects with UT1-R3 near Station 43+00. We have added language to the existing reach condition summary in Section 3.4.1, pg 24 that briefly describes the upstream channel condition.
- 27. Sheet 26 DWR echoes DMS' question regarding UT3 and BB-R2 parallel alignment through an existing wetland. At one point the two channels are less than 25 feet apart. Please provide justification why it's not feasible to tie in UT3 further upstream on BB-R2 near Station 68+00. Additionally, please note that channel maintenance measures such as sediment or veg removal should not be completed after MY3 in order to properly evaluate how the system is trending. Response: As described in the DMS response comment, WLS designed the reach alignments and confluence for UT3 and BB-R2 not to unnecessarily increase stream length/credit, but to accommodate current stream/valley morphology, gradients and natural floodplain connections so that they are not perpendicular to flow. In theory it is feasible to leave the existing ditch in its current location to maintain base flow. However, in practice it is our design intent to convey future base flow and overbank floods competently and without adverse effects to channel hydraulics and floodplain conditions, and to allow for increased habitat and bedform diversity within the appropriately sized bankfull channel. Furthermore, maintaining perennial stream flows within the single thread channel will decrease concentrated flow energy, excess scour potential and stream degradation while improving wetland hydrology across the wide valley bottom (>150'). As shown on Plan Sheets 25 and Figure 7a historical aerial, the proposed alignment actually ties into the main stem BB-R2/R3 at station 69+85 prior to the remnant channel feature near station 71+30. The channel slope is ~1.14% (drops 6.7 ft across 589 LF) with adequate riffle slopes and pool-to-pool spacing to maintain stream bed/bank characteristics and channel form within the wetland area and valley width. We do not anticipate channel maintenance measures to remove sediment or excess channel vegetation after MY3.
- **28. Appendix 12 Since reach names have changed, please include the concept figure that corresponds to the IRT site visit meeting minutes.** Response: the concept figure that corresponds to the meeting minutes has been included in Appendix 12.

NCWRC Comments, Travis Wilson:

- 1. The generic permanent stream crossing detail does not illustrate or mention the possible need for culverts set above bankfull elevation. It would be beneficial to including a cross section detail specific to each culverted stream crossing. That will allow a better assessment of the culvert sizing and configuration within the crossing. Response: The typical culvert crossing detail is not reach specific mainly to limit the number of details within the project plans, so as to minimize duplication and limit the number of plan sheets. Site specific culvert information is shown in the plan/profile sheets of the construction documents. WLS has revised the permanent stream crossing detail to include a bankfull culvert where and when it is called out in the construction documents.
- 2. Note: duel lines of smaller diameter pipe in the channel are not preferred. Pipes typically have to be placed 12"-18" apart causing the channel flow to split and potentially over widen at the inlet and outlet. Response: WLS understands the concern about dual pipes, but have had good

success with this design approach without deleterious effects to the stream. However, we have revised the current crossing to include a single channel culvert and two floodplain culverts.

3. UT1-R3 Station 34+32 permanent crossing is set at 7% that is extremely steep, aquatic passage will not occur, and downstream scour is almost certain. Response: WLS has revised the culvert slope to be less steep. However, due to the change in grade between reaches we could only reduce the pipe slope to 5.79%.

USACE Comments, Kim Browning:

- 1. When submitting the PCN, please combine all impacts by reach. For example, if there are three 60' culverts on reach 1, list it as 180' of permanent impact rather than listing it as three separate impacts. But permanent and temporary impacts still need to be separated. Also, please estimate the number or acres of trees to be cleared to address the NLEB 4(d) rule. Response: WLS will combine all impacts by reach (permanent and temporary separated) for the PCN and will estimate the acres of trees to be cleared per the NLEB 4(d) rule.
- 2. Section 6.4: It would be beneficial to add some coarse woody debris to the depressional areas in the buffers and throughout the adjacent wetlands for habitat, and to help store sediment, increase water storage/infiltration, and absorb water energy during overbank events. I was pleased to see the inclusion of wood in the stream design for habitat. Response: WLS appreciates this comment and will direct the contractor to add coarse woody debris to the depressional areas in the buffers and wetlands for habitat which is also described in the technical specifications. This has been added to Section 6.4 also.
- **3. Section 3.5: Please add a section regarding potential future adjacent development or logging.** Response: Section 3.5.6 Potential Future Land-Use has been added, as well as **Section 6.8.4** Future Project Risks and Uncertainties per DWR Comment #14.
- 4. Though Stokes County is considered a mountain county, all analysis and data are based on piedmont ecoregion categorization. I recognize that the conservation easement has probably already been finalized, but It seems more appropriate for 50' buffers on this site. Response: WLS understands and agrees with this comment, but Stokes County is currently listed as a mountain county with 30-ft buffers, so WLS followed the current guidance. You are correct that the easements have already been finalized. We will consider this for any future projects in Stokes County.
- **5.** Considering the very small watershed drainage areas for UT1A and UT2A, there is concern for loss of flow. It would be beneficial to supplement with photo-points to document flow. Response: WLS will install flow gauges on these reaches instead of photo-points since DWR already requested a flow gauge for UT2A in Comment #19a.
- 6. In the future, please maintain the same reach names throughout the project, including the JD. It's difficult to refer to our field notes when reaches are renamed. Additionally, it's difficult to see the channel lines with the colors selected on Figures 9 and 10. Please use the same colors throughout the life of the project to designate the different mitigation approaches. Response: WLS understands the importance of this request and has made every effort to adhere to this on recent projects. Figures 9 and 10 have been revised to better depict the channel lines without changing colors for the mitigation types.
- 7. The IRT site visit notes indicate that UT1-R1 above UT1C should be enhancement II, rather than restoration. Section 3.4.1 indicates that this reach is mostly stable with a mature woody buffer. Please explain why restoration is proposed here, especially since the listed functional

uplift is only 8% and it scored a Medium NCSAM rating. Response: As noted above in DWR response comment #23, WLS has revised the approach along UT1-R1 to Enhancement Level I with a 1.5:1 credit ratio. The meeting minutes state that this area should be Enhancement Level II, then a section of preservation, and that restoration could begin near the old house where the stream is incised. The original concept approach was to relocate and re-establish the incised channel away from the right toe of slope. We will be conducting Enhancement Level I activities such as excavating floodplain bench and installing in-stream structures to increase bedform diversity and aquatic habitat. Table 1, Table 14, and Section 6.1.2, pg 47 have been updated accordingly.

- 8. NCSAM: UT3 was not mentioned in the text on page 30. An interesting observation is that many of the reaches proposed for enhancement II score a Low SAM rating while reach BB-R3, which scored Medium, is proposed for restoration. Perhaps cattle exclusion on the EII reaches will provide the most uplift, but it would be interesting to compare the scores of NCSAM and SQT to see the results of the functional assessments. Response: WLS appreciates the comment and likes the suggested comparative observation. Although there are similarities between the NC SAM and the SQT assessment methods and functional summaries, our understanding is that NC SAM is intended as a more of a rapid functional assessment and the SQT requires more data collection and analysis in order to determine the restoration potential and associated lift that can be achieved for the project, especially considering site constraints and existing conditions. For example, BB-R3 is scored medium primarily because of existing buffer vegetation and limited cattle access at the lower portion of the reach; similarly, UT1-R2 is the longest stretch of Enhancement II and scored medium with a wooded buffer and cattle access.
- 9. Table 14: The wetland comments section does not distinguish the difference between the different levels of work being performed on wetland rehabilitation versus re-establishment. For example, the work performed is the same for W1 and W1A, but they're receiving different credit ratios. Response: Soil manipulation has been added to the re-establishment wetlands. The work being performed on both proposed wetland areas is very similar, however the credit ratios, are different because the wetland rehabilitation areas are jurisdictional wetlands (poorly functioning), while the re-establishment areas contain favorable hydric soils for wetland re-establishment. Both wetland types will receive similar levels of work.
- 10. Table 21: Considering the inclusion of riparian wetlands proposed for this site, it would be beneficial to add additional FACW species to the overstory and understory list. Response: WLS agrees with this comment and Table 21 has been adjusted to include additional FACW species.
- **11.** Ephemeral/vernal pools should be 8-14" depressions that dry up yearly so that predatory species cannot colonize, and should not be so numerous that trees do not grow in large areas of the buffer. Response: WLS agrees with this comment and the vernal pools/floodplain depressions will not exceed 8-14" deep as suggested. We have revised our channel plug detail to reflect this intent. Annotations within the design plan sheets will further emphasize the size and depth of the floodplain depressional feature to prevent overly deep pools resulting in stagnant water conditions that prevent tree growth. WLS has corresponded with WRC on past projects to better define the definition, spatial distribution and function of vernal pool ecology as it relates to floodplain depressions in the riparian zone. These are generally intended as floodplain features such as meander scars and tree throws are commonly found in natural riparian systems. These features are appropriately added to provide additional habitat and serve as water storage and sediment sinks throughout the riparian corridor.
- 12. Please show the location of the rain gauge and fixed photo points on Figure 10. If cross-sections are to be used for photo points, please indicate in the text. Additionally, it would be helpful to have photo points at crossings to show the condition of the culverts. Response: The rain gauge has been added to Figure 10. There are no fixed photo points proposed for stream monitoring as WLS opted to install flow gauges instead on those reaches. Cross-sections and

vegetation plots will be used as photo points. This language was already in Section 8.2.2, but has also been added to Section 8.1 Visual Monitoring. WLS has added crossing photo points for culverts to Figure 10.

- **13.** Please show the location of the reference wetland on Figure 11. Response: Please see DWR response comment #8. The reference wetland 'W8' location has been added with coordinates as an insert to Figure 11.
- 14. I'm glad to see the inclusion of water quality and benthic monitoring. Are these reaches proposed for additional credit? If so, please add this to Table 1. Also, please add the monitoring locations to Figure 10. Response: WLS appreciate this comment, however, these reaches are not proposed for additional credit. WLS is conducting this monitoring independent of credit determination to improve our project implementation and document potential functional uplift. This additional monitoring is not tied to success criteria and the two locations have been added to Figure 10.

USEPA Comments, Todd Bowers:

I have completed my review for the Banner Branch wetland and stream mitigation site. I have no site-specific comments to submit at this time. Response: Noted and thanks.

Please contact me if you have any additional questions or comments.

Sincerely,

Water & Land Solutions, LLC

Loyne Van Stell

Kayne M. Van Stell

Vice President, Ecosystem Design Services Water and Land Solutions, LLC 7721 Six Forks Road, Suite 130

Raleigh, NC 27615

Office Phone: (919) 614-5111 Mobile Phone: (919) 818-8481

Email: kayne@waterlandsolutions.com

Table of Contents

1	Р	Project Introduction8						
2	Watershed Approach and Site Selection							
3	В	Baseline I	Information and Existing Conditions Assessment	. 10				
	3.1	Wate	ershed Processes and Resource Conditions	. 13				
	3	3.1.1	Watershed Overview	. 13				
	3	3.1.2	Surface Water Classification	. 13				
	3	3.1.3	Aquatic Resource Health and Function	. 13				
	3	3.1.4	Benthic Macroinvertebrates and Aquatic Habitat	. 13				
	3	3.1.5	Pollutant Load Considerations	. 14				
	3.2	Land	scape Characteristics and Regional Controls	. 16				
	3	3.2.1	Physiography and Geology	. 16				
	3	3.2.2	Soils	. 17				
	3	3.2.3	Climate	. 18				
	3	3.2.4	Existing Vegetation	. 19				
	3.3	Land	Use and Development Trends	. 21				
	3.4	Wate	ershed Disturbance and Response	. 21				
	3	3.4.1	Existing Reach Condition Summary	. 22				
	3	3.4.2	Channel Morphology and Stability Assessment	. 28				
	3	3.4.3	Channel Evolution	. 30				
	3	3.4.4	Sediment Supply, Delivery and Storage	. 30				
	3	3.4.5	Jurisdictional WOTUS	. 31				
	3.5	Pote	ntial Site Constraints	. 31				
	3	3.5.1	Existing Easements and Right-Of-Ways on the Site	. 31				
	3	3.5.2	Utility Corridors within the Site	. 31				
	3	3.5.3	Mineral or Water Rights Assurance	.31				
	3	3.5.4	Hydrologic Trespass	.32				
	3	3.5.5	Invasive Species Vegetation	.32				
	3	3.5.6	Potential Future Land-Use	.32				
	3	3.5.7	Stream Crossings	.32				
	3.6	Exist	ing Wetland Conditions	.32				
4	F	unction	al Uplift Potential	.33				
	4	1.1.1	Function-Based Parameters and Measurement Methods	.33				

	4.1	1.2	Performance Standards and Functional Capacity	34
	4.1	1.3	Restoration Potential	35
5	5 Mi	itigati	ion Project Goals and Objectives	36
	5.1	1.1	Project Benefits Summary	37
6	5 De	sign A	Approach and Mitigation Work Plan	39
	6.1	Stre	eam Design Approach	41
	6.1	1.1	Proposed Design Parameters	41
	6.1	1.2	Design Reach Summary	44
	6.2	Ref	ference Sites	49
	6.2	2.1	Reference Streams	49
	6.2	2.2	Reference Wetlands	50
	6.3	Flo	w Regime	51
	6.3	3.1	Bankfull Stage and Discharge	52
	6.3	3.2	Regional Curve Comparison	52
	6.3	3.3	Channel Forming Discharge	53
	6.3	3.4	Channel Stability and Sediment Transport Analysis	55
	6.4	We	etland Design Approach	56
	6.5	Rip	arian Buffer Design Approach	58
	6.5	5.1	Proposed Vegetation Planting	59
	6.5	5.2	Planting Materials and Methods	60
	6.6	Agr	ricultural Best Management Practices	62
	6.7	Wa	ater Quality Treatment Features	63
	6.8	Site	e Construction Methods	64
	6.8	3.1	Site Grading and Construction Elements	64
	6.8	3.2	In-stream Structures and Site Improvement Features	64
	6.8	3.3	Construction Feasibility	65
	6.8	3.4	Future Project Risks and Uncertainties	65
7	7 Pe	rform	nance Standards	65
	7.1	Stre	eams	66
	7.2	We	etlands	66
	7.3	Veg	getation	67
8	3 M	onito	ring Plan	67
	8.1	Visi	ual Assessment Monitoring	68

8	3.2	Stream Assessment Monitoring	68						
	8.2.	L Hydrologic Monitoring	69						
	8.2.	, ,							
		· -							
	8.2.	B Flow Duration Monitoring	70						
8	3.3	Wetland Monitoring	71						
8	3.4	Vegetation Monitoring	71						
9	Ada	otive Management Plan	74						
10	Long	g-Term Management Plan	74						
11		rences							
			73						
Tal	oles								
Tak	ole 1. I	Project Asset Summary – Stream and Wetland	8						
		Project Attribute Data and Baseline Summary Information							
		otal Annual Pollutant Loadings and Removal Estimates from STEPL Model							
		BANCS Reach Assessment							
Tak	ole 5. I	Pollutant Load Reduction Estimates from Livestock Exclusion and Riparian Buffers	16						
		Project Soil Type and Descriptions							
		Comparison of Monthly Rainfall Amounts vs. Long-term Averages							
		ixisting Site Vegetation							
		existing Channel Morphology Summary							
		Existing and Proposed Functional Condition Assessment Summary							
		Functional Lift Scoring Summary							
		Function-Based Goals and Design Objectives Summary							
		Project Benefits Summary							
		Mitigation Components and Proposed Credit Summary							
		Proposed Design Parameters							
		Reference Reach Data Comparison							
		Flow Level and Ecological Role							
		North Carolina Rural Piedmont Regional Curve Equations							
		Design Discharge Analysis Summary							
		Boundary Shear Stress and Stream Power							
		Proposed Riparian Buffer Bare Root and Live Stake Plantings							
		Proposed Riparian Buffer Permanent Seeding							
	able 23. Proposed Monitoring Plan Summary73								

Figures

Figure 1	Vicinity Map
	Existing Geology Map
	USGS Topographic Map
Figure 4	NRCS Soils Map
	LiDAR Map
	Current Conditions Map
Figure 7a, 7b, 7c	Historic Aerial Map
Figure 8	FEMA Floodplain Mar
	Proposed Mitigation Features Map
Figure 10	Proposed Monitoring Features Map
Figure 11	Reference Site Location Map

Appendices

Appendix 1	Plan Sheets
Appendix 2	Site Analysis Data/Supplementary Information
Appendix 3	Site Protection Instrument
Appendix 4	Credit Release Schedule
Appendix 5	Financial Assurance
Appendix 6	Maintenance Plan
Appendix 7	DWR Stream Identification Forms
Appendix 8	USACE District Assessment Methods/Forms
Appendix 9	WOTUS Information
Appendix 10	Invasive Species Plan
Appendix 11	Approved FHWA Categorical Exclusion Form
Appendix 12	Agency Correspondence & Floodplain Checklist

1 Project Introduction

The Banner Branch Mitigation Project ("Project") is a North Carolina Department of Environmental Quality (NCDEQ), Division of Mitigation Services (DMS) full-delivery stream and wetland mitigation project, contracted with Water & Land Solutions, LLC (WLS) in response to RFP 16-007405. The Project will provide stream and wetland mitigation credits in the Roanoke River Basin (Cataloging Unit 03010103). The Project is located in Stokes County approximately five miles northeast of Lawsonville at 36.525421° North and -80.203265° West. The project site is in NCDEQ Sub-basin 03-02-01, Roanoke River Basin Restoration Priority Plan (RBRP, amended 2015), and Targeted Local Watershed 03010103180010 (Warm Water Thermal Regime), all within the Roanoke River Basin (Figure 1).

The Project will involve the restoration, enhancement, preservation and permanent protection of fourteen stream reaches and their riparian buffers, totaling approximately 15,707 linear feet of streams and 6.18 acres of riparian wetlands. The Project will provide significant ecological improvements and functional uplift through stream and aquatic habitat restoration, and through decreasing nutrient and sediment loads within the watershed. See Section 5 for a detailed benefits summary and Table 1 for a summary of project assets. Figure 9 illustrates the project mitigation components.

Table 1. Project Asset Summary – Stream and Wetland

Project Component	Type of Mitigation (Priority Level)	Creditable Units (LF)	Mitigation Ratio	Stream Mitigation Credits (SMCs)	
UT1-R1 (upper)	1 (upper) Stream Enhancement Level I		1.5:1	248.667	
UT1-R1 (lower)			10:1	13.600	
UT1-R2	Stream Enhancement Level II	1,783	2.5:1	713.200	
UT1-R3	Stream Preservation	822	10:1	82.200	
UT1A	Stream Enhancement Level II	410	2.5:1	164.000	
UT1B (upper)	Stream Enhancement Level II	391	2.5:1	156.400	
UT1B (lower)	UT1B (lower) Stream Enhancement Level I		1.5:1	64.667	
UT1C (upper)	Stream Preservation	69	10:1	6.900	
UT1C (lower)	Stream Restoration (PI/PII)	151	1:1	151.000	
UT2	Stream Restoration (PI)	1,287	1:1	1,287.000	
UT2A	Stream Enhancement Level I	289	1.5:1	192.667	
UT3	Stream Restoration (PI)	589	1:1	589.000	
BB-R1	Stream Restoration (PI)	808	1:1	808.000	
BB-R2	Stream Restoration (PI)	1,835	1:1	1,835.000	
BB-R3	Stream Restoration (PI/PII)	636	1:1	636.000	
UT4-R1 (upper)	Stream Restoration (PI/PII)	2,346	1:1	2,346.000	
UT4-R1 (lower)	Stream Restoration (PI)	1,730 / 233	1:1/1.25:1	1,916.400	
UT4-R2	Stream Enhancement Level I	1,722	1.5:1	1,148.000	
Totals		15,707		12,358.700	

Note 1: No mitigation credits were calculated outside the conservation easement boundaries.

Note 2: Credit values in table were rounded to 3rd decimal place.

Note 3: 233 LF of UT4-R1 (lower) credited at 1.25:1

Project Component	Type of Mitigation (Priority Level)	Creditable Units (AC)	Mitigation Ratio	Riparian Wetland Mitigation Credits (RWMCs)
W1	Wetland Enhancement	0.825	2:1	0.413
W1A	Wetland Re-establishment	1.240	1:1	1.240
W2	Wetland Enhancement	0.524	2:1	0.262
W3	W3 Wetland Rehabilitation		1.5:1	0.592
W4	W4 Wetland Enhancement		2:1	0.161
W4A Wetland Re-establishment		0.808	1:1	0.808
W5	W5 Wetland Enhancement		2:1	0.102
W5A	Wetland Enhancement	0.097	2:1	0.048
W5B	W5B Wetland Enhancement		2:1	0.005
W6A	Wetland Rehabilitation	0.251	1.5:1	0.167
W6B	Wetland Enhancement	0.045	2:1	0.022
W7	Wetland Enhancement	0.041	2:1	0.020
W8A	Wetland Re-establishment	0.107	1:1	0.107
W9	Wetland Re-establishment	0.823	1:1	0.823
Totals		6.182		4.770

Banner Branch and its unnamed tributaries flow to Snow Creek, which flows to the Dan River before eventually draining to the Roanoke River. Banner Branch is listed by the NCDEQ Division of Water Resources as 'C' from its source to Snow Creek. The project site is located in the Northern Inner Piedmont ('45e') US Environmental Protection Agency Level IV Ecoregion and the North Carolina Piedmont Physiographic Province (Omernik, 2014). The site involves a series of direct headwater tributaries to Banner Branch, which will provide maximum ecological uplift using a comprehensive watershed approach.

2 Watershed Approach and Site Selection

In an effort to update its watershed planning process, DMS amended the original 2001 Roanoke RBRP in 2009, 2015, and 2018. The purpose of the recent amendment was to reevaluate the existing TLWs and current mitigation strategies to offset ecological impacts (e.g. cattle accessing streams, deforested buffers) and provide conservation and restoration recommendations to improve riparian management within the TLWs and Eden Area Local Watershed Plan (LWP). The project recommendations and measures include traditional stream and wetland mitigation, water quality and aquatic habitat improvements, nutrient reduction strategies, including stormwater and agricultural BMPs, and rare, threatened, or endangered (RTE) aquatic species habitat preservation or enhancement (DMS, 2018).

The project is situated in the Dan River headwaters in the Northern Inner Piedmont (Level III Ecoregion) in the westernmost portion of the Roanoke, where the NC Wildlife Resources Commission (NCWRC) considers this HU as a priority area for conservation measures. The USGS 2011 National Land Cover Data (NLCD) GIS Dataset was used to estimate the impervious cover and dominant land use information for the project catchment area. Currently, the catchment area has an impervious cover estimated to be less than two percent and the dominant land uses are pasture lands (predominantly for hay and cattle), agricultural row crop production (i.e. tobacco) and mixed forest.

As recommended in the Roanoke RBRP, this project provides the ideal opportunity to implement water quality improvement features and agricultural BMPs, or combinations of land management practices and conservation measures. Collectively with the stream restoration, riparian wetland restoration, and riparian buffer restoration, erosion/sedimentation, nutrients and fecal coliform bacteria will be reduced as major stressors to water quality and habitat.

This project site was selected to provide a unique opportunity for implementing a combination of different practices or measures, as part of a comprehensive watershed approach to improve and protect aquatic resource functions, as outlined in the DMS Compensation Planning Framework (CPF) and the Federal Mitigation Rule (USACE, 2008). Developing specific goals and objectives that directly relate to functional improvement is a critical path for implementing a successful restoration project. The expected functional uplift is discussed further and in more detail under Section 4, and project goals and objectives are further described and discussed under Section 5.

3 Baseline Information and Existing Conditions Assessment

WLS performed an existing conditions assessment for the Project by compiling and analyzing baseline information, aerial photography, and field data. The purpose of this assessment was to determine how aquatic resource functions have been impacted within the catchment area. Watershed information such as drainage patterns, percent impervious cover, controlling vegetation and hydrology (rainfall/runoff relationships) were evaluated, along with the analysis of physiography, local geology, soils, topographic position (basin relief, landforms, valley morphology), and flow regime (discharge, precipitation, sediment supply).

Combined with historical context, the processes of hydrology and geomorphology must be understood to evaluate current physical and biological conditions and system responses to human activities within the riparian ecosystem (Montgomery and Bolton, 2003). Identifying the hydrogeomorphic variability, site constraints, and cause-and-effect relationships plays a key role in determining the functional loss and maximizing potential uplift (Harman et al., 2012). The following sub-sections further describe the existing site conditions, degrees of impairment, and primary controls that were considered for developing an appropriate restoration design approach. Table 2 represents the project attribute data and baseline summary information.

Table 2. Project Attribute Data and Baseline Summary Information

	Project Information				
Project Name	Banner Branch Mitigation Project				
County	Stokes				
Project Area (acres)	40.87				
Project Coordinates (latitude and longitude)	36.525421° N, -80.203265° W				

		Project V	Watershed Sur	nmary Informa	ation		
Physiographic Province	Piedmont						
River Basin				Roanoke			
USGS Hydrologic Unit			03	301010318001	0		
DWR Sub-basin				03-02-01			
Project Drainage Area (acres)			563 (BB	-R3) and 224 (l	JT4-R2)		
Project Drainage Area Percentage of Impervious Area				<2			
CGIA Land Use Classification		2.01	03, 3.02 (50%	pasture/hay,	48% mixed for	est)	
		Rea	ch Summary I	nformation			
Parameters	UT1-R1	UT1-R2	UT1-R3	UT1A	UT1B	UT1C	UT2
Length of reach (linear feet)	535	1,872	861	410	391	227	1,347
Valley confinement (Confined, moderately confined, unconfined)	moderately confined	moderately confined	moderately confined	moderately confined	moderately confined	moderately confined	confined
Drainage area (acres)	41.2	135	166.4	4.6	41.6	15.8	28.3
Perennial, Intermittent, Ephemeral	Perennial	Perennial	Perennial	Intermittent	Intermittent	Intermittent	Perennial/ Int ¹
NCDWR Water Quality Classification	С	С	С	С	С	С	С
Stream Classification (existing)	G4c/B4c	F4	E4	G5	E5	F4	F4
Evolutionary trend (Simon)	11/111	V/VI	V/VI	VI	III	I	III/IV
FEMA classification	N/A						

Reach Summary Information continued							
Parameters	UT2A	UT3	BB-R1	BB-R2	BB-R3	UT4-R1	UT4-R2
Length of reach (linear feet)	289	338	986	2,118	478	4,686	1,742
Valley confinement	moderately confined	unconfined	unconfined	unconfined	unconfined	unconfined	unconfined
Drainage area (acres)	3.1	76.8	409.6	480.0	563.2	153.6	224.0
Perennial, Intermittent, Ephemeral	Intermittent	Perennial/ Int ¹	Perennial	Perennial	Perennial	Perennial/ Int ¹	Perennial
NCDWR Water Quality Classification	С	С	С	С	С	С	С
Stream Classification (existing)	B4a	E5 (incised)	B4c	E4 (incised)	E4 (incised)	B4c/F4	E5
Evolutionary trend (Simon)	III	11/111	IV	IV/V	IV	IV/V	III/IV
FEMA classification	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Regulatory Considerations

			•
Parameters	Applicable?	Resolved?	Supporting Docs?
Water of the United States - Section 404	Yes	No	PCN
Water of the United States - Section 401	Yes	No	PCN
Endangered Species Act	Yes	Yes	Categorical Exclusion
Historic Preservation Act	Yes	Yes	Categorical Exclusion
Coastal Zone Management Act (CZMA or CAMA)	No	N/A	N/A
FEMA Floodplain Compliance	No	N/A	Appendix 12
Essential Fisheries Habitat	No	N/A	N/A

Note 1: Indicates that the lower section of the reach was classified as perennial and upper stream reach was classified as intermittent.

Note 2: Reach lengths include existing stream through proposed crossing locations.

3.1 Watershed Processes and Resource Conditions

3.1.1 Watershed Overview

Spatial and temporal variability of hydrologic and geomorphic processes have influenced the overall system response and stability trends in many reach segments across the Project site. Measurable changes in the landscape ecology were first identified upon review of aerial photography, including native buffer vegetation disturbance and/or removal and stream channel alteration. Evidence of these observed changes were documented throughout the watershed as increased channel widths/depths and bank height ratios, decreased riffle-pool frequency and bedform diversity, as well as limited floodplain connectivity and hyporheic zone interaction. Additionally, direct cattle access to the streams and surrounding agricultural fertilization has likely increased fecal coliform bacteria and nutrient levels within the watershed. These ecological impacts have negatively impacted historic stream and wetland functions at the site and have likely increased over the past few decades due to anthropogenic changes within catchment.

3.1.2 Surface Water Classification

Banner Branch is a Class C water (Stream Index 22-20-1) "from source to Snow Creek". Class 'C' waters are protected for secondary recreation, fishing, wildlife, fish and aquatic life propagation and survival, agriculture and other uses suitable for Class 'C'.

3.1.3 Aquatic Resource Health and Function

WLS reviewed DWR biological and water quality data within the Banner Branch watershed to identify any potential stressors near receiving waters. Currently, no DWR water quality monitoring stations, or benthic or fish monitoring stations exist in the project watershed. At this time, no known DWR monitoring sites are proposed for monitoring use by WLS for this project. It is generally accepted that nutrient loading and sedimentation from streambank erosion is a significant pollutant to water quality and aquatic habitat. However, there can be data uncertainties and excessive costs for monitoring nutrient levels and sediment delivery in streams (Hess, 2014). Without an extensive nutrient monitoring and management plan, types, application rates, groundwater leaching, and lag times can vary considerably, making it difficult to effectively determine water quality improvements in response to various restoration practices. Additionally, in situ sediments that have deposited over time can often have longer transport times and structural legacy effects that can mask the water quality improvements and biologic functions related to common stream and wetland restoration activities (Bain, 2012).

3.1.4 Benthic Macroinvertebrates and Aquatic Habitat

WLS evaluated benthic macroinvertebrate (BMI) communities and aquatic habitat at two locations (Site 1 along BB-R3 and Site 2 along UT4-R2) within the proposed project area. The sample number and locations were selected based on stream condition, watershed position and flow regime. Macroinvertebrates are useful biological monitors because they are found in all aquatic environments, are less mobile than many other groups of organisms, and easily collectable. BMI sampling was conducted on October 2, 2019 using methods and procedures defined by DWR's "Standard Operating Procedures for the Collection and Analysis of Benthic Macroinvertebrates" (NCDWR, 2016). Samples were collected by WLS staff using the Qual 4

Sampling Method and the Unrated Small Stream threshold criteria. Samples were verified by Larry Eaton (Eaton Scientific, LS, Inc.). Sample Site 1 had a Biotic Index (BI) value of 5.94 resulting in a bioclassification rating of "Not Rated". Site 1 had a habitat assessment score of 71. Sample Site 2 had a BI value of 6.65 resulting in a bioclassification rating of "Not Rated". Site 2 had a habitat assessment score of 64. The BMI diversity was greater in Sample Site 1 with higher total taxa, EPT richness and abundance. Additional sampling will be conducted again in Spring/Summer during post-construction monitoring year 3. The pre-restoration BMI results and habitat assessment score summary is shown in Appendix 2.

3.1.5 Pollutant Load Considerations

STEPL Model: WLS utilized the Spreadsheet Tool for Estimating Pollutant Loads (STEPL v4.3, 2015) to help quantify how the project may reduce pollutant loads into the Banner Branch Watershed. The STEPL model was developed for the United States Environmental Protection Agency (USEPA, Tetra Tech, 2015) and was used to estimate sediment and nutrient load reductions from the implementation of agricultural BMPs, such as vegetated filter strips, wetland detention, and bank stabilization/stream restoration. Model inputs include land use information, Revised Universal Soil Loss Equation (USLE)/runoff curve numbers, eroded streambank length, streambank height, lateral recession rates, soil type/weight, and BMP type/efficiency applicable to the agricultural Piedmont area. The summary of total annual pollutant loadings and removal estimates are shown Table 3 below.

Table 3. Total Annual Pollutant Loadings and Removal Estimates from STEPL Model

Project Watershed (ac)	Existing Stream Length (ft)	Length of Scoured Bank (ft)	Sediment Load (ton/yr)	Nitrogen Load (lb/yr)	Phosphorus Load (lb/yr)	Sediment Reduction w/ BMP (ton/yr, %)	Nitrogen Reduction w/ BMP (lb/yr, %)	Phosphorus Reduction w/ BMP (lb/yr, %)
788	16,190	7,700	838.3	27,458.8	5,831.8	531.5, 63.4%	5,644.1, 20.6%	1,296.5, 22.2%

Note 1: Soil Texture Class is predominantly loam, sandy clay loam.

Note 2: Average Bank heights in scour areas ranged 1 to 4 feet.

Note 3: Lateral Recession Rates (ft/yr) ranged from slight category (0.01 to 0.05) to severe (0.06 to 0.40)

Note 4: Agricultural BMP input used for streambank stabilization/restoration and cattle exclusion fencing.

Although the STEPL model data is more empirically based, it is intended to be used as a basic planning tool. Inherently, there are certain assumptions and limitations that must be considered when refining model inputs and evaluating the results. For example, water quality calculations and sediment loading are highly dependent on actual BMP efficiencies, sophisticated algorithms, regression analysis, and not calibrated field measurements.

BANCS Method: As a comparison to the EPA Region 5 model results for sediment loading, WLS predicted streambank erosion rates and annual sediment yields using the Bank Assessment for Non-point-source Consequences of Sediment (BANCS) method (Rosgen 1996, 2001a) which considers two streambank erodibility estimation tools: The Bank Erosion Hazard Index (BEHI) and Near Bank Stress (NBS). This rating method is used to describe existing streambank conditions (i.e., bank migration and lateral stability) and quantify the lateral erosion potential of a stream reach in feet per year. The components of the BANCS methodology can be subjective and vary based on the region's climatic condition, geologic controls, and

the experience level and professional training of the observers. However, it is a repeatable estimation method and the intent is to be used as a relative comparison for pre- and post-restoration conditions.

WLS used the unpublished NC Piedmont BEHI and NBS ratings curve (personal communication with NRCS, Walker, 2016) to estimate annual sediment loss based on local observations and streambank measurements taken on September 17th and 18th, 2019. The BEHI/NBS estimates for the existing conditions (pre-construction) predict that the project reaches contribute approximately 453.6 tons of sediment per year to Snow Creek. The BEHI ratings varied across the project reaches from 'very low' to 'very high' based on shear stress, stream bed/bank stability and controlling vegetation. UT4-R1, UT4-R2, BB-R1, BB-R2, BB-R3 contribute the majority of the bank sediment to the system, due to a lack of bank protection and hoof sheer from cattle which have access to these reaches. The average 'moderate' to 'high' BEHI ratings and observations are typical of a degraded stream system with active bank erosion. See Table 4 below and Appendix 2 for sediment loading assessment sheets.

Table 4. BANCS Reach Assessment

Project Component	BEHI Range	NBS Range	Sediment Loading (tons/yr)
UT1-R1	Very Low/Low-Moderate	Very Low/Moderate	5.1
UT1-R2	Very Low/Moderate	Very Low/High	11.5
UT1-R3	Very Low/Moderate	Very Low/Moderate	6.2
UT1A	Very Low/Low	Very Low/Low	0.7
UT1B	Very Low/Moderate-High	Very Low/Moderate	5.6
UT1C	Very Low/Moderate-High	Very Low/Moderate	2.8
UT2	Low/Moderate	Very Low/High	14.4
UT2A	Very Low/Moderate	Low/Moderate	0.5
UT3	Moderate	Very Low	3.3
BB-R1	Very Low/High	Very Low/High	57.6
BB-R2	Low/High	Low/High	76.1
BB-R3	Low/High	Low/High	93.1
UT4-R1	Very Low/High	Very Low/Very High	128.7
UT4-R2	Very Low/High	Low/High	48.0

Note 1: The lower portion of UT1B and upper UT3 was not assessed due to poor channel definition and limited erosion potential.

Fecal Coliform Bacteria: Pollutant load reduction performance standards for nutrients and fecal coliform bacteria are not proposed nor required for this project; however, WLS is interested in evaluating how the proposed project could reduce pollutant loads into the Banner Branch Watershed. Based on DMS referenced studies represented in *Quantifying Benefits to Water Quality from Livestock Exclusion and Riparian Buffer Establishment for Stream Restoration* (DMS, 2016), WLS expects that implementation of this project could reduce Fecal Coliform Bacteria colonies (col), by as much as 68% as shown on Table 5.

Table 5. Pollutant Load Reduction Estimates from Livestock Exclusion and Riparian Buffers

Total Riparian Buffer Area (ac) ¹	Cattle Exclusion: Grazing Pasture (ac)	Nutrient Reduction: TN (lbs/yr) ²	Nutrient Reduction: TP (lbs/yr) ²	Fecal Coliform Bacteria from Direct Inputs (col) ³	Fecal Coliform Bacteria Reduction (col) ⁴
37.9	27.0	1,378.1	114.2	2.81E+12	1.67E+12

Note 1: Applicable for restored buffer widths ranging from 6m to 30m from the top of streambanks.

Note 2: NC Division of Water Quality – Methodology and Calculation (1998) for determining nutrient reductions associated with Riparian Buffer Establishment (DWR, 1998). TN reduction (lbs/yr) = 51.04 (lbs/ac/yr) x Area (ac) and TP reduction (lbs/yr) = 4.23 (lbs/ac/yr) x Area (ac)

Note 3: Fecal Coliform Reduction from Direct Cattle Input (colonies) = 2.2×10^{11} (col/AU/day) x AU x 0.085 and assumes ~300 black beef cattle (ave. 400 lbs/each)

Note 4: Fecal Coliform Reduction from Buffer Filtration (colonies) = Runoff's fecal coliform concentration (col/gal) x Runoff volume (Gal) x 0.85 and assumes pastures are under continual grazing year-round (1.894*10^6), runoff curve number (CN) for Soil Group 'B' in pastureland is $^{\sim}68$ for a 2yr/ 24hr storm event.

Based on existing condition assessments, findings indicate the overall stream health is considered 'Poor', which is consistent with model estimates and comparisons with numerous referenced studies. WLS expects that the implementation of this restoration project will significantly reduce pollutant loads, including sediment and nutrients, improving the overall aquatic functions and water quality in Banner Branch and its tributaries. WLS will conduct pre- and post-restoration water quality sampling and bank erosion/sediment loading analyses (i.e. BEHI) to document improvements related to pollutant load reductions as described in Section 8 and Table 23. WLS understands that such monitoring activities are not tied to performance standards nor required to demonstrate success for credit release. However, collecting and evaluating pollutant reduction data aligns with the goals and objectives of the project. Selecting applicable monitoring and evaluation methods will help develop a more function-based assessment and improve our project implementation process, thereby contributing positively to the advancement of the practice of ecosystem restoration.

3.2 Landscape Characteristics and Regional Controls

3.2.1 Physiography and Geology

The project area is located north of the Sauratown Mountains and Pilot Mountain monadnock which represents a unique ecotonal transitional zone between Piedmont and Mountain Level III/IV Ecoregions. The underlying geology and metamorphic terrane within the project area is located in the Piedmont geologic province east of the Blue Ridge Mountains. The Brevard fault zone is considered the boundary between the Blue Ridge and Inner Piedmont Belts. More specifically, the project area is located in the foothills of Northern Inner Piedmont and consist of both banded gneiss (*CZbb*) formation interlayered with calc-silicate rock, metaconglomerate, amphibolite, sillimanite-mica schist, granitic rock, and micas schist (*CZms*) interlayered with garnet, staurolite, kyanite, or sillimanite occur locally; lenses and layers of quartz schist, and micaceous (Geologic Map of North Carolina, NCGS, 1998). The tributaries and upper reach of Banner Branch are in banded gneiss interlayered with calcium-bearing silicate rock, metaconglomerate, amphibolite, sillimanite-mica schist, and granitic rock. The lower portion of Banner Branch and its headwaters outside of the project is located within a formation of mica schist containing garnet, staurolite, kyanite, or sillimanite occur locally; lenses and layers of quartz schist, micaceous quartzite, calc-silicate rock, biotite gneiss, amphibolite, and phyllite (NCGS, 2009).

3.2.2 Soils

Based on the geology, alluvial soils found within the project contain a wide variety of minerals and textures. Soils generally tend to be well drained, having a loamy surface with predominantly clayey subsoil that formed in weathered felsic and metamorphic and igneous rock (USDA-NRCS 1995). Floodplain soils formed in recent alluvium and have a loamy surface and underlain by loamy or sandy material. Soils at the project site were initially determined using NRCS soil survey data for Stokes County (NRCS Stokes County Soil Survey, 1995). It should be mentioned that the current online Web Soil Survey (NRCS, 2019) data differs from the published Soil Survey of Stokes County because the area was reclassified from a thermic regime to a mesic after publication. The current classification and soil series are the mesic counterparts to the published survey and are used in this report unless otherwise noted. This reclassification does not change the general soil information available or the interpretation of soils for determining the proposed mitigation approach. The soils within the project area were verified during onsite field investigations as described in the detailed soil report in Appendix 2. Figure 4 illustrates NRCS soil series throughout the project area and the soil descriptions are provided below in Table 6.

Table 6. Project Soil Type and Descriptions

Soil Name	Hydric	Description
Clifford sandy clay loam (CeC2) (4.0% of project area)	No	Well drained Cecil and similar soils found on broad ridges mainly in the northeastern and southwestern parts of the county. Slope ranges from 2 to 8% on landscapes with moderate erosion and are not flooded. The surface layer is typically yellowish red sandy clay loam 8 inches thick. Depth to bedrock is greater than 60 inches.
Codorus loam (CsA) (26.4% of project area)	No	Moderately well drained and somewhat poorly drained floodplain soils found on nearly level slopes. Slopes range from 0 to 2%. Surface layer is typically brown silt loam 9 inches thick. Depth to bedrock is more than 6 feet.
Dan River and Comus (DaA) (17.9% of project area)	No	Well drained floodplain soils with frequent to occasionally flooding. Fine-loamy, mixed soils on 0 to 4% slopes. Surface layer is typically dark yellowish-brown loam 9 inches thick. Depth to bedrock is greater than 60 inches.
Danripple sandy clay loam (DpB2) (0.2% of project area)	No	Well drained sandy clay loam soils found on stream terraces and low hills. Slopes range from 2 to 8% on landscapes with moderate erosion and are not flooded. The surface layer is typically reddish-brown sandy loam 10 inches thick. Depth to bedrock is greater than 60 inches.
Fairview-Poplar Forest Complex (FpC2) (9.1% of project area)	No	Well drained soils formed mainly on ridges and interfluves in the Piedmont region. Slope ranges from 8 to 15% on landscapes with moderate erosion and are not flooded. The surface layer is typically brown sandy clay loam 10 4 inches thick and clay subsoil or clay loam underlying material. Depth to bedrock is greater than 80 inches.

Soil Name	Hydric	Description
Fairview-Poplar Forest Complex (FpD2) (42.1% of project area)	No	Well drained soils formed mainly on ridges and interfluves in the Piedmont region. Slope ranges from 15 to 25% on landscapes with moderate erosion and are not flooded. The surface layer is typically brown sandy clay loam 10 inches thick and clay subsoil or clay loam underlying material. Depth to bedrock is greater than 80 inches.

The soils within the floodplain and riparian areas are predominantly mapped Fairview-Poplar Forest Complex (FpD2), Codorus loam (CsA), and Dan River and Comus (DaA). The soil properties have been degraded by historic agricultural and silvicultural activities and more recent cattle disturbances (i.e., hoof trampling) have resulted in a significant loss of surface/groundwater interaction, and increased streambank erosion and sedimentation. The soil survey indicates soil within the project area generally has a loamy surface within the floodplain and loam or sandy loam in the uplands. Floodplain soils formed in loamy alluvium derived from igneous and metamorphic rock eroded from the contributing upland areas. These soils are typically underlain by a sandy clay loam that formed in loamy alluvium derived from uplands of igneous and metamorphic rock (on line NRCS Web Soil Survey 2019). The upland soils are underlain by clayey soils and can be shallow to bedrock on the steeper slopes.

Throughout the project, larger floodplains are mapped as either Codorus loam (CsA) or Dan River and Comus soils (Da). The Codorus loam is somewhat poorly drained with inclusion of poorly drained soils. The poorly drained inclusions are rated as hydric by the NRCS. The other floodplain map unit is the mostly well drained Dan River and Comus soils containing a complex of two similar series. Located on the toe and foot slopes along the drainages, the adjacent uplands soil units consist of well drained, moderately eroded Clifton sandy clay loam (CeC2) or Fairview-Poplar Forest complex (FpC2).

In flatter valley sections, it is common to discover legacy sediment and buried hydric soils in floodplains across the mid-Atlantic Piedmont (Jacobson and Coleman, 1986). In this setting and context, legacy sediment or overburden can be defined as alluvium that was deposited following human disturbances in a watershed that represent episodic erosion in response to the colonization of land by European settlers (James, 2013). As such, George Lankford, LSS noted regarding these areas that combining hydraulic stream modifications with limited soil removal, if needed, qualifies the Hydric Soil Unit as a candidate for Wetland Re-establishment and/or Rehabilitation.

3.2.3 Climate

The Project site is located in Stokes County, NC and has a warm moderately humid climate with hot summers, minimal snowfall and no dry season (NRCS, 2007). The average growing season for the Project site is 177 days, beginning on April 21st and ending October 16th (NRCS Stokes County Soil Survey, WETS Station: Danbury, NC). The average annual precipitation in the Project area is approximately 48.05 inches with a consistent monthly distribution, except for convective storm events or hurricanes that occur during the summer and fall months. In late 2018/2019, the area received approximately 63.20 inches of precipitation as shown on WETS Table 7. Over the past 48 months, the Danbury WETS Station has recorded over 199.3 inches of rain.

Table 7. Comparison of Monthly Rainfall Amounts vs. Long-term Averages

Month-Year	Observed Monthly Precipitation (in)	WETS Average Monthly Precipitation (in)	Deviation of Observed from Average (in)
Sep-18	10.15*	5.49	+ 4.66
Oct-18	5.93	4.75	+ 1.18
Nov-18	5.59	3.87	+ 1.72
Dec-18	6.75	4.25	+ 2.5
Jan-19	4.93	4.67	+ 0.26
Feb-19	6.06	3.97	+ 2.09
Mar-19	2.59	5.55	- 2.96
Apr-19	4.20	4.62	- 0.42
May-19	1.72	5.37	- 3.65
Jun-19	9.91	4.71	+ 5.2
Jul-19	3.17	5.72	-2.55
Aug-19	2.20	4.69	- 2.49
Sum	63.20	57.66	+5.54

Note: *Hurricane Florence rainfall total in Lawsonville, NC was approximately 5.70" (NOAA, 9/17/18).

Throughout much of the southeastern US, average rainfall often exceeds average evapotranspiration (ET) losses and areas experience a moisture excess during normal years, which is typical of the Project site. Excess water leaves the Project site by groundwater flow, surface runoff, channelized surface flow, or seepage. Annual losses due to seepage, or percolation of water are not considered a significant loss pathway for excess water. However, groundwater flow and the hyporheic exchange is critical in small headwater stream and wetland systems like those at the Project site, as most excess water is lost via surface and shallow subsurface flow. The Project streams' drainage density relative to the geomorphic/geologic character and hydrologic regime is common given the seasonal rainfall patterns, runoff rates, topographic relief, groundwater recharge, and infiltration capacity/depth to impermeable bedrock layer. Further observations of perennial flow frequency, response time to storm events, streambank erosion and groundwater saturation over the past year support this conclusion.

3.2.4 Existing Vegetation

Historic land management surrounding the Project area has been primarily for agricultural and silvicultural purposes. Prior to anthropogenic land disturbances, the riparian vegetation community likely consisted of Mesic Mixed Forest (Piedmont Subtype) in the uplands with Piedmont Headwater Stream Forest (Typic Subtype) in the lower areas and floodplains (Schafale 2012). The existing vegetation within the project area consists of successional forest, pasture, and agricultural fields. Many of the riparian and upland areas have a narrow tree canopy and lack understory vegetation due to heavy livestock use and grazing. Widespread channel degradation is likely a result of the alteration of natural drainage patterns and the significant removal of native species vegetation.

Table 8. Existing Site Vegetation

	Common Name	Scientific Name
Canopy Vegetation	Red maple	Acer rubrum
	Yellow-poplar	Liriodendron tulipifera
	Sweet-gum	Liquidambar styraciflua
	American sycamore	Plantanus occidentalis
	Green Ash	Fraxinus pennsylvanica
	White oak	Quercus alba
Understory & Woody Shrubs	Black willow	Salix nigra
	Silky willow	Salix sericea
	Ironwood	Carpinus caroliniana
	Possumhaw	Viburnum nudum
	American holly	Ilex opaca
	Hazel alder	Alnus serrulata
	Elderberry	Sambucus canadensis
	Eastern red cedar	Juniperus virginiana
	Chinese privet	Ligustrum sinense
	Flowering dogwood	Cornus florida
Herbaceous & Vines	Poison ivy	Toxicodendron radicans
	Japanese stiltgrass	Microstegium vimineum
	Joe pye weed	Eutrochium maculatum
	Canada goldenrod	Solidago canadensis
	Jewelweed	Impatiens capensis
	Sawtooth blackberry	Rubus argutus
	Greenbrier	Smilax rotundifolia
	Multiflora rose	Rosa multiflora
	Christmas fern	Polystichum acrostichoides
	Lady fern	Athyrium filix-femina
	Fescue	Fescue sp.
	Soft rush	Juncus effusus

Agricultural Fields and Pasture Areas: Currently, the majority of pasture areas are used for cattle grazing and the vegetation within open fields and pasture areas is primarily comprised of hay, fescues, clovers, and some dog fennel. In smaller wooded riparian areas or clusters within the pastures and fields, the canopy is dominated by red maple and yellow-poplar. Understory species consist of Eastern red cedar and flowering dogwood. Woody shrub and vine species include Chinese privet and greenbrier. Herbaceous species consist of goldenrod and soft rush.

Mixed Hardwood Forest: The mature canopy is dominated by red maple, tulip poplar, American sycamore, and sweet gum, but also includes white oak, black willow, and green ash. Woody shrub and

vine species include poison ivy, greenbrier, and hazel alder. Herbaceous species include Japanese stiltgrass and Christmas fern.

Invasive Species Vegetation: The invasive species vegetation present on the Project site are primarily multiflora rose and Chinese privet.

3.3 Land Use and Development Trends

The USGS 2011 National Land Cover Data GIS Dataset and StreamStats was used to estimate the current impervious cover and land use information for the project catchment area. The 788-acre catchment area has an impervious cover approximately one percent and the dominant land uses are 46% pasture/hay, 24% row crops, and 16% mixed forest. WLS conducted extensive field reconnaissance to verify the current land use practices within the catchment, which include active agricultural land managed as pasture for cattle grazing, hay/crop production and forested areas along reaches UT2, UT2A, UT3, BB-R1, BB-R2, BB-R3, UT4-R1 and UT4-R2.

Prior to the 1990s, most of the watershed was a mixture of forested area and agricultural fields as illustrated on historic aerials (See Figure 7a). By the late 2000s, much of the headwater area remained a mixture of forest and agricultural fields, but an increase in agricultural production was evident in some areas along UT1 and Banner Branch. Over time, the natural stream and wetland processes and aquatic resource functions have been significantly impacted because of these historic anthropogenic disturbances.

3.4 Watershed Disturbance and Response

To determine what actions are needed to restore the riparian corridor structure and lift ecological functions, it is critical to examine the rates and type of disturbances, and how the system responds to those disturbances. Across the Project site, landowners historically cleared large portions of mature forest and manipulated, and/or straightened streams and ditched riparian wetland systems to provide areas for crop production and cattle grazing. These activities have caused changes to historic channel patterns, sediment transport, in-stream habitat and restriction of fish movement, thermal regulation, and dissolved oxygen (DO) content.

Cleared portions of the riparian buffer area are shown on historical aerial photographs (See Figures 7a, 7b and 7c). A majority of the Project reaches has been heavily impacted from these historic and current land use practices, including livestock production, agriculture, and silviculture. Within the Project area, approximately 60% of the streambanks have inadequate (less than 30 feet wide) riparian buffers. Figure 9 represents recent aerial photography depicting areas with narrow and/or absent riparian buffers throughout the project boundary.

Continuous livestock intrusion and associated hoof shear have severely impacted the streambanks along many of the Project stream reaches. The stream channels are actively incising in these areas and the floodplain connection has been lost in many locations. The lack of adequate and high-quality buffer vegetation, past land use disturbances, active channel degradation, minimal impervious cover, and current agricultural and livestock practices present a significant opportunity for water quality and ecosystem improvements through the implementation of this project.

3.4.1 Existing Reach Condition Summary

The streams at the Project site were categorized into fourteen reaches (UT1-R1, UT1-R2, UT1-R3, UT1A, UT1B, UT1C, UT2, UT2A, UT3, BB-R1, BB-R2, BB-R3, UT4-R1, UT4-R2) totaling approximately 16,280 linear feet of jurisdictional stream channels. Reach breaks were based on drainage area at confluences, changes in existing condition, restoration/enhancement approaches, and/or changes in stream status. Field evaluations conducted by WLS during existing conditions assessments determined that Project reaches UT1-R1, UT1-R2, UT1-R3, BB-R1, BB-R2, BB-R3, and UT4-R2 are perennial streams; UT1A, UT1B, UT1C, UT2A, and UT3 were determined to be intermittent streams; and UT2 and upper UT4-R1 were determined to be intermittent streams in the upper stream reach. WLS field determinations were based on *NCDWQ's Methodology for Identification of Intermittent and Perennial Streams and Their Origins*, (NCDWQ v4.11, Effective Date: September 1, 2010) stream assessment protocols. Copies of the referenced DWR Stream Identification Forms are included in Appendix 7 and reach condition summaries are provided below.

UT1-R1: UT1-R1 begins as a small perennial headwater tributary that extends from the upstream boundary of the project site, downstream just beyond the confluence with UT1C. UT1-R1 has an average valley slope of 3.4 percent and drainage area of 41.2 acres.

Photo of UT1-R1 showing straightened channel conditions.

Based on field observations, depositional patterns and headwater location, sediment supply appears to be limited to finer grained material mostly from bed/bank materials. The channel is moderately incised and entrenched in most locations, however a significant portion of the bed appears to be mostly stable. Bank erosion was observed in a few localized areas. Historic channel manipulation and straightening has led to poor bedform diversity. Mature woody vegetation is present along most of this reach, however cattle had historically unrestricted access which has led sparse understory vegetation to establishment. Based on the existing channel conditions and anthropogenic disturbances, UT1-R1 is classified as 'G4c/B4c' stream type throughout most of its length.

UT1-R2: UT1-R2 begins downstream of UT1C and flows to an existing culvert crossing. The valley slope is approximately 2.1 percent, and the drainage area is 135 acres. UT1-R2 appears to be relatively stable, with minimal bank erosion present and bank height ratios ranging from 1.2 to 1.7. The sinuosity is moderate and appropriate for the valley setting. Excess sediment was observed within the channel and adjacent floodplain as a result of a historic man-made impoundment and partially blocked culvert further downstream.

UT1-R2 appears to have been historically manipulated and cattle have unrestricted access to the entire reach. The riparian buffer consists of a marginal understory with some

Looking upstream at cattle wallowing area along UT1-R2.

large trees within the floodplain; any trees of significance will be saved and incorporated as part of the enhancement design. Based on the existing conditions and large gravel/small cobble materials combined with finer gravel materials near the crossing, UT1-R2 is classified as a 'F4' stream type.

UT1-R3: UT1-R3 begins downstream of an existing culvert crossing. Along this reach, the degree of incision is low, with bank height ratios near 1.2. However, UT1-R3 has not experienced historic cattle intrusion and associated trampling for most of its length.

Photo depicts stable stream channel conditions and in-stream habitat along UT1-R3.

The existing stream appears to be located in the center of the valley and has a sinuosity of approximately 1.3. The valley slope is near 1.2 percent, and the drainage area is 166.4 acres. Localized stream bank erosion was observed throughout the reach, although the stream appears to have a natural floodplain connection and lateral instability does not appear systemic. The entire reach is subject to active water quality stressors, mainly resulting from upstream bank erosion and sediment inputs. Based on the existing conditions and medium gravel substrate, UT1-R3 is classified as an 'E4' stream type.

BB-R1: Banner Branch (BB) is a named tributary that begins to the east of the project area before its confluence with BB-R1 and UT1-R3. The upstream channel condition of BB is slightly incised, however the bed and banks are mostly stable and sediment supply is limited to coarse sand and fine gravel. The upper BB watershed has experienced minimal disturbances in the recent past and a mature canopy of vegetation exists across riparian buffer area. BB-R1 begins at UT1-R3 to its confluence with UT2. BB-R1 has a valley slope of 1.1 percent and a drainage area of 409.6 acres. The reach appears to be laterally unstable, with bank erosion present and bank height ratios greater than 1.2. BB-R1 is exposed to cattle

BB-R1 looking downstream. Note the lack of adequate riparian buffer along the left floodplain.

intrusion and fecal coliform bacteria along its entire length and the riparian buffer is limited to herbaceous vegetation with a few small woody trees along its banks. BB-R1 is subject to water quality stressors, mainly in the form of cattle access, excess sediment and minimal riparian buffer widths. Based on the existing channel conditions and anthropogenic disturbances, this reach is classified as a 'B4c' stream type.

BB-R2: Similar to BB-R1, BB-R2 continues as a perennial tributary that has lost its historic floodplain function and has an average bank height ratio of 1.5. BB-R2 has a drainage area of 480 acres, and the valley slope is approximately 0.9 percent. The entire reach is subject to active water quality stressors, mainly resulting sediment inputs from bank erosion, hoof shear from unrestricted cattle access and riparian buffers less than 30 feet in width. Cattle intrusion and lateral bank erosion has also degraded aquatic habitat. Based on the existing channel conditions historic and anthropogenic disturbances, BB-R2 was classified as an incised 'E4' stream type.

Looking downstream at BB-R2. Cattle have unrestricted access to this entire reach.

BB-R3: BB-R3 continues south from BB-R2 and has a drainage area of approximately 563.2 acres near its confluence with the UT4-R2 stream system. The channel is laterally unstable along the entire reach with native woody riparian buffer vegetation corridor greater than 30 feet on both sides of the channel. The valley slope is 0.6 percent along this reach, bank erosion is moderate, and most excess scour is located along the meander bends. The valley floor widens and flattens in this area, however the stream has lost connection to its relic floodplain.

Looking at unstable conditions along BB-R3. Note the lateral bank erosion and lack of deep rooting vegetation.

Cattle do not currently have direct access to this reach, however the area was historically disturbed for agricultural use. The representative bank height ratio is 1.4, and the channel is classified as a 'E4' stream type. The reach is subject to active water quality stressors, mainly resulting from excess nutrient and sediment inputs flowing from upstream project reaches.

UT1A: UT1A begins at a spring and flows south towards UT1-R1. The valley slope is approximately 2.9 percent and the drainage area is 4.6 acres. UT1A appears to be slightly incised and entrenched, with minimal bank erosion present and a bank height ratio of 1.3. Throughout UT1A, floodplain alterations were observed, mainly evidenced in the form of spoil

piles and an access path along the upper portion. Portions of the stream also appear to have been historically manipulated. Cattle have unrestricted access to this stream reach and the riparian buffer is narrow (<30 feet) throughout its entire length. Based on the existing conditions and coarse gravel/small cobble, UT1A is classified as a 'G5' stream type.

Looking upstream at degraded channel conditions along upper UT1B.

UT1B: UT1B is a small intermittent headwater tributary that begins at a spring head within the upper catchment. The channel flows west to its confluence with UT1-R2. UT1B has a small drainage area of approximately 42 acres. UT1B has experienced cattle trampling for most of its length and the buffer consists of herbaceous vegetation with a few mature trees and a limited understory.

UT1B is actively subject to water quality stressors, mainly in the form of cattle access and fecal coliform bacteria. The reach condition is mostly stable and improves as the valley slope flattens, however, aggradation was observed in the lower section due to a remnant ponding area upstream of the culvert crossing. As a result, the channel loses consistent bed and bank features in this area. The stream and wetland complex

will continue to degrade further if not addressed during the restoration design.

UT1C: UT1C jurisdictional flow originates near a property line and flows east before its confluence with UT1-R2. The valley slope is approximately 5.5 percent and the drainage area is 15.8 acres. Cattle do not have access to this reach, and according to the landowner, the stream in this area has not been disturbed and is located in its natural valley. A severe headcut was observed in the lower portion of the reach, but a majority of the reach is stable, and undisturbed riparian buffers greater than 30 feet in width along the entire streambanks. Based on the step-pool morphology and gravel/small cobble substrate, upper UT1C is classified as a 'B4' stream type and lower UT1C is classified as a 'F4'.

Photo depicts degraded stream channel conditions along lower UT1C near an active headcut.

Photo depicts degraded stream channel conditions and lack over buffer vegetation along UT2.

UT2: UT2 begins at a spring and flows southeast to its confluence with BB-R1 and BB-R2. The valley slope is approximately 3.9 percent and the drainage area is 28 acres. According to the landowner, the headwater stream in this area has been a water and shade source for cattle for decades. In this section, the bedform diversity is poor and the degree of incision is low to moderate, with bank height ratios ranging from 1.0 to 2.0. UT2 is subject to water quality stressors, mainly in the form of fecal coliform bacteria from cattle access, excess sediment and marginal riparian buffer widths. Based on the existing channel conditions and historic disturbances, this reach is classified as an incised 'F4' stream type.

UT2A: UT2A is a small intermittent headwater tributary that begins at a spring head within the upper catchment. The channel flows south to its confluence with UT2. UT2A has a very small drainage area of approximately 3.1 acres and a valley slope of 5.5 percent. UT2A has experienced severe cattle trampling throughout its length and the buffer is limited to herbaceous vegetation with a mix of understory and larger woody trees. UT2A is actively subject to water quality stressors, mainly in the form of fecal coliform bacteria from cattle access and marginal riparian buffer widths. This reach is classified as a 'B4a' stream type. The channel condition is mostly stable, however, the stream will continue to degrade further if not addressed during the restoration design.

Photo of UT3 showing a straightened channel conditions and lack of riparian buffer vegetation.

UT3: UT3 begins as a small perennial headwater tributary that extends from the upstream boundary of the project site. UT3 has an average valley slope of 1.1 percent and drainage area of 76.8 acres.

Based on field observations and headwater location, the channel appears to have been historically ditched in two locations in an attempt to drain surface hydrology for agricultural use. The channel is slightly incised and bank erosion was observed in a few localized areas. The historic channel manipulation and straightening has led to poor bedform diversity. Mature woody vegetation is absent along most of this reach, however cattle do not currently have direct access which has led to growth of sparse

understory vegetation. Based on the existing channel conditions and anthropogenic disturbances, UT3 is difficult to classify and resembles an incised 'E5' stream type throughout most of its length.

UT4-R1: UT4-R1 begins as a small perennial headwater tributary that extends from the upstream boundary of the project site. UT4-R1 has a valley slope of 1.7 percent and a drainage area of 154 acres. The reach is laterally unstable, with severe bank erosion present and bank height ratios greater than 2.0.

UT4-R1 is exposed to cattle intrusion along its entire length and the riparian buffer is limited to herbaceous vegetation with a few small woody trees along its banks. UT4-R1 is subject to water quality stressors, mainly in the form of fecal coliform bacteria from cattle access, excess sediment and minimal riparian buffer widths. Based on the existing channel conditions, this reach is classified as a 'B4c/F4' stream type.

UT4-R1 looking downstream. Note the lack of adequate riparian buffer degraded channel conditions.

Looking downstream at UT4-R2. Cattle have unrestricted access to this entire reach.

UT4-R2: Similar to UT4-R1, UT4-R2 continues as a perennial tributary that has lost its historic floodplain function and experiencing degraded stream and wetland conditions. UT4-R2 has a drainage area of 224 acres. The natural valley slope is approximately 1.4 percent has an average bank height ratio of 1.3.

The entire reach is subject to active water quality stressors, mainly resulting sediment inputs from bank erosion, hoof shear from unrestricted cattle access and riparian buffers less than 30 feet in width. Cattle intrusion and lateral bank erosion has also degraded aquatic habitat. Based on the existing channel conditions and historic anthropogenic disturbances, UT4-R2 was classified as an incised 'E4' stream type.

3.4.2 Channel Morphology and Stability Assessment

WLS conducted geomorphic and ecological assessments for the Project reaches to assess the current stream channel condition and overall lateral and vertical stability. Data collection included representative riffle cross-sections, longitudinal profiles, and sediment samples. The existing channel morphology is summarized in Table 9 and detailed geomorphic assessment data is included in Appendix 2. Consistent geomorphic indicators of the bankfull stage were difficult to identify in the field given the modified flow regime and degraded channel conditions. Therefore, bankfull cross-sectional areas were initially compared with the published NC Rural Piedmont Regional Curve (Harman et al., 1999). The surveyed cross-sectional areas were generally below the regional curve prediction (See Appendix 2 for comparison plots).

Bank Height Ratios (BHR) were measured in the field to assess the degree of channel incision. BHRs ranged from 1.0 (upper UT1C) to greater than 2.0 (BB-R1). BHR values greater than 1.5 typically indicate the stream channel is disconnected from its geomorphic floodplain and system wide self-recovery is considered unlikely to occur within a desired timeframe (Rosgen, 2001). Entrenchment Ratios (ER) were measured to determine the degree of vertical confinement. ERs ranged from 1.3 (UT4-R2) to greater than 7.5 (BB-R2) throughout the project area indicating reach segments are slightly-to-moderately entrenched.

Table 9. Existing Channel Morphology Summary

Project Reach Designation	Watershed Drainage Area (Ac) ¹	Entrenchment Ratio (ER)	Width/Depth Ratio (W/D)	Bank Height Ratio (BHR)	Sinuosity (K)	Channel Slope (S, ft/ft)	D ₅₀ (mm)
UT1-R1	41.2	2.5	8.1	1.4	1.27	0.0270	8.66
UT1-R2	135.0	1.4	18.9	1.8	1.56	0.0155	11.86
UT1-R3	166.4	2.0	9.3	2.0	1.31	0.0093	N/A
UT1A	4.6	1.2	9.5	3.5	1.15	0.0252	N/A
UT1B	41.6	2.6	11.1	1.0	1.18	0.0251	N/A
UT1C (upper)	15.0	1.9	11.6	2.0	1.10	0.0497	0.11
UT1C (lower)	15.8	1.5	7.5	5.3	1.10	0.0497	0.11
UT2	28.3	1.2	30.9	1.0	1.14	0.0341	32.00
UT2A	3.1	1.3	23.3	4.9	1.20	0.0455	N/A
UT3	76.8	5.7	5.1	1.4	1.03	0.0105	N/A
BB-R1	409.6	1.8	13.6	1.2	1.34	0.0080	11.44
BB-R2	480.0	6.8	9.0	1.5	1.31	0.0071	11.44
BB-R3	563.2	3.5	9.7	1.4	1.15	0.0053	20.14
UT4-R1 (upper)	102.4	1.5	11.8	1.5	1.23	0.0185	6.69
UT4-R1 (lower)	153.6	1.3	17.8	2.3	1.23	0.0185	4.73
UT4-R2	224.0	3.7	10.5	1.2	1.21	0.0112	0.18

Note 1: Watershed drainage area was approximated based on topographic and LiDAR information and compared with USGS StreamStats at the downstream end of each reach.

Note 2: Representative cross-section locations are shown on Figure 6, Current Conditions Map.

Note 3: Geomorphic parameters are based on best professional judgment and field measurements.

Note 4: Additional values and dimensionless ratios for meander geometry and facet slopes are provided in Appendix

2. The existing channel parameters are compared to stable stream systems in the Piedmont Physiographic Region.

WLS also compared historic aerial photographs with BANCS model estimates (Rosgen, 2006) described in Section 3.1.5 to identify areas susceptible to lateral bank erosion or accelerated meander migration. BEHI/NBS rating forms are in Appendix 2. Based on this comparison, most of the laterally unstable reach segments have occurred after riparian buffers where removed over the past few decades. As described in the reach condition summaries, the average valley slopes range from 0.4 to 5.0 percent and channel sinuosity's range from 1.03 to 1.56. Most of the vertical grade control along the project reaches appears to be provided by infrequent vegetation root mass, bedrock outcrops, and culverted or ford stream crossings. The surveyed longitudinal profiles indicate active headcutting in some reach locations. Many of the reach segments have poor bedform diversity and minimal habitat features with shallow pools and longer/flatter riffles with higher pool-to-pool spacing.

NC SAM: WLS completed stream evaluations of the Project reaches using the *NC Stream Assessment Method* (NC SAM, Version 2.1, 2015) developed by the NC Stream Functional Assessment Team (SFAT). The purpose of NC SAM is to provide the public and private sectors with an accurate, consistent, rapid, observational, and science-based field method to determine the level of function of streams within North Carolina. NC SAM can be used as a tool for the consideration of project restoration design and planning, allowing for impacts to be avoided and/or minimized, and to provide information concerning assessed stream characteristics and functions for the regulatory review process.

WLS evaluated the NC SAM metrics relevant to the project assessment reaches, as shown in Appendix 8. The metrics were documented to evaluate various stream functions for all project reaches. The Project reach scores ranged from 'low' to 'medium' to 'high'. Reaches BB-R1, BB-R2, UT1-R2, UT1A, UT2, UT2A, UT3, UT4-R1, and UT4-R2 scored 'low' due to unstable channel and bank conditions, buffer and water quality stressors from cattle access, and altered stream morphology. Reaches BB-R3, UT1B, and UT1-R1 scored "medium" because of improved aquatic habitat, substrate and marginal buffer widths. UT1C upper and UT1-R3 scored high because of the stable channel conditions and mature riparian buffer vegetation along both stream banks.

These channel stability and ecological assessments incorporated qualitative and quantitative observations using historic aerials, field evaluations, and detailed topographic survey data collected across the site. The conclusions from these assessments help describe the current stream stability, ecological conditions and functional ratings, however, these methods are not intended to be used for determining mitigation success on constructed stream and wetland sites. See Appendix 8 for NC SAM rating forms.

3.4.3 Channel Evolution

The modified Simon Channel Evolution Model (CEM) describes a predictable sequence of change in a disturbed channel system (Simon, 1989). Channel evolution typically occurs when a stream system begins to change its morphologic condition, which can be a negative or positive trend towards stability. The channel evolution processes and stage vary across the Project site and have been greatly affected by human-induced disturbances. After reviewing the channel dimension, plan form, and longitudinal profile information, WLS concluded that none of the Project reaches proposed for restoration currently exhibit positive trends towards stability or quasi-equilibrium.

Many of the unstable Project reaches vary between Class 'III' and 'IV' of the CEM as evidenced by migrating headcuts and oversized channels which will likely continue to degrade and/or widen. BB-R2 and BB-R3 are transitioning from Class 'IV' to Class 'V' as evidenced by channel widening and excess sediment aggradation. Reaches UT2 and lower UT4-R1 are transitioning from Class 'II' to Class 'III' resulting from active downcutting. Portions of UT1-R1, UT1-R3 and upper UT1C are stable classified as Class 'I'. The proposed design approaches described in Section 6.1 are supported by these observations.

3.4.4 Sediment Supply, Delivery and Storage

Visual inspections of the channel substrate materials were conducted for the Project stream reaches. Representative bed materials were sampled for the existing streams and consist of predominantly medium to coarse gravel, with some small cobble and fine sand materials. Much of the parent material, which contains fine/medium gravel particle sizes, are mostly buried and still evident in some of the bank profiles in the degraded stream reaches. Field investigations suggest that the sediment supply is being recruited predominantly from streambank erosion along the project stream reaches and upland erosion across adjacent agricultural fields. The streambank erosion along the project stream reaches appears to be delivered during episodic storm flows within the headwater drainages resulting from cattle hoof shear and influences from limited understory vegetation and rotational crop cover.

Over the past few decades, the removal of woody riparian buffer vegetation from the stream channels has decreased channel stability and increased the episodic pulse deliveries of stored sediment to downstream channels (Bilby, 1984). This anthropogenic derived sediment does not occur uniformly over

the landscape (James, 2013) and changes in the amount and local storage areas for water and sediment can substantially affect hydrogeomorphic variability in headwater stream systems (McKenney et al. 1995). Improving the existing stream crossings and reducing stream bank erosion will facilitate positive adjustments to sediment routing and storage across the reconnected floodplains.

3.4.5 Jurisdictional WOTUS

WLS and George Lankford investigated on-site jurisdictional waters of the US (WOTUS) using the US Army Corps of Engineers (USACE) Routine On-Site Determination Method. This method is defined in the 1987 Corps of Engineers Wetlands Delineation Manual and subsequent Eastern Mountain and Piedmont Regional Supplement (USACE, 1987). Determination methods included stream classification utilizing the NCDWQ Stream Identification Form and the USACE Stream Quality Assessment Worksheet. Potential jurisdictional (JD) wetland areas as well as upland areas were classified using the USACE Wetland Determination Data Form. Determination methods for stream classification utilized the NCDWQ Stream Identification Form (v4.11).

The field investigations were completed during March 2018 and September 2019. The results of the onsite field investigations conducted by WLS and George Lankford indicate that the Project reaches were determined to be jurisdictional stream channels. In addition, ten jurisdictional wetland areas (totaling 3.89 acres) were delineated within the Project area (Figure 6 and Appendix 9). WLS submitted a preliminary jurisdictional determination (PJD) application package to the USACE in November 2019 and a site visit was conducted on February 12th, 2020. The final PJD was issued on February 13th, 2020 is provided in Appendix 9.

Currently, some of the existing wetland areas located in the floodplain have been impacted by cattle wallowing and past land clearing. After restoration activities, these areas will experience a more natural hydrology and flooding regime, and the riparian buffer area will be planted with native woody vegetation species that is more tolerant of wet conditions. The restoration design approach will likely enhance any areas of adjacent fringe or marginal wetlands. Existing stream profiles will be elevated along all reaches, which will improve local water table conditions adjacent to the channels and encourage more frequent flooding of riparian wetland areas. The proposed stream and wetland impacts are considered temporary and included with the 401/404 PCN permit application.

3.5 Potential Site Constraints

3.5.1 Existing Easements and Right-Of-Ways on the Site

No existing easement exists within the project site.

3.5.2 Utility Corridors within the Site

There are no existing utility crossings within the conservation easement boundary.

3.5.3 Mineral or Water Rights Assurance

There are no mineral or water rights issues within or adjacent to the Project properties.

3.5.4 Hydrologic Trespass

None of the Project reaches are located within a FEMA regulated floodplain. While it is not anticipated that there will be issues associated with FEMA permitting or documentation, WLS will coordinate with the local floodplain administrator as needed and prepare the required documentation to obtain approval for any FEMA regulated impacts. In addition, the Project will be designed so that any increase in flooding will be contained within the Project boundary and will not impact adjacent landowners; therefore, hydrologic trespass will not be a concern.

3.5.5 Invasive Species Vegetation

There are currently no substantial communities of invasive plant species within the Project boundaries. Some small, immature Chinese privet plants and multiflora rose were observed within the existing riparian buffer areas. These areas will be monitored by WLS, and any invasive plants found within the Project boundary will be treated to prevent expansion and establishment of a substantial invasive community.

3.5.6 Potential Future Land-Use

Future site constraints include, but are not limited to development, silviculture, and infrastructure maintenance. Historic aerial imagery indicates that the Project has been used extensively for agricultural purposes. The surrounding areas remain in an agricultural community with some neighboring forested property. Due to low development potential, the area will likely remain in agricultural use. While there are some forested areas surrounding the project area, they are not extensive enough for silviculture or logging operations. The project area is not adjacent to any roads that might need future maintenance. Project reaches were designed to be self-maintaining and resilient in a dynamic landscape. Riparian buffers in excess of 30 feet in many areas of the project will protect the project reaches from changes in watershed hydrologic regimes.

3.5.7 Stream Crossings

There are currently six stream crossings with easement breaks proposed across the project area. WLS coordinated with the landowners to accommodate current farm operations and future access if the property was ever sold or subdivided. The impacts are considered minimal and account for 1.5% of the total stream length to be permanently protected in the conservation easement as a result of the project.

3.6 Existing Wetland Conditions

Detailed soil mapping, conducted by a licensed soil scientist (George Lankford, LSS), determined that degraded jurisdictional wetlands are present within the stream valleys. On-site streams were manipulated and/or deepened and groundwater elevations were altered such that many of the historic riparian wetland functions along the floodplain were drained and lost. These areas have been utilized for pasture and agriculture (row crop) production over the past few decades and have lost their historic wetland function. These headwater stream valleys were mapped as containing Type 'A' hydric soils, have a presence of soil organics, and retain water following precipitation events. It was observed throughout the Project that there are buried hydric soils and degraded riparian wetlands in the floodplain.

As a result of past ditching activities, cattle intrusion and subsequent groundwater and hydrology impacts, these areas are not currently considered to be existing jurisdictional wetlands. Some areas within the Project site that have not been timbered or where stream sections are not modified maintain the presence of jurisdictional wetlands. Based on assessment of the on-site water features, there are multiple existing wetland systems identified within the Project site boundaries. On-site wetlands have been delineated (flagged) and the PJD was submitted in November 2019.

NC WAM: WLS completed wetland evaluations of the Project wetlands using the NC Wetland Assessment Method (NC WAM, Version 5, 2016) developed by the NC Wetland Functional Assessment Team (WFAT). The purpose of NC WAM is to provide the public and private sectors with an accurate, consistent, rapid, observational, and science-based field method to determine the level of function of wetlands within North Carolina. NC WAM can be used as a tool for the consideration of project restoration design and planning, allowing for impacts to be avoided and/or minimized, and to provide information concerning assessed wetland characteristics and functions for the regulatory review process. WLS evaluated the NC WAM metrics relevant to the project wetlands, as shown in Appendix 8. The metrics were documented to evaluate various wetland functions. The Project wetland scores ranged from 'low' to 'high'. Wetlands 1 and 6A scored 'low' due to altered hydrologic connectivity, water quality, and habitat. Wetland 3 scored "medium" because of altered hydrologic condition and habitat. Wetlands 2, 4, 5A, 5B, 7 and 8 scored high. These ecological assessments incorporated qualitative and quantitative observations using historic aerials, field evaluations, and detailed topographic survey data collected across the site. The conclusions from these assessments help describe the current wetland ecological conditions and functional ratings, however, these methods are not intended to be used for determining mitigation success on constructed stream and wetland sites.

4 Functional Uplift Potential

Harman et al. (2012) provides a framework for conducting function-based assessments to develop project goals and objectives based on a site's restoration potential and functional uplift. The framework is based on the Stream Functions Pyramid (SFP) which is a conceptual model that can be used to better define project goals and objectives by linking them to stream functions. Stream functions are separated into a hierarchy of functions and structural measures, ranging from Level 1 to Level 5 and include the following functional categories: Hydrology (Level 1), Hydraulic (Level 2), Geomorphic (Level 3), Physiochemical (Level 4), and Biological (Level 5). The SFP framework is applied below to further describe the functional lift potential based on the existing conditions assessment and proposed restoration design elements.

4.1.1 Function-Based Parameters and Measurement Methods

Function-based parameters and measurement methods were evaluated using the NC Stream Functional Lift Quantification Tool (SQT, v3.0) to help assess the existing stream conditions, determine restoration potential and identify risks associated with the project site. The SQT is a qualitative and quantitative resource used to describe the function-based condition of each project reach, as well as evaluate functional capacity and predict the overall proposed lift (Harman and Jones, 2016). WLS applied the SQT to help further define goals and objectives based on the restoration potential. The results of this assessment helped determine the highest level of restoration that may be achieved based on site

constraints and existing conditions. Table 10 shows the function-based condition assessment parameters and measurement methods selected to help quantify and describe each functional category. The complete SQT functional assessment worksheets and summaries are provided in Appendix 2.

Table 10. Existing and Proposed Functional Condition Assessment Summary

Functional Category (Level)	Function-Based Parameters	Measurement Method						
Hydrology (Level 1)	Catchment Hydrology	Catchment Assessment/ Curve Number						
	Runoff	Curve Number						
Hydraulics (Level 2)	Floodplain Connectivity	Bank Height Ratio						
	rioodpiani connectivity	Entrenchment Ratio						
	Bank Migration/Lateral Stability	Meander Width Ratio						
	Bank Migration/Lateral Stability	Percent Streambank Erosion						
	Riparian Vegetation	Left Buffer Width (ft)						
Geomorphology (Level 3)	riparian vegetation	Right Buffer Width (ft)						
deoffici priology (Level 3)	Bed Form Diversity	Pool Depth and Spacing Ratio						
	Bed Form Diversity	Percent Riffle and Pool						
	Sinuosity	Planform						
	Channel Evolution	Simon Channel Evolution Model						
Physicochemical (Level 4)	Specific Conductance	Percent Shredders, Specific						
Thysicochemical (Level 4)	Specific conductance	Conductivity						
Biology (Level 5)	Macrobenthos	Biotic Index						
-Biology (Level 3)	Widel Obellinos	EPT Taxa Present						
Note: Table adapted from Harman et al. (2012).								

4.1.2 Performance Standards and Functional Capacity

The Pyramid Framework includes performance standards associated with the function-based assessments and measurement methods described above. The performance standards are used to determine the functional capacity and are stratified into three types: Functioning (F), Functioning-at-Risk (FAR), and Not Functioning (NF). The detailed definitions and index value ranges for each type are described further in the SQT (Harman and Jones, 2016). Table 11 summarizes the overall reach scoring and functional lift summary for each project reach.

Table 11. Functional Lift Scoring Summary

Project Reach Designation	Functional Lift Score (PCS-ECS)	Functional Lift (%)	Overall Existing vs. Proposed Condition
UT1-R1	0.03	8	FAR / FAR
UT1-R2	0.01	2	FAR / FAR
UT1-R3	0.01	<1	F/F
UT1A	0.14	56	NF / FAR
UT1B	0.04	39	FAR / FAR
UT1C	0.01	2	F/F
UT2	0.14	47	FAR / FAR
UT2A	0.16	52	FAR / FAR
UT3	0.18	53	NF / FAR
BB-R1	0.18	52	NF / FAR
BB-R2	0.16	30	FAR / FAR
BB-R3	0.36	94	FAR / FAR
UT4-R1	0.18	53	NF / FAR
UT4-R2	0.26	72	FAR / FAR

4.1.3 Restoration Potential

After completing the function-based assessment, the restoration potential was determined to help define the Project design goals and objectives. It is common for restoration projects to occur at a reach scale that provide minimum functional lift of Level 2 and 3 parameters. However, to achieve goals in Levels 4 and 5, a combination of reach scale restoration and watershed health must be measurable and sustainable. The overall restoration potential was determined for Level 3 (Geomorphology) for a majority of the Project reaches since the watershed assessments generally scored 'Fair' and may not fully support biological reference conditions in the headwater reaches given the current nutrient inputs and current watershed condition. Level 5 (Biology) was determined for only BB-R3 and UT4-R3 since a significant proportion of the drainage network is included in the project area and riparian buffers will be protected in perpetuity.

Based on the existing condition assessments, the overall bioclassification using Unrated Small Stream criteria is considered 'Not Rated'. It is expected that the implementation of this project will reduce pollutant loads, including sediment and nutrients, improving overall aquatic functions and bioclassification from 'Not Rated' to 'Not Impaired'. Given the landscape position and catchment sizes, the restoration activities will likely provide functional lift within the physicochemical and biological functional categories. Post-restoration efforts will include supplemental monitoring of biological parameters (Level 5) to document any functional improvements and/or identify trends during the monitoring period for BB-R3 and UT4-R2.

However, any Level 4 and 5 function-based parameters and monitoring activities will not be tied to performance standards nor required to demonstrate success for credit release.

The SQT manual recommends that practitioners, stakeholders and regulators collaborate when selecting appropriate parameters for determining whether project goals and objectives are being met or if any performance standards need to be adjusted based on local site conditions. Not all functional categories and parameters, such as water quality (Physicochemical - Level 4) and performance standards listed in the SQT will be compared or required to determine project success and stream mitigation credit and debit

scenarios. However, selecting applicable monitoring and evaluation methods will help develop a more function-based assessment and improve our project implementation process, thereby advancing the practice of ecosystem restoration.

5 Mitigation Project Goals and Objectives

WLS set mitigation project goals and objectives to provide compensatory mitigation credits to DMS based on the water quality and ecological benefits within the subwatershed the project will provide. While many of these benefits are focused on the project area, others, such as nutrient removal, sediment reduction, and improved aquatic and terrestrial habitat, have more far-reaching effects, extending downstream to Snow Creek and the Dan River. The project will meet the general restoration goals and opportunities outlined in the 2009 Roanoke River Basin Restoration Priority Plan (RBRP, amended 2015 and 2018). More specifically, functional goals and conservation objectives described in the Roanoke River Basin wide Water Quality Plan (NCDWQ, 2006) as well as the Dan River Watershed Restoration Plan (PLC, Stokes County SWCD, 2012 and PLC, 2006) will be met by:

- Reducing fine sediment, soil erosion, turbidity, and nutrient inputs such as fecal coliform bacteria, nitrogen, and phosphorus to the Banner Branch Watershed.
- Restoring, enhancing, preserving and protecting headwater streams, wetlands, riparian buffers and aquatic habitat functions.
- Improving riparian corridor management and targeting restoration of impacted streams, wetlands and buffer areas.
- Promoting agronomic farm management techniques and implementing agricultural BMPs and water quality features such as livestock exclusion fencing, alternative watering structures, nutrient management, and wetlands restoration.
- Coordinating with landowners through local program(s), farmland protection planning and education/outreach.

To accomplish these project-specific goals, the following objectives will be measured to document overall project success:

- Restore stream, wetland and floodplain hydrology by reconnecting historic flow paths and promoting geomorphically stable conditions and more natural flood processes;
- Improve and protect water quality by reducing streambank erosion, nutrient and sediment inputs;
- Restore and protect stream, wetland and riparian buffer functions and habitat connectivity in perpetuity by recording a permanent conservation easement; and
- Implement agricultural BMPs to reduce nonpoint source inputs to receiving waters.

Function-based goals and objectives were considered that relate restoration activities to the appropriate parameters from the SFP framework, which are based on existing conditions, site constraints and overall restoration potential. When developing realistic function-based project goals and design objectives, it is imperative to know why the functions or resources need to be restored (Goal) and what specific restoration activities and measurement methods will be used to validate the predicted results (Objective). To accomplish these site-specific goals, the following function objectives will be measured to document overall project success as described in Table 12.

Table 12. Function-Based Goals and Design Objectives Summary

Functional Category (Level)	Functional Goal / Parameter	Functional Design Objective		
Hydrology (Level 1)	Improve Base Flow	Improve and/or remove existing stream crossings and restore a more natural flow regime and aquatic passage.		
Hydraulics (Level 2)	Reconnect Floodplain / Increase Floodprone Area Widths	Design BHRs to not exceed 1.2 and increase ERs no less than 2.2 for Rosgen 'C' and 'E' stream types and 1.4 for 'B' stream types.		
Geomorphology (Level 3)	Improve Bedform Diversity	Increase riffle/pool percentage and pool-to-pool spacing ratios.		
	Increase Lateral Stability	Reduce BEHI/NBS streambank erosion rates comparable to downstream reference condition and stable cross-section values.		
	Establish Riparian Buffer Vegetation	Plant native species vegetation a minimum 30' wide from the top of the streambanks with a composition/density comparable to downstream reference condition.		
Physicochemical (Level 4)	Improve Water Quality	Remove cattle from existing streams and reduce direct fecal coliform inputs and increase percent shredders.		
Biology (Level 5)	Improve Macroinvertebrate Community and Aquatic Species Health	Increase native woody debris into channel.		

As described in Section 4, the function-based assessment suggests that the proposed mitigation activities will result in a higher functioning aquatic ecosystem. The project goals and objectives address water quality stressors by reducing nutrient and sediment inputs through stream restoration, riparian buffer restoration, riparian wetland restoration and implementing agricultural BMPs. Hydrologic functions will be improved by raising the local water table. A more natural flow regime will be restored to riparian wetlands and floodplain areas by implementing a Priority Level I Restoration. The water quality functions will also be improved by installing permanent cattle exclusion fencing. The biologic and habitat functions will be improved by extending wildlife corridors that connect with wooded areas near the upstream and downstream extents of the project reaches.

Additionally, site protection through a conservation easement in excess of 30 feet from the top of banks, will protect all streams, wetlands and aquatic resources in perpetuity. These mitigation efforts will provide a significant ecological benefit with minimal impacts and constraints during a recovery period that would not otherwise occur through natural processes.

5.1.1 Project Benefits Summary

The project will provide numerous water quality and ecological benefits within the Banner Branch Watershed. While many of these benefits will focus on the project area, others, such as nutrient removal, sediment reduction, and improved aquatic and terrestrial habitat, others have more far-reaching effects that extend downstream. The expected project benefits and ecological improvements are summarized in Table 13.

Table 13. Project Benefits Summary

	Benefits Related to Hydrology
Rainfall/Runoff	Improving existing stream crossings and properly sizing pipe culverts and water quality treatment features will re-establish more natural flow conditions and water transport and storage during various storm events.
	Benefits Related to Hydraulics
Floodplain Connectivity	The restored streams will be raised and reconnected to their active or relic floodplains to spread higher flow energies onto the floodplain thereby increasing retention time and floodplain roughness. Raise water table and hydrate riparian wetlands.
Surface Storage and Retention	Incorporation of vernal pools, depressional areas, and other constructed floodplain features will improve flow dynamics by reducing runoff velocities and provide additional surface storage and habitat diversity.
Groundwater Recharge/ Hyporheic exchange	Benefits will be achieved through establishing vegetated buffers, which increase groundwater infiltration, surface water interaction, and recharge rates.
	Benefits Related to Geomorphology
Proper Channel Form	Restoring an appropriate dimension, pattern, and profile will efficiently transport and deposit sediment (point bars and floodplain sinks) relative to the stream's power and load that is supplied from banks and uplands. Stream channels that are appropriately sized to convey higher frequency storm flows will greatly improve channel stability by reducing active bank erosion (lateral stability) and bed degradation (vertical stability; i.e. headcuts, downcutting, incision).
Sediment Transport	Boundary conditions, climate, and geologic controls influence stream channel formation and how sediment is transported through its watershed. Adequate channel capacity will ensure sediment supply is distributed such that excessive degradation and aggradation does not occur.
Riparian Buffer Vegetation	Planting buffer vegetation will improve thermal regulation (stream shading) along the riparian corridor, as well as increase woody root mass and density thereby decreasing bank erosion and sedimentation and increasing organic matter and woody debris.
Bioengineering Treatments	Bioengineering practices such as live staking, brush layering, and vegetated soil lifts will help encourage lateral bank stability and prevent further bank erosion and sedimentation.
	Benefits Related to Physicochemical (Water Quality)
Nutrient Reduction	Benefit will be achieved through the removal of cattle manure in the form of fecal coliform bacteria and excess nutrients through exclusion fencing, filtration and nutrient uptake within the restored and enhanced vegetated buffers. Increase nutrient cycling and storage in floodplain and wetland areas.
Sediment Reduction	Benefit will be achieved through stabilization of eroding banks; installation of vegetation buffers; and by dissipating stream energy with increased overbank flows during storm events.

Benefits Related to Physicochemical (Water Quality) - continued							
benefits Related to Physicochemical (Water Quality) - continued							
DO, NO3-, DOC Concentration	Benefits will be achieved through the restoration of more natural stream forms including riffle and pool sequences, which will increase dissolved oxygen (DO) concentrations. In addition, as planted riparian buffers mature, the increased shade and wider vegetation density/structure will reduce water temperatures, specific conductance and groundwater nitrates (NO ₃₋) as well as increase dissolved organic carbon (DOC) (King et al, 2016).						
Benefits Related to Biology							
Terrestrial and Aquatic Habitat	Benefits will be achieved through the incorporation of physical structure, removal of invasive species vegetation and returning native vegetation to the restored buffer areas. Benefits to aquatic organisms will be achieved through the installation of appropriate in-stream structures. Adequately transporting and depositing fine-grain sediment onto the floodplain will prevent embeddedness and create interstitial habitat, organic food resources and instream cover.						
Landscape Connectivity	Benefits to landscape connectivity will be achieved by restoring a healthy stream corridor, promoting aquatic and terrestrial species migration and protecting their shared resources in perpetuity.						

6 Design Approach and Mitigation Work Plan

The project includes the restoration, enhancement, preservation and permanent protection of fourteen stream reaches (UT1-R1, UT1-R2, UT1-R3, UT1A, UT1B, UT1C, UT2, UT2A, UT3, BB-R1, BB-R2, BB-R3, UT4-R1 and UT4-R2) totaling approximately 15,707 linear feet and fourteen wetland areas (W1, W1A, W2, W3, W4, W4A, W5, W5A, W5B, W6A, W6B, W7, W8A and W9) totaling 6.18 acres of riparian wetlands. (See Figure 6). The design approach will utilize a variety of stream and wetland mitigation practices and appropriately addresses all the impaired aquatic resources at the project site. As a design consideration, WLS coordinated with the landowners to extend the easement boundary to capture additional wetland areas and natural drainage features within the Project corridor. Increasing the Project footprint provides wider riparian buffers and allows the implementation of agricultural best management practices, which ultimately improve floodplain functions and pollutant removal effectiveness. Restoring, enhancing and protecting riparian buffers currently in agriculture or pasture, along with permanent livestock exclusion and improving the existing stream crossings, will provide the maximum functional uplift and ideal opportunity to implement a comprehensive watershed approach. The mitigation components and proposed credit structure is outlined in Table 14 and the design approach and mitigation work plan are described in the following subsections.

Table 14. Mitigation Components and Proposed Credit Summary

Project Segment Acc WT1-R1 (lupper) 3 UT1-R1 (lower) 4 UT1-R3 8 UT1A 4 UT1B (lupper) 3 UT1B (lower) 4 UT1C (lupper) 4 UT2 1 UT2A 3 BB-R1 9 BB-R2 2 BB-R3 4 UT4-R1 (lupper) 2 UT4-R1 (lupper) 2 UT4-R1 (lower) 4 UT4-R2 1 W1 0 W1A 0 W3 0 W4 0 W4A 0	Existing Footage or Acreage 399 136 1,827 822 410 391 0 69 158 1,315 289 338 986 2,080 478 2,394 1,722 0.859 0.000	Mitigation Plan Footage or Acreage 373 136 1,783 822 410 391 97 69 151 1,287 289 808 1,835 636 2,346 1,730 / 233 1,722 0.825	Mitigation Category Warm Warm Warm Warm Warm Warm Warm Wa	Restoration Level EI P EII P EII EI EI R R R R R R R	Priority Level N/A N/A N/A N/A N/A N/A N/A N/	Mitigation Ratio (X:1) 1.50 10.00 2.50 10.00 2.50 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1		As-Built Footage or Acreage	Floodplain Bench, In-Stream Structures, Supplemental Planting, Exclusion of Livestock, Permanent Conservation Easement Supplemental Planting, Exclusion of Livestock, Permanent Conservation Easement Riparian Planting, Livestock Exclusion Conservation Easement Riparian Planting, Livestock Exclusion Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Supplemental planting, Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Restoration Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement
Project Segment Ac UT1-R1 (upper) UT1-R1 (lower) UT1-R3 UT1-R3 UT1B (lower) UT1B (lower) UT1C (upper) UT1C (upper) UT1C (lower) UT2	or Acreage 399 136 1.827 822 410 391 0 69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722	Acreage 373 136 1,783 822 410 391 97 69 151 1,287 289 589 808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm Warm Warm Warm Warm	EI P EII P EII P R R R R R R	N/A N/A N/A N/A N/A N/A N/A N/A N/A PI PI PI PI PI/PII PI/PII	1.50 1.50 1.000 2.50 10.00 2.50 10.00 1.50 1.50 1.00 1.00 1.00 1.00		-	Floodplain Bench, In-Stream Structures, Supplemental Planting, Exclusion of Livestock, Permanent Conservation Easement Supplemental Planting, Exclusion of Livestock, Permanent Conservation Easement Riparian Planting, Livestock Exclusion Conservation Easement Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement
Project Segment Acc UT1-R1 (upper)	399 136 1,827 822 410 391 0 69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722	Acreage 373 136 1,783 822 410 391 97 69 151 1,287 289 589 808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm Warm Warm Warm Warm	EI P EII P EII P R R R R R R	N/A N/A N/A N/A N/A N/A N/A N/A N/A PI PI PI PI PI/PII PI/PII	1.50 1.50 1.000 2.50 10.00 2.50 10.00 1.50 1.50 1.00 1.00 1.00 1.00		-	Floodplain Bench, In-Stream Structures, Supplemental Planting, Exclusion of Livestock, Permanent Conservation Easement Supplemental Planting, Exclusion of Livestock, Permanent Conservation Easement Riparian Planting, Livestock Exclusion Conservation Easement Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement
UT1-R1 (upper) UT1-R1 (lower) UT1-R2 UT1-R3 UT1-R3 UT1-R3 UT1-R3 UT1B (lower) UT1B (lower) UT1C (upper) UT1C (lower) UT2 1 UT2A 2 UT3 3 3BB-R1 3BB-R2 2 3BB-R3 4 UT4-R1 (lower) 2 UT4-R1 (lower) UT4-R2 1 W1 0 W1 0 W1 0 W2 0 W3 0 W4 0 W4A 0	399 136 1.827 822 410 391 0 69 158 1.315 289 338 986 2,080 478 2,394 2,230 1,722	373 136 1,783 822 410 391 97 69 151 1,287 289 589 808 1,835 636 2,346 1,730/233 1,722	Warm Warm Warm Warm Warm Warm Warm Warm	EI P EII P EII EI EI R R R R R	N/A N/A N/A N/A N/A N/A N/A N/A	1.50 10.00 2.50 10.00 2.50 2.50 1.50 10.00 1.00 1.00 1.00 1.00 1.00		Talcogo	Floodplain Bench, In-Stream Structures, Supplemental Planting, Exclusion of Livestock, Permanent Conservation Easement Supplemental Planting, Exclusion of Livestock, Permanent Conservation Easement Riparian Planting, Livestock Exclusion Conservation Easement Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement
JT1-R1 (lower) JT1-R2 JT1-R3 JT1-R3 JT1-R3 JT1-R3 JT1-R3 JT1-R3 JT1-R3 JT1-R3 JT1-R1 JT1-R2 JT1-R1 (lower) JT1-R1 (lower) JT1-R1 (lower) JT1-R1 (lower) JT2-R1 JT2-R1 JT3-R1 JT4-R1 (lower) JT4-R1 (lower) JT4-R2 JT4-R2 JT4-R2 JT4-R2 JT4-R3 M1 M2 M2 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4	136 1,827 822 410 391 0 69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722	136 1,783 822 410 391 97 69 151 1,287 289 589 808 1,835 636 2,346	Warm Warm Warm Warm Warm Warm Warm Warm	PEII PEII EII EII R R R R R R	N/A N/A N/A N/A N/A N/A N/A N/A PI PI PI PI PI/PII PI/PII	10.00 2.50 10.00 2.50 2.50 1.50 1.50 1.00 1.00 1.00 1.00 1.00 1			Exclusion of Livestock, Permanent Conservation Easement Supplemental Planting, Exclusion of Livestock, Permanent Conservation Easement Riparian Planting, Livestock Exclusion Conservation Easement Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement
UT1-R1 (lower) UT1-R2 UT1-R3 UT1-R1 (lower) UT1-R1 UT1-R1	136 1,827 822 410 391 0 69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722	136 1,783 822 410 391 97 69 151 1,287 289 589 808 1,835 636 2,346	Warm Warm Warm Warm Warm Warm Warm Warm	PEII PEII EII EII R R R R R R	N/A N/A N/A N/A N/A N/A N/A N/A PI PI PI PI PI/PII PI/PII	10.00 2.50 10.00 2.50 2.50 1.50 1.50 1.00 1.00 1.00 1.00 1.00 1			Supplemental Planting, Exclusion of Livestock, Permanent Conservation Easement Riparian Planting, Livestock Exclusion Conservation Easement Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Bank grading, Livestock Exclusion Bank grading, Livestock Exclusion Bank grading, Livestock Exclusion Bank grading, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT1-R2 1 UT1-R3 8 UT1A 4 UT1B (lupper) 3 UT1B (lower) 1 UT1C (lupper) 4 UT1C (lupper) 1 UT2 1 UT2A 2 UT3 3 BB-R1 9 BB-R2 2 BB-R3 4 UT4-R1 (lupper) 2 UT4-R1 (lupper) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0	1,827 822 410 391 0 69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722	1,783 822 410 391 97 69 151 1,287 289 589 808 1,835 636 2,346	Warm Warm Warm Warm Warm Warm Warm Warm	EII P EII P R R R R R R	N/A N/A N/A N/A N/A N/A N/A N/A PI PI N/A PI PI PVPII PVPII	2.50 10.00 2.50 2.50 1.50 10.00 1.00 1.00 1.00 1.00 1.00			Conservation Easement Riparian Planting, Livestock Exclusion Conservation Easement Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT1-R2 1 UT1-R3 8 UT1A 4 UT1B (upper) 3 UT1B (lower) 1 UT1C (upper) 4 UT1C (lower) 2 UT1C (lower) 2 UT1C (lower) 3 UT1A 4 UT1A 4 UT1B (lower) 4 UT1C (upper) 4 UT1C (lower) 5 UT1C (lower) 7 UT1C (lower)	1,827 822 410 391 0 69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722	1,783 822 410 391 97 69 151 1,287 289 589 808 1,835 636 2,346	Warm Warm Warm Warm Warm Warm Warm Warm	EII P EII P R R R R R R	N/A N/A N/A N/A N/A N/A N/A N/A PI PI N/A PI PI PVPII PVPII	2.50 10.00 2.50 2.50 1.50 10.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00			Riparian Planting, Livestock Exclusion Conservation Easement Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement
UT1-R3 UT1A UT1A UT1A UT1B (upper) UT1B (lower) UT1C (upper) UT1C (upper) UT2 1 UT2A 2 UT3 BB-R1 BB-R2 BB-R3 UT4-R1 (upper) UT4-R2 1 W1 W1 W1 W1 W1 W1 W1 W2 W3 W4 W4A W4A	822 410 391 0 69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722	822 410 391 97 69 151 1,287 289 589 808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm Warm Warm Warm Warm	P EII EI P R R R R R R R	N/A N/A N/A N/A N/A N/A PI PI N/A PI PI PI PI PI PI/PII	10.00 2.50 2.50 1.50 10.00 1.00 1.00 1.00 1.00 1.00			Conservation Easement Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT1A	410 391 0 69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722 0.859	410 391 97 69 151 1,287 289 589 808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm Warm Warm Warm Warm		N/A N/A N/A N/A N/A PI PI N/A PI PI PI PI PI/PII	2.50 2.50 1.50 10.00 1.00 1.00 1.50 1.00 1.00			Riparian Planting, Livestock Exclusion Riparian Planting, Livestock Exclusion Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Restoration, Planted Buffer, Exclusion of Livestock,
UT1B (lower) UT1B (lower) UT1C (lower) UT1C (lower) UT2 1 UT2A 2 UT3 BB-R1 BB-R2 2 BB-R3 4 UT4-R1 (lower) 2 UT4-R1 (lower) UT4-R2 1 W1 0 W1A 0 W3 0 W4 0 W4A 0	391 0 69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722 0.859	391 97 69 151 1,287 289 589 808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm Warm Warm Warm Warm	EI P R R R R R R R	N/A N/A N/A PI PI N/A PI PI PI PI PI/PII	2.50 1.50 10.00 1.00 1.00 1.50 1.00 1.00			Riparian Planting, Livestock Exclusion Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting,. Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT1B (lower) UT1C (upper) UT1C (lower) UT2	0 69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722	97 69 151 1,287 289 589 808 1,835 636 2,346	Warm Warm Warm Warm Warm Warm Warm Warm	EI P R EI R R R R R	N/A N/A PI PI N/A PI PI PVPII PVPII	1.50 10.00 1.00 1.00 1.50 1.00 1.00 1.00			Bank grading, Stabilization, Supplemental planting, Conservation Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting. Conservation Easement Bank grading, Stabilization, Supplemental planting. Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Restoration, Planted Buffer, Exc
UT1C (upper) UT1C (lower) UT2 1 UT2A 2 UT3 3 BB-R1 9 BB-R2 2 BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722 0.859	69 151 1,287 289 589 808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm Warm Warm Warm Warm	P R R EI R R R R	N/A PI N/A PI PI PI PI PI/PII	1.00 1.00 1.50 1.00 1.00 1.00 1.00 1.00			Easement Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT1C (upper) UT1C (lower) UT2 1 UT2A 2 UT3 3 BB-R1 9 BB-R2 2 BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	69 158 1,315 289 338 986 2,080 478 2,394 2,230 1,722 0.859	69 151 1,287 289 589 808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm Warm Warm Warm Warm	P R R EI R R R R	N/A PI N/A PI PI PI PI PI/PII	1.00 1.00 1.50 1.00 1.00 1.00 1.00 1.00			Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting, Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT1C (lower) UT2 1 UT2A 2 UT3 3 BB-R1 9 BB-R2 2 BB-R3 4 UT4-R1 (lower) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	158 1,315 289 338 986 2,080 478 2,394 2,230 1,722	151 1,287 289 589 808 1,835 636 2,346 1,730 / 233	Warm Warm Warm Warm Warm Warm Warm Warm	R R EI R R R R	PI PI N/A PI PI PI PI/PII PI/PII	1.00 1.00 1.50 1.00 1.00 1.00 1.00 1.00			Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting,. Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement
UT2 1 UT2A 2 UT3 3 BB-R1 5 BB-R2 2 BB-R3 4 UT4-R1 (lower) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	1,315 289 338 986 2,080 478 2,394 2,230 1,722	1,287 289 589 808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm Warm Warm Warm Warm	R EI R R R R	PI N/A PI PI PI PVPII PVPII	1.00 1.50 1.00 1.00 1.00 1.00 1.00			Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting,. Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT2A 2 UT3 3 BB-R1 9 BB-R2 2 BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	289 338 986 2,080 478 2,394 2,230 1,722	289 589 808 1,835 636 2,346 1,730 / 233	Warm Warm Warm Warm Warm Warm	EI R R R R	N/A PI PI PI PVPII PVPII	1.50 1.00 1.00 1.00 1.00 1.00			Permanent Conservation Easement Bank grading, Stabilization, Supplemental planting,. Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Fermanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT2A 2 UT3 3 BB-R1 9 BB-R2 2 BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	289 338 986 2,080 478 2,394 2,230 1,722	289 589 808 1,835 636 2,346 1,730 / 233	Warm Warm Warm Warm Warm Warm	EI R R R R	N/A PI PI PI PVPII PVPII	1.50 1.00 1.00 1.00 1.00 1.00			Bank grading, Stabilization, Supplemental planting,. Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement
UT3 3 BB-R1 9 BB-R2 2 BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0	338 986 2,080 478 2,394 2,230 1,722 0.859	589 808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm Warm	R R R R	PI PI PI PI/PII PI/PII	1.00 1.00 1.00 1.00 1.00 1.00			Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT3 3 BB-R1 9 BB-R2 2 BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0	338 986 2,080 478 2,394 2,230 1,722 0.859	589 808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm Warm	R R R R	PI PI PI PI/PII PI/PII	1.00 1.00 1.00 1.00 1.00 1.00			Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Fermanent Conservation Easement
BB-R1 99 BB-R2 2 BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	986 2,080 478 2,394 2,230 1,722	808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm	R R R R	PI PI PI/PII PVPII	1.00 1.00 1.00 1.00			Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
BB-R1 99 BB-R2 2 BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	986 2,080 478 2,394 2,230 1,722	808 1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm Warm	R R R R	PI PI PI/PII PVPII	1.00 1.00 1.00 1.00			Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement
BB-R2 2 BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0	2,080 478 2,394 2,230 1,722	1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm	R R R	PI PI/PII PI/PII	1.00 1.00 1.00 1.00 /1.25			Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
BB-R2 2 BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0	2,080 478 2,394 2,230 1,722	1,835 636 2,346 1,730 / 233 1,722	Warm Warm Warm	R R R	PI PI/PII PI/PII	1.00 1.00 1.00 1.00 /1.25			Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
BB-R3 4 UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	2,394 2,230 1,722 0.859	636 2,346 1,730 / 233 1,722	Warm Warm Warm	R R R	PI/PII PI/PII PI	1.00			Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	2,394 2,230 1,722 0.859	2,346 1,730 / 233 1,722	Warm Warm	R R	PI/PII PI	1.00			Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT4-R1 (upper) 2 UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0 W4A 0	2,394 2,230 1,722 0.859	2,346 1,730 / 233 1,722	Warm Warm	R R	PI/PII PI	1.00			Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0	2,230 1,722 0.859	1,730 / 233	Warm	R	PI	1.00 /1.25			
UT4-R1 (lower) 2 UT4-R2 1 W1 0 W1A 0 W2 0 W3 0 W4 0	2,230 1,722 0.859	1,730 / 233	Warm	R	PI	1.00 /1.25			D
W1 0 W1A 0 W2 0 W3 0 W4 0	0.859	1,722							Permanent Conservation Easement Full Channel Restoration, Planted Buffer, Exclusion of Livestock,
W1 0 W1A 0 W2 0 W3 0 W4 0	0.859	1,722							Permanent Conservation Easement. 233 LF adjacent to pond
W1 0 W1A 0 W2 0 W3 0 W4 0	0.859	1,722							credited at 1.25:1.
W1 0 W1A 0 W2 0 W3 0 W4 0	0.859		Warm	EI	N/A				Bank Grading, Stabilization, Supplemental Planting, Conservation
W1A 0 W2 0 W3 0 W4 0 W4A 0		0.825				1.50			Easement
W1A 0 W2 0 W3 0 W4 0 W4A 0		0.825							
W1A 0 W2 0 W3 0 W4 0 W4A 0		0.825							Planted, excluded livestock, remediated compaction and
W2 0 W3 0 W4 0 W4A 0	0.000		RR	E		2.00			encompasses section of Priority 1 reaches
W2 0 W3 0 W4 0 W4A 0	0.000								Planted, excluded livestock, remediated compaction, soil
W3 0 W4 0 W4A 0		1.240	RR	RE		1.00			manipulation, and encompasses section of Priority 1 reach
W3 0 W4 0 W4A 0	0.524	0.524	RR	Е		2.00			Planted, excluded livestock, remediated compaction
W4A 0	0.524	0.324	KK			2.00			Planted, excluded livestock, remediated compaction Planted, excluded livestock, remediated compaction and
W4A 0	0.906	0.888	RR	RH		1.50			encompasses section of Priority 1 reach
W4A 0	Î								
	0.321	0.321	RR	E		2.00			Planted, excluded livestock, remediated compaction
									Planted, excluded livestock, remediated compaction, soil
W5 n	0.000	0.808	RR	RE		1.00			manipulation, and encompasses section of El reach
W5 I ∩									Planted, excluded livestock, remediated compaction and
	0.203	0.203	RR	E		2.00			encompasses section of EII reach
14/54	0.007	0.007		_		0.00			Planted, excluded livestock, remediated compaction, and
W5A 0	0.097	0.097	RR	Е		2.00			encompasses section of Ell reach
W5B 0	0.010	0.010	RR	E		2.00			Planted, excluded livestock, remediated compaction
									Planted, excluded livestock, remediated compaction and
W6A 0	0.251	0.251	RR	RH		1.50			encompasses section of Priority 1 reach
W6B 0	0.045	0.045	RR	Е		2.00			Planted, excluded livestock, remediated compaction
									•
W7 0	0.041	0.041	RR	E		2.00			Planted, excluded livestock, remediated compaction
10404	0.000	0.40=		D-		4.65			Planted, remediated compaction, soil manipulation, and
W8A 0	0.000	0.107	RR	RE		1.00			encompasses section of Priority 1 reach of BB-R1 Planted, excluded livestock, remediated compaction, soil
w9 0	0.000	0.823	RR	RE		1.00			manipulation, and encompasses section of P1 reach of BB-R2
		0.020	IMA	115		1.00			
Project Credits	_								
	Stream			Wetland		Non-Rip	Coastal		
	Warm	Cool	Cold	Riverine	Non-Riv	Wetland	Marsh		
	9568.400								
Re-establishment				2.978					
Rehabilitation				0.759					
Enhancement				1.033					
	1654.000								
	1033.600								
Creation									
Preservation	102.700								
Totals 12,	.02.700			4.770	0.000	0.000			

6.1 Stream Design Approach

As described above in Sections 4 and 5, WLS used function-based assessment methods and data analyses to determine overall restoration potential and functional uplift. The stream design approach generally followed the techniques and methods outlined in the NRCS Stream Restoration Design—National Engineering Handbook (NRCS, 2007) and Hydraulic Design of Stream Restoration Projects (USACE, 2001). In addition, the natural stable channel design (NCD) procedures outlined in the Natural Channel Design Review Checklist (Harman and Starr, 2011) were applied to address specific stream functions lost across the site, while also minimizing disturbances to existing wooded areas and higher functioning resources.

WLS first compiled and assessed watershed information such as drainage areas, historical land use, geologic setting, soil types, sediment inputs and plant communities. Ascension Land Surveying and Consulting then performed detailed existing conditions topographic and planimetric surveying of the project site and produced a 1-foot contour map, based on survey data, to create base mapping and plan sheets (See Appendix 1). Detailed geomorphic surveys were also conducted along the channel and floodplain to determine valley slopes/widths, channel dimensions, longitudinal profile elevations, and to validate the signatures shown on the LiDAR imagery (See Figure 5).

Project stream design criteria was developed using a combination of industry sources and applied approaches, including a review of applicable reference reach data (analog), evaluation of published regression equations and hydraulic geometry relationships (regional curves), monitoring results from stable past projects (empirical), and building a hydraulic model using process-based equations to test design channel geometry and bed stability (analytical). It should be mentioned, while analog and empirical form-based approaches have been proven effective in designing stable stream systems, their application assumes quasi-equilibrium conditions and similar watershed and boundary conditions (i.e. dominant discharge, flow regime, channel roughness, controlling vegetation). Using a static design template that accounts for natural channel variability can be limited by the regional data sets and overlook other local controlling factors such as flow impoundments, bedrock geology, woody debris/abundance, and sediment supply (Skidmore, 2001).

Conversely, analytical or process-based approaches rely heavily upon precise data inputs and a more robust level of effort may not be practical or even necessary to replicate channel geometry given the model sensitivity and desired outcome. Designing dynamic headwater channels is an iterative process that requires a detailed assessment of sediment continuity and predicted channel response for a range of smaller flows. Although it is challenging to definitively predict long term hydrologic conditions in the watershed, designing an appropriate stream channel for the valley characteristics (i.e. slope, width, and confinement) is always the preferred design rationale. Therefore, best professional judgment must be used when selecting appropriate design criteria for lifting the desired ecological functions.

6.1.1 Proposed Design Parameters

The proposed design parameters were developed so that plan view layout, cross-section dimensions, and longitudinal profiles could be described for developing construction documents. The design philosophy considers these parameters as conservative guidelines that allow for more natural variability in stream dimension, facet slopes, and bed features to form over long periods of time under the processes of flooding, re-colonization of vegetation, and other watershed influences (Harman, Starr, 2011).

Evaluating reference reach information and empirical data from monitoring stable rural Piedmont stream restoration projects provided pertinent background information and rationale to determine the appropriate design parameters given the existing conditions and restoration potential. The proposed stream design parameters also considered the *USACE Stream Mitigation Guidelines* issued in April 2003 (rev. October 2005) and the Natural Channel Design Checklist (Harman, 2011).

Table 15. Proposed Design Parameters

Parameter	UT1-R1 (upper)	UT2	UT3	UT1C (lower)	BB-R1	BB-R2	BB-R3	UT4-R1 (upper)	UT4-R1 (lower)
Drainage Area, DA (sq mi)	0.064	0.044	0.120	0.026	0.64	0.75	0.880	0.160	0.240
Stream Type (Rosgen)	B4	B4	C4	B4	C4	C4	C4	B4c	C4b
Bankfull Riffle XSEC Area, Abkf (sq ft)	3.9	2.3	4.6	1.6	14.0	15.9	17.8	7.7	7.7
Bankfull Mean Velocity, Vbkf (ft/sec)	4.36	4.44	5.27	3.7	3.93	3.76	3.93	3.92	3.92
Bankfull Riffle Width, Wbkf (ft)	8.0	6.0	8.0	4.5	13.0	14.0	15.0	11.0	11.0
Bankfull Riffle Mean Depth, Dbkf (ft)	0.49	0.38	0.57	0.36	1.08	1.14	1.19	0.7	0.7
Width to Depth Ratio, W/D (ft/ft)	16.4	16.0	14.1	12.5	12.1	12.3	12.6	15.8	15.8
Width Floodprone Area, Wfpa (ft)	16 – 26	9 – 15	20 – 40	12 – 20	35 – 75	65 – 155	50 – 120	15 – 25	37 – 70
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	>2.2	>2.2	>2.2	>2.2	>2.2	>2.2	>2.2	>2.2	>2.2
Riffle Max Depth Ratio, Dmax/Dbkf	1.2	1.3	1.2	1.4	1.3	1.3	1.3	1.3	1.3
Bank Height Ratio, Dtob/Dmax (ft/ft)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Meander Length Ratio, Lm/Wbkf	N/A	N/A	7 – 12	N/A	7 – 12	7 – 12	7 – 12	N/A	7 – 12
Radius of Curvature Ratio, Rc/Wbkf	N/A	N/A	2 – 3	N/A	2 – 3	2 – 3	2 – 3	N/A	2-3
Meander Width Ratio, Wblt/Wbkf	N/A	N/A	3.5 – 8	N/A	3.5 – 8	3.5 – 8	3.5 – 8	N/A	3.5 – 8
Channel Sinuosity, K	~1.27	~1.10	~1.22	~1.08	~1.15	~1.24	~1.23	~1.14	~1.18
Channel Slope, Schan (ft/ft)	0.0270	0.0352	0.0088	0.0506	0.0093	0.0075	0.0049	0.0248	0.0145
Riffle Slope Ratio, Sriff/Schan	1.1 – 1.8	1.1 -1.8	1.5 – 2.0	1.1 -1.8	1.5 – 2.0	1.5 – 2.0	1.5 – 2.0	1.1 -1.8	1.5 – 2.0
Pool Slope Ratio, Spool/Schan	0.0 – 0.4	0.0 - 0.4	0.0 – 0.2	0.0 - 0.4	0.0 – 0.2	0.0 – 0.2	0.0 – 0.2	0.0 - 0.4	0.0 – 0.2
Pool Width Ratio, Wpool/Wbkf	1.1 – 1.5	1.1 -1.5	1.3 – 1.7	1.1 -1.5	1.3 – 1.7	1.3 – 1.7	1.3 – 1.7	1.1 -1.5	1.3 – 1.7
Pool-Pool Spacing Ratio, Lps/Wbkf	1.5 – 5.0	1.5 – 5.0	4.0 – 7.0	1.5 – 5.0	4.0 – 7.0	4.0 – 7.0	4.0 – 7.0	1.5 – 5.0	4.0 – 7.0
Pool Max Depth Ratio, Dmaxpool/Dbkf	2.0 -3.5	2.0 – 3.5	2.0 – 3.5	2.0 – 3.5	2.0 – 3.5	2.0 – 3.5	2.0 – 3.5	2.0 – 3.5	2.0 – 3.5

6.1.2 Design Reach Summary

For design purposes, the stream segments were divided into multiple reaches labeled UT1-R1 (upper and lower), UT1-R2, UT1-R3, UT1A, UT1B, UT1C (upper and lower), UT2, UT2A, UT3, BB-R1, BB-R2, BB-R3, UT4-R1 (upper and lower) and UT4-R2, as shown in Figure 10. The following narrative summarizes the proposed design approach, rationale and justification for each of stream reaches.

Restoration: UT1C (lower), UT2, UT3, BB-R1, BB-R2, BB-R3, UT4-R1

UT1C (lower)

Due to the severe active headcut along lower UT1C, a Priority Level I/II Restoration approach is proposed to restore headwater stream functions. Given the small drainage area, valley configuration and steeper slopes, the lower reach will be restored as a Rosgen 'B4' stream type using appropriate step-pool morphology with limited meander geometry. The upper reach is currently stable and the restoration activities will reconnect the new channel within the existing valley bottom by raising the vertical profile, providing bankfull benches near the confluence with UT1-R1 further downstream. In-stream structures, including log and rock riffles, log weirs and cascades will be used to dissipate flow energy, protect streambanks, and eliminate potential for future incision.

UT2

Due to the past manipulation and degraded nature of UT2, a Priority Level I/II Restoration approach is proposed to restore headwater stream functions and improve water quality. The reach is currently moderately unstable, as shown by an active bank erosion and localized aggradation. This headwater stream has been a watering source and shade area for cattle over many decades. This ongoing degradation has left the riparian areas devoid of understory woody vegetation. Given the small drainage area, valley configuration and steeper slopes, the reach will be restored as a Rosgen 'B4' stream type using appropriate step-pool morphology with limited meander geometry. A new channel will be constructed within the existing valley bottom by raising the vertical profile, providing bankfull benches and reconnecting with the BB-R2 channel alignment further downstream.

The design width/depth ratio for the new channel will be similar to stable streams in this geologic setting. It is expected that over time, channel widths will narrow slightly over time due to fine grain sediment deposition and vegetation growth along the streambanks. In-stream structures, such as constructed riffles/cascades, log and rock step-pools will be used to control grade in the steeper sections, as well as dissipate flow energy, protect streambanks, and eliminate potential for future incision. Restored streambanks will be graded to stable side slopes and the floodplain will be reconnected to further promote stability and hydrological function.

As part of the restoration activities, the existing channel will be filled to an elevation sufficient to connect the new bankfull channel to floodprone areas using suitable fill material excavated from the newly restored channel, spoil piles and borrow areas. Additionally, permanent fencing and a 30- foot ford stream crossing will be installed to exclude livestock and reduce sediment and nutrient inputs. Riparian buffers of at least 30 feet wide will be established and the proposed restoration activities will provide the maximum possible functional uplift.

UT3

UT3 currently exhibits ditched conditions due to past manipulation and channelization. Therefore, a Priority Level I Restoration approach is proposed to improve stream functions and wetland hydrology in areas with hydric soils. The reach will be restored as a Rosgen 'C4' stream type using appropriate riffle-pool morphology with appropriate meander geometry. Work along this reach will involve filling in the ditches, raising the bed elevation, and reconnecting the existing stream with its relic floodplain. A new channel will be constructed offline before reconnecting with proposed BB-R2 channel alignment further downstream. The proposed design width-to-depth ratio will be comparable to stable streams in this geologic setting. It is expected that channel widths will narrow slightly, over time, due to vegetation growth along the streambanks. In-stream structures, including log and rock riffles, log weirs and log vanes will be used to dissipate flow energy, protect streambanks, and eliminate potential for future incision. Restored streambanks will be graded to stable side slopes and the floodplain will be reconnected to further promote stability and hydrological function across the stream and wetland complex.

BB-R1, BB-R2, and BB-R3

The Banner Branch mainstem tributary (BB-R1) begins upstream of an existing ford stream crossing at the confluence with UT1-R3. The Banner Branch mainstem reaches are moderately to severely incised with BHRs often exceeding 1.5. The existing channel appears to have been historically manipulated in many locations and generally flows along the right side of the valley. Work along these reaches will involve a Priority Level I Restoration by raising the bed elevation upstream of UT1-R3 confluence and reconnecting the existing stream with its relic floodplain in the low point of the valley. BB-R2 begins at the confluence with UT2 and upstream of an existing 30-foot wide ford stream crossing. The ford crossing will be improved and BB-R2 will be relocated to the lowest point in the valley and constructed entirely offline. The lower section of BB-R3 will transition into a Priority Level II restoration to create a floodplain bench and tie into the existing bed elevation near the bottom of the project boundary. This approach will promote more frequent over bank flooding in areas with hydric soils, thereby creating favorable conditions for wetland restoration (both rehabilitation and re-establishment).

The mainstem channel has cut down to bedrock in a few locations and currently exhibits lateral instability and overwidening, as evidenced by active bank erosion and irregular sediment deposits observed as midchannel and transverse bar formations. This systemic degradation is causing excess bank sediments to enter the stream and will likely continue if restoration is not implemented. The existing channel has many vertical banks that are devoid of deep rooting vegetation from active cattle trampling and removing riparian buffer vegetation for pastureland.

These reaches will be restored as Rosgen 'C4' stream type using appropriate riffle-pool morphology with a conservative meander planform geometry that accommodates the flatter valley slope and widths. This approach will allow restoration of a stable channel form with appropriate bedform diversity, as well as improved ecological function through increased aquatic and terrestrial habitats. It is anticipated that the design width/depth ratio for the channel will be similar to stable streams in this geologic setting. In-stream structures will be incorporated to control grade, dissipate flow energies, protect streambanks, and eliminate the potential for future channel incision. In-stream structures will likely include constructed riffles for grade control and aquatic habitat and log j-hook vanes, and log and rock weirs for encouraging

pool formation, bank stability, and bedform diversity. In addition to in-stream channel features, shallow depressions will be created in the floodplain to provide habitat diversity, nutrient cycling, and improved treatment of overland flows.

UT4-R1 (upper) and UT4-R1 (lower)

The restoration of upper UT4-R1 will begin near the top of the headwater catchment. Due to the past manipulation and severely degraded nature of UT4-R1, a Priority Level I/II Restoration approach is proposed to restore headwater stream functions and improve water quality. The reach is currently moderately to severely unstable, as shown by an active bank erosion and obvious channel incision. This stream system has been a primary watering source and shade area for cattle over many decades. This ongoing degradation has left the riparian areas devoid of understory woody vegetation. Given the valley configuration and steeper slopes, the upper reach will be restored as a Rosgen 'B4' stream type using appropriate step-pool morphology with limited meander geometry. Within portions of the deeper channel segments, a shallow Priority Level II Restoration approach is proposed within the valley bottom to create bankfull benches. This approach will be outside jurisdictional wetland areas and therefore will not adversely affect wetland hydrology. Additionally, a 30-foot culvert stream crossing will be installed.

The lower reach will be restored as a Rosgen 'C4b' stream type using a Priority Level I Restoration approach to restore stream functions and improve water quality. The design approach will include a riffle-pool morphology with a conservative meander planform geometry that accommodates the flatter valley slope and widths. The design width/depth ratio for the new channel will be similar to stable streams in this geologic setting. It is expected that over time, channel widths will narrow slightly over time due to fine sediment deposition and vegetation growth along the streambanks. In-stream structures, such as constructed riffles/cascades, log and rock step-pools will be used to control grade in the steeper sections, as well as dissipate flow energy, protect streambanks, and eliminate potential for future incision. Restored streambanks will be graded to stable side slopes and the floodplain will be reconnected to further promote stability and hydrological function.

In the lower section of UT4-R1, the existing channel and valley slope flattens and begins experiencing backwater conditions from a man-made pond dam. The existing farm ponds currently serve as a watering source and wallowing area in support of the landowner's cattle operation. The cattle will be excluded from the conservation easement; however, the ponds will remain for landowner use as a secondary water source and recreation. The buffer width on the left side of the pond ranges from 13 feet to some areas greater than 30 feet. The stream length affected by the less than 30-ft buffer is 233 feet or 1.5% of the total project length. The 233 LF will be credited at 1.25:1 ratio. The existing 30-foot ford stream crossing will be improved, and a small pond will be temporarily drained to construct the new stream channel within the geomorphic floodplain before reconnecting with the existing UT4-R2 channel alignment further downstream. If necessary, channel and floodplain excavation in this reach segment will include the removal of shallow legacy sediments to accommodate a new design channel and in-stream structures, as well as a more natural step-pool morphology using grade control structures in the steeper transitional areas.

Additionally, permanent fencing and a water quality improvement feature will be installed to exclude cattle and capture, attenuate, and treat concentrated flow from existing ephemeral drainages that would otherwise enter the riparian buffer as untreated surface runoff. These proposed restoration activities will provide the maximum possible functional uplift.

Enhancement Level I: UT1-R1 (upper), UT2A, UT4-R2, UT1B (lower)

UT1-R1 (upper)

Due to the past manipulation, channelization and degraded nature of the upper project reach, an Enhancement Level I approach is proposed to restore natural stream functions and improve water quality. A majority of the upper reaches do not have access to its active floodplain, or a bankfull bench, and portions of the channel have been historically manipulated to accommodate pasture grazing and agricultural production. A bankfull bench will be constructed along the left streambank and a meander bend will be relocated partially offline within the abandoned floodplain area before reconnecting with the stable channel alignment further downstream.

Riparian buffers in excess of 30 feet will be restored and protected along the entire length of all project reaches. Any mature trees or significant native vegetation will be protected and incorporated into the design. Bioengineering techniques, such as geolifts, toe wood, brush layers, and live stakes, will also be used to protect streambanks and promote woody vegetation growth. These proposed activities will improve bedform diversity and aquatic habitat. Any exotic species vegetation will be removed, and native riparian species vegetation will be planted in the resulting disturbed areas. Permanent fencing will be installed or relocated along with alternative watering systems to exclude livestock and reduce direct sediment and nutrient inputs.

UT2A

UT2A begins at a small spring adjacent to Reach UT2. During site investigations, the channel appears to be experiencing bank erosion from hoof shear, but is vertically stable throughout most of its length. An Enhancement Level I approach is proposed along this reach to address localized bank erosion, an active headcut and lateral instability. In-stream structures, such as constructed riffles/cascades, log and rock step-pools, will be used to control grade in the steeper sections, as well as dissipate flow energy, protect streambanks, and eliminate potential for future incision. Construction activities will consist of regrading the streambanks back to the existing stable dimension, installing erosion control matting, and supplemental riparian buffer planting and live stakes. The reach in this section is proposed as a Rosgen 'B4' stream type.

UT4-R2

UT4-R2 begins below two existing farm ponds that serve as a watering source and wallowing area in support of the landowner's cattle operation. The small upstream pond will be partially drained prior to construction to reconnect the new stream channel with its geomorphic floodplain and remove invasive species vegetation. Channel and floodplain excavation in the upper reach segment will include the removal of shallow legacy sediments to accommodate a new design channel and in-stream structures, as well as a more natural step-pool morphology using grade control structures in the steeper transitional

areas. The lower section of the channel is vertically stable and enhancement work will consist of bank stabilization, treatment of invasive species and minimal channel relocation and in-stream structure installation. Bioengineering techniques, such as toe wood, brush layers, and live stakes, will be used to protect streambanks and promote native woody vegetation growth. A majority of the right buffer area, including streamside vegetation, contains large clusters of Chinese privet. Any exotic species vegetation will be removed in these areas from approximate station 55+00 to 71+53. The buffer and stream banks will be replanted with native riparian species vegetation in the resulting disturbed areas. Riparian buffers in excess of 30 feet will be restored and protected along the entire length of UT4-R2, and permanent fencing will be installed to exclude livestock and reduce direct sediment and nutrient inputs.

UT1B (lower)

UT1B lower begins immediately downstream of UT1B. Currently this area is experiencing a higher water table and aggradation due to a partially blocked culvert. A pilot channel will be constructed to establish a natural tie-in connection with UT1B (upper) and UT1-R2. Enhancement Level I practices will consist of, new channel construction, in-stream structure installation and invasive species treatment. Bioengineering techniques, such as live stakes, will be used to protect streambanks and promote native woody vegetation growth. Any invasive species vegetation will be removed in these areas. The buffer and stream banks will be replanted with native riparian species vegetation in the resulting disturbed areas in excess of 30 feet. Permanent fencing will be installed to exclude livestock and reduce direct sediment and nutrient inputs.

Enhancement Level II: UT1A, UT1B (upper), UT1-R2

Work along project reaches UT1A, UT1B (upper), and UT1-R2 will involve Enhancement Level II practices to improve the current channel condition and aquatic function. These areas have been historically disturbed through cattle intrusion, pasture use and agricultural practices, and the channels exhibit poor channel definition and/or degraded conditions in some sections. However, many segments of existing channel have limited bank erosion and/or channel incision. Consequently, WLS will plant and restore the riparian buffer widths to more than 30 feet, stabilize localized bank erosion and permanently exclude livestock. The 40-foot existing culvert crossing on UT1-R2 will be replaced and the 30-foot culvert (approximate 77-foot easement break) between UT1-R2 and UT1-R3 will also be replaced.

Any mature trees or significant native vegetation will be protected and incorporated into the design. Where necessary, bioengineering techniques, such as geolifts, toe wood, brush layers, and live stakes, will also be used to protect streambanks and promote woody vegetation growth along the streambanks. Additionally, permanent fencing will be installed to exclude livestock and reduce sediment and nutrient inputs. Any exotic species vegetation will be removed in these areas and native riparian species vegetation will be planted in any disturbed areas. Finally, agricultural BMPs and water quality improvement features will be installed near UT1-R2 to capture, attenuate, and treat concentrated flow from existing ephemeral draws that would otherwise enter the riparian buffer as untreated water. The BMPs will be constructed inside of the conservation easement and will require no maintenance.

Preservation: UT1C (upper), UT1-R3, UT1-R1 (lower)

Preservation is being proposed along these reaches since the existing stream systems are mostly stable with a mature riparian buffer due to minimal historic impacts. An existing headcut will be stabilized along lower UT1C near the confluence with UT1-R2 and all areas will be protected in perpetuity through a conservation easement. Any exotic species vegetation will be removed in these areas and riparian buffers in excess of 30 feet will be permanently protected along the entire reach length. This approach will extend the wildlife corridor throughout a majority of the riparian corridor, while providing a natural hydrologic connection and critical habitat linkage within the catchment area.

6.2 Reference Sites

6.2.1 Reference Streams

The morphologic data obtained from reference reach surveys can be a valuable tool for comparison and used as a template for analog design of a stable stream in a similar valley type with similar bed material. To extract the morphological relationships observed in a stable system, dimensionless ratios are developed from the surveyed reference reach. These ratios can be applied to a stream design to allow the designer to 'mimic' the natural, stable form of the target channel type. While reference reach data can be a useful aid in analog design, they are not always necessary and can have limitations in smaller stream systems (Hey, 2006). The flow patterns and channel formation for many reference reach quality streams are often controlled by slope, bed material, drainage areas and larger trees and/or other deep-rooted vegetation. Some meander geometry parameters, such as radius of curvature, are particularly affected by vegetation control. Pattern ratios observed in reference reaches may not be applicable or are often adjusted in the design criteria to create more conservative designs that are less likely to erode after construction, before the permanent vegetation is established. Often the best reference data is from adjacent stable stream reaches or reaches within the same watershed.

For comparison purposes, WLS selected local reference reaches in nearby watersheds and compared them with composite reference data in the northwest Piedmont. The reference reach data set represents small "Rural Piedmont Streams," with similar drainage areas ranging from 40 to 640 acres, flow regimes (small first and second order streams), mixed land use (forested and agricultural with less than 2% impervious surface cover), vegetative communities (Piedmont Headwater Stream Forest), valley morphology and slope ranges (1%-3%) that fall within the same climatic, hydrophysiographic and ecological region as the project site. The data shown on Table 16 helped to determine how the stream system will likely respond to minimal changes within the watershed.

Table 16. Reference Reach Data Comparison

Parameter	Local R	eference Data	Composite	e Reference Data	
	SCP	TCT			
Stream Type (Rosgen)	C4b	B4	B4	C4	
Drainage Area, DA (acres)	36.1	40.1	-	-	
Bankfull Mean Velocity, Vbkf (ft/s)	6.0	5.4	4.0 - 6.0	3.5 - 5.0	
Width to Depth Ratio, W/D (ft/ft)	18.4	13.4	12.0 - 18.0	5.0 - 12.0	
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	3.7	4.9	>2.2	>2.2	
Riffle Max Depth Ratio, Dmax/Dbkf	1.3 - 2.1	1.4 - 2.3	1.2 - 1.4	1.1 - 1.4	
Bank Height Ratio, Dtob/Dmax (ft/ft)	1.0	1.0	1.0 - 1.1	1.0 - 1.1	
Meander Length Ratio, Lm/Wbkf	N/a	N/a	N/a	7.0 - 12.0	
Radius of Curvature Ratio, Rc/Wbkf	N/a	N/a	N/a	1.2 - 2.0	
Meander Width Ratio, Wblt/Wbkf	N/a	N/a	N/a	3.0 - 8.0	
Sinuosity, K	1.17	1.13	1.1 - 1.2	1.2 - 1.5	
Valley Slope, Sval (ft/ft)	0.0242	0.0317	0.020 - 0.030	0.005 - 0.015	
Channel Slope, Schan (ft/ft)	0.0129	0.028	0.020 - 0.030	0.005 - 0.015	
Pool Max Depth Ratio, Dmaxpool/Dbkf	2.1	1.7	2.0 - 3.5	2.0 - 3.5	
Pool Width Ratio, Wpool/Wbkf	1.27	1.22	1.1 - 1.5	0.8 - 1.2	
Pool-Pool Spacing Ratio, Lps/Wbkf	2.2 - 4.8	1.9 - 7.2	1.5 - 5.0	4.0 - 7.0	

Note 1: Composite reference reach values and ratios were compared using stable stream restoration projects surveyed and monitored in NC as illustrated in the Natural Channel Design Checklist (Harman, 2011).

Note 2: Reference reach data was collected at Shoals Community Park (SCP) and the Toms Creek Tributaries (TCT) Project sites, respectively.

6.2.2 Reference Wetlands

A reference wetland that is representative of the riparian wetland system to be restored at the Project site was identified adjacent the project area along Banner Branch (W8 in Figure 11, coordinates 36.526851, -80.200571). The reference riparian wetland is an example of a Bottomland Hardwood Forest (NC WAM, 2016). Bottomland Hardwood Forests exist in geomorphic floodplains along second-order and larger streams. These wetlands are generally intermittently to seasonally inundated and overbank flooding is the source of groundwater and surface runoff. Although Banner Branch is slightly incised in this area, hydrology appears to have a higher groundwater table and limited overbank flooding was observed during the existing conditions assessment. This wetland is forested and within a narrow linear depression having a shallow outlet near Banner Branch. Soils have a loamy surface underlain by a slightly more restrictive sandy clay loam. The reference site has experienced minimal disturbances in the past, primarily due to timber harvest; however, cutting of timber occurred long ago, and a mature canopy of vegetation exists across wetland area. Evidence also suggests that the hydrology and soils were minimally affected by timber harvest. A groundwater monitoring well will be installed to document hydrology during the growing season prior to restoration activities. Figure 11 shows the reference site locations as compared to the project site.

6.3 Flow Regime

Extensive research demonstrates that a wide range of flows are essential to maintain stable and high functioning habitat across ecological systems. The flow regime has been identified as the primary factor in sustaining the ecological integrity of riparian systems (Poff et al. 1997) and is a key variable in determining the abundance, distribution, and evolution of aquatic and riparian species (Schlosser 1985, Resh et al. 1988, Power et al. 1995, Doyle et al. 2005). The ecological significance of variable stream flows is more relative to flow duration, not necessarily just the flow recurrence interval. Seasonal flow variations correlate to biological relationships and habitat response. The flow conditions can generally be categorized as low flow, channel-forming flow, or flood flows, each with specific ecological significance (Postel and Richter, 2003).

A majority of stream miles (>80 percent) in North Carolina are classified as headwater streams (drainage area <3.9 mi²), however, less than 10 percent of the 284 USGS stream gages in North Carolina are located on headwater streams (EFSAB, 2013). WLS recognizes the importance of these stream flow variables and the ecological role they play in supporting high functioning headwater steam and wetland systems. As such, flow monitoring will be conducted to demonstrate that the restored intermittent stream systems exhibit seasonal base flow during a year with normal rainfall conditions. The stream surface flow documentation methods are further described in Section 8.2. Table 17 summarizes the basic flow levels and ecological roles the restoration design will provide after project implementation.

Table 17. Flow Level and Ecological Role

-Provide year-round habitat for aquatic organisms (drying/inundation pattern) Low Flow (Base Flow): -Maintain suitable conditions for water temperature and dissolved oxygen occurs most -Provide water source for riparian plants and animals frequently/seasonally -Enable movement through stream corridor and refuge from predators -Support hyporheic functions and aquatic organisms -Shape and maintain physical stream channel form -Create and maintain pools, in-stream and refuge habitat -Redistribute and sort fine and coarse sediments **Channel-forming Flow:** -Reduce encroachment of vegetation in channel and establishment of exotic infrequent, flow duration of species a few days per year -Maintain water quality by flushing pollutants -Maintain hyporheic connection by mobilizing bed and fine material -Create in-channel bars for seed colonization of native riparian plants -Deposition of fine sediment and nutrients on floodplain -Maintain diversity, function, and health of riparian floodplain vegetation Flood Flow: very infrequent, -Create streamside habitat, new channels, sloughs, and off-channel rearing flow duration of a few days habitat through lateral channel migration and avulsion per decade or century -Recharge floodplain and storage processes -Recruitment of native wood and organic material into channel

6.3.1 Bankfull Stage and Discharge

Bankfull stage and its corresponding discharge are the primary variables used to develop a natural stable channel design. However, the correct identification of the bankfull stage in the field was difficult and can also be subjective (Williams, 1978; Knighton, 1988; and Johnson and Heil, 1996). Numerous definitions exist of bankfull stage and methods for its identification in the field (Wolman and Leopold, 1957; Nixon, 1959; Schumm, 1960; Kilpatrick and Barnes, 1964; and Williams, 1978). The identification of bankfull stage in the humid Southeast can be especially challenging because of dense understory vegetation and extensive channel modification and subsequent adjustment in channel morphology.

It is generally understood that bankfull stage corresponds with the discharge that fills a channel to the elevation of the active floodplain and represents a breakpoint between processes of channel formation and floodplain development. The bankfull discharge, which also corresponds with the dominant discharge or effective discharge, is the flow that moves the most sediment over time in stable alluvial channels. Field indicators include the back of point bars, significant breaks in slope, changes in vegetation, the highest scour line, or the top of the streambank (Leopold, 1994). The most consistent bankfull indicators for streams in the Piedmont of North Carolina are the backs of point bars, breaks in slope at the front of flat bankfull benches, or the top of the streambanks (Harman et al., 1999).

Upon completion of the field survey and geomorphic assessment, accurate identification of bankfull stage could not be made in all reach sections throughout the site due to incised and impaired channel conditions. Although some field indicators were apparent in segments with lower streambank heights and discernible scour features, the reliability of the indicators was inconsistent due to the altered condition of the stream channels. For this reason, the bankfull stage and discharge were estimated using published regional curve information.

6.3.2 Regional Curve Comparison

Regional curves developed by Dunne and Leopold (1978) relate bankfull channel dimensions to drainage area and are based on the channel forming discharge theory, which states that one unique flow can yield the same channel morphology as the full range of flows. A primary purpose for developing regional curves is to aid in identifying bankfull stage and dimension in un-gaged watersheds, as well as to help predict the bankfull dimension and discharge for natural channel designs (Rosgen, 1994). Gage station analyses throughout the United States have shown that the bankfull discharge has an average return interval of 1.5 years or 66.7% annual exceedance probability on the maximum annual series (Dunne and Leopold, 1978; Leopold, 1994).

Hydraulic geometry relationships are empirically derived and can be developed for a specific river or extrapolated to a watershed in the same physiographic region with similar rainfall/runoff relationships (FISRWG, 1998). Published and unpublished watershed specific bankfull regional curves are available for a range of stream types and physiographic provinces. The NC Rural Piedmont Regional Curve (Harman et al., 1999) and unpublished NC Rural Piedmont Regional Curve developed by the Natural Resources Conservation Service (NRCS, Walker, private communication, 2015) were used for comparison when estimating bankfull discharge. The NC Rural Piedmont Regional Curve and bankfull hydraulic geometry equations are shown in Table 18.

Table 18. North Carolina Rural Piedmont Regional Curve Equations

NC Rural Piedmont Regional (Unpublished Revised NC Rural Curve (NRCS, 20	Piedmont Regional	NC Rural Piedmont Regional Curve Equations (Published Harman et al., 1999)				
$Q_{bkf} = 55.31 A_w^{0.79}$	R ² =0.97	$Q_{bkf} = 89.04 A_w^{0.72}$	R ² =0.91			
$A_{bkf} = 19.23 A_{w}^{0.65}$	$R^2=0.97$	$A_{bkf} = 21.43 A_w^{0.68}$	$R^2=0.95$			
$W_{bkf} = 17.41 A_w^{0.37}$	$R^2=0.79$	$W_{bkf} = 11.89 A_w^{0.43}$	R ² =0.81			
$D_{bkf} = 1.09 A_w^{0.29}$	$R^2=0.80$	$D_{bkf} = 1.50 A_w^{0.32}$	R^2 =0.88			

It's important to note some of the project tributaries are classified as first order streams, and generally smaller headwater streams can be poorly represented on the regional curves. Based on our experience, the published NC Rural Piedmont Regional Curve Equations can slightly overestimate discharge and channel dimensions for smaller ungaged streams, such as those present at this site. Furthermore, estimating bankfull parameters subjectively rather than using deterministic values may encourage designers to make decisions on a range of values and beliefs that the bankfull depths must inherently be within that range (Johnson and Heil, 1996).

WLS has implemented numerous projects in ungaged drainages in the Piedmont hydrophysiographic province of North Carolina, including nearby projects in Stokes and surrounding counties, and has developed "mini-curves" specific to these projects. The data set on these small stream curves help reduce uncertainty by providing additional reference points and supporting evidence for the selection of bankfull indicators that produce slightly smaller dimensions and flow rates than the published regional curve data set. Channel slope, valley setting, channel geometry, and sediment supply, as well as information from the USGS regression and Manning's equations were all considered during examination of the field data. The estimated bankfull discharges and surveyed cross-sectional areas at the top of bank were plotted on the NC Rural Piedmont Regional Curve and illustrated in Appendix 2.

6.3.3 Channel Forming Discharge

A hydrologic analysis was completed to estimate and validate the design discharge and channel geometry required to provide more frequent overbank flows and floodplain inundation. WLS used multiple methods for evaluating the bankfull stage and dominant discharge for the project reaches. Cross-sections were identified and surveyed to represent reach-wide conditions. Additional bankfull estimation methods, such as the commonly accepted Manning's equation, were compared to help interpret and adjust field observations to select the appropriate design criteria and justification for the design approach.

The bankfull flows in gaged watersheds within the NC Rural Piedmont study documented return intervals (RI) that ranges from 1.1 to 1.8, with a mean of 1.4 years (Harman et al, 1999). WLS also compared the 2-year flow frequency using the published USGS regression equation for small rural streams (DA \leq 3 mi²) within the Piedmont hydrologic area of North Carolina (USGS, 2014). As expected, these values fall slightly above the published bankfull discharge, but were extrapolated to represent a wider range of flows. WLS then compared lower flow frequencies in the 1.0-yr, 1.2-yr, and 1.5-yr RI range versus survey data, field observations, and model outputs (See Appendix 2).

It should be noted that this best fit approach does not always match the dataset, since it falls at the low end of the curve. Therefore, caution should be used when comparing these lower RIs with additional data sets. Using the rationale described above, Table 19 provides the bankfull discharge analyses and comparisons based on the rural Piedmont regional curves, the Manning's equation discharges calculated from the representative cross-section geometry for existing reaches, USGS regional regression equations, and the design discharge estimated based on the proposed design cross-sections for all project reaches.

Table 19. Design Discharge Analysis Summary

Project Reach Designation	Watershed Drainage Area (Ac)	Published NC Rural Piedmont Regional Curve (cfs) ¹	Unpublished NC Rural Piedmont Regional Curve (cfs) ²	Manning's Equation (cfs) ³	USGS Regression Equation for 2-year Recurrence Interval (cfs) 4	USGS Regression Equation for 1.5-year Recurrence Interval (cfs) 5	USGS Regression Equation for 1.2-year Recurrence Interval (cfs) 5	Design Discharge Estimate (cfs)
UT1-R1	41	13.1	6.2	20.4	24.1	20.2	16.8	17.0
UT1C	16	6.6	2.9	13.5	12.2	10.8	9.3	6.0
UT2	28	10.0	4.6	10.7	18.5	15.8	13.4	10.0
UT3	77	20.3	10.2	36.9	37.2	30.1	24.5	24.0
BB-R1	409	66.7	39.2	61.3	122.8	86.1	63.0	55.0
BB-R2	480	74.7	44.5	96.6	137.4	94.9	68.5	60.0
BB-R3	563	83.7	50.6	77.6	153.8	104.5	74.4	70.0
UT4-R1 (upper)	102.4	24.9	12.9	32.9	45.9	36.2	29.0	30.0
UT4-R1 (lower)	153.6	33.3	17.8	40.0	61.2	46.8	36.7	30.0

Note 1: Published NC Piedmont Regional Curve (Harman et al., 1999).

Note 2: Unpublished Revised NC Rural Piedmont Regional Curve developed by NRCS (A. Walker personal communication, 2015).

Note 3: Bankfull discharge estimates vary based on Manning's Equation for the representative riffle cross-sections. Bankfull stage roughness estimates (n-values) ranged from approximately 0.022 to 0.059 based on channel slopes, depth, bed material size, and vegetation influence.

Note 4: USGS rural regression equation for 2-year flood recurrence interval, $Q2 = 163(DA)^0.7089*10^(0.0133*(IMPNLCD06))$ for small rural streams (USGS, 2011)

Note 5: NC USGS rural regression equation extrapolated for 1.2- and 1.5-year flood recurrence interval (USGS, 2011)

After considering these estimation methods and results (geometry measurements, regional curves, flow frequency and USGS regional regression equations), WLS estimated the design discharge using values between the published NC Rural Piedmont Regional Curve and Manning's equation to select the appropriate design dimensions and flows rates that best correspond to the design channel that will convey the 1.2-yr to 1.5-yr RI.

6.3.4 Channel Stability and Sediment Transport Analysis

The sediment transport capacity and competency (entrainment) was analyzed to help predict stable channel design conditions and discharges for the project reaches. Sediment samples (Pavement/Subpavement) were collected to obtain a sediment size distribution, determine dimensionless critical shear stress, and calculate/predict corresponding slope and depth required to move the largest particle class size (D100). The sample locations are shown on Figure 6. The sieve data indicate that the dominant bed material in many of the stream reaches is medium gravel under current conditions, with a few localized sections of coarser cobble material and exposed bedrock. Table 20 illustrates boundary shear stress and stream power values under proposed design conditions for the restored project reaches. See Appendix 2 for sediment particle size distribution for the project reaches.

Table 20. Boundary Shear Stress and Stream Power

Parameter	UT1-R1	UT2	BB-R1	BB-R2	BB-R3	UT4-R1 (upper)	UT4-R1 (lower)
Channel Energy Slope (feet/ foot)	0.0270	0.034	0.008	0.007	0.005	0.025	0.015
Median Particle Size, D50 (mm)	8.7	32	1.3	11.4	20.1	6.7	6.7
Bankfull XSC Area (square feet)	3.9	2.3	14.0	16.0	17.8	7.7	7.7
Composite Mannings 'n' Value	0.035	0.035	0.035	0.035	0.035	0.035	0.035
Bankfull Width, W (feet)	8.0	6.0	13.0	14.0	15.0	11.0	11.0
Bankfull Depth, D (feet)	0.5	0.4	1.1	1.1	1.2	0.7	0.7
Hydraulic Radius, R (feet)	0.43	0.33	0.92	0.98	1.03	0.62	0.62
Bankfull Velocity, V (cfs)	4.4	4.44	3.93	3.76	3.93	3.92	3.92
Bankfull Discharge, Q (cfs)	17.0	10.0	55.0	60.0	70.0	30.0	30.0
Boundary Shear Stress, τ (lbs/ft2)	0.73	0.71	0.46	0.43	0.31	0.96	0.56
Stream Power (W/m2)	46.5	45.9	26.4	23.8	17.9	54.5	31.9

As a design consideration, portions of the bed material may contain particle sizes larger than the D₈₄ to achieve vertical stability in steeper sections immediately after construction. The proposed channel slopes throughout the project reaches range from approximately 1.0% to over 4.0%. In general, sections with steeper slopes greater than 1.5% will be addressed by installing a combination of grade control structures such as log/rock riffles and log/boulders step pools in straighter segments. Incorporating these structures

will prevent further channel degradation, promote natural scour and sediment storage, and increase bed/bank stability since shear stress and sediment entrainment are directly affected by factors such flow energy distribution and channel resistance. While it is predicted that the restoration and enhancement efforts will reduce stream bed and bank erosion, the channels must still adequately transport finer bedload material while maintaining vertical and lateral stability.

A site-specific sediment rating curve and budget was not developed for this project. This detailed effort requires using on-site monitoring data from documented flow events within the project watershed. However, empirical relationships from stable streams were compared to published values and reference streams that have similar characteristics and boundary conditions such as slope, controlling vegetation and bedform morphology. Based on field observations within the project watershed, the streams receive most parent materials directly from streambank erosion with fine sediment contributions from the upland areas. This was evidenced by visual observations of a gravel/cobble lens approximately 2 to 3 feet below the existing top of bank along some portions of the degraded channels. Further field investigations confirmed that the sediment supply from project reaches is transported during larger storm events.

6.4 Wetland Design Approach

Degraded and/or drained riparian wetlands were documented within the project boundary. These areas contain hydric soils indicators and total approximately 3.584 acres of hydric soils and 3.889 acres of degraded jurisdictional wetlands. Figure 6 illustrates areas where conditions are favorable for improving wetland conditions. The predominant native wetland vegetation communities are largely devoid or not considered reference quality in areas proposed for restoration. On-site investigations of the soils within the project area were conducted in 2018 and 2019 by licensed soil scientist (LSS), George Lankford, LSS, with George K. Lankford, LLC (See Hydric Soils Investigation in the Appendix 2). The findings were based on hand-turned auger borings and indicate the presence of hydric soils along the floodplains of many of the project reaches. The hydric soils status is based upon the "Field Indicators of Hydric Soils in the United States" (USDA, NRCS, 2016, Version 8.1).

Photo of hand auger boring located in the Banner Branch (BB-R2) floodplain showing hydric soil indicators.

The presence of hydric soil indicators and hydric inclusions within 12 inches of the soil surface was verified and a hydric soil boundary was identified as containing potential jurisdictional hydrology. Mr. Lankford noted that areas of existing hydric soils have been manipulated by a combination of agricultural use and heavy livestock grazing. Throughout these floodplain areas, existing hydric soils have a disturbed surface underlain with a dark gray sandy clay loam with redoximorphic concentration.

As such, combining the proposed stream modifications to incised channels presents a favorable opportunity for meeting riparian wetland restoration criteria and functional

uplift potential. It is anticipated that as a direct result of implementing Priority Level I stream restoration, livestock exclusion, limited overburden soil removal and surface roughening, and revegetation, lost wetland hydrology will be restored and allow the wetlands to regain their natural/historic functions. Coarse woody debris will also be added to the depressional areas in the buffers and wetlands for habitat. The areas proposed for wetland rehabilitation, re-establishment and enhancement are labeled on Figure 9.

After monitoring successful stream and wetland restoration projects in this valley setting and landscape position within the same or similar soil types and over the past decade, WLS and Mr. Lankford concluded these areas will likely experience seasonal wetness for prolonged periods and conditions are favorable to support appropriate wetland hydrology. As described in the reach summary, portions of the existing streams have been channelized to the toe of the adjacent hillslope. As a result, many toe-of-slope seepage wetlands that likely existed on the Project site have been drained and lost. Restoration of the stream channels within the natural topography and adjacent floodplain crenulations will reconnect many of these small seepage and seasonally saturated wetlands after the channelized stream segments are raised as part of the proposed restoration practices.

WLS has compared monitoring data from successful stream and wetland restoration projects in similar valleys with similar soil types and expects these areas will likely experience seasonal wetness for prolonged periods and conditions are favorable to support appropriate wetland hydrology. Based on the 2016 NCIRT guidance and detailed hydric soils study, the suggested wetland saturation and hydroperiod range for the Cordorus and Comus soil series is 7-9%, which exceeds the 5% minimum performance criteria.

Riparian Wetland Re-establishment: W1A, W4A, W8A and W9

These areas contain hydric soil conditions that are favorable for re-establishing historic wetlands. It is anticipated that as a direct result of implementing Priority Level I stream restoration, limited soil manipulation, removal of livestock, which will rebuild soil structure, revegetation, and restoration of groundwater hydrology, historic wetlands will regain their lost functions. An overbank flooding regime will be restored throughout these areas by raising the stream bed elevation to reconnect the channels to their active floodplain. For W8A, the vertical profile of Banner Branch will be gradually raised and tie into BB-R1/UT1-R3 confluence at station 43+11 thereby increasing the frequency of overbank flows and restoring hydrology necessary for wetland re-establishment. WLS is not proposing stream credit on Banner Branch proper upstream of this confluence.

Riparian Wetland Rehabilitation: W3 and W6A

Areas of significantly degraded riparian wetlands (poorly functioning) were also documented along portions of the project floodplains areas. These poorly functioning wetland areas will be restored as a direct result of implementing a Priority Level I restoration, removal of livestock trampling, limited soil manipulation and removal (less than 1-foot depth), and planting native vegetation. The groundwater hydrology will be restored and allow the wetland areas to regain their natural or historic functions.

Riparian Wetland Enhancement: W1, W2, W4, W5, W5A, W5B, W6B, W7

As described above, the proposed restoration activities will provide significant functional uplift across the project area. The proposed activities will also improve and enhance the hyporheic zone interaction and hydrology to existing wetland areas. Wetland enhancement areas will be planted with native wet tolerant species. Restoration of a natural stream system often requires that the new channel be relocated to the lowest part of the valley, which may result in a temporary disturbance of existing marginal or lower functioning wetlands. In some areas, disturbance of the existing wetlands may be unavoidable to restore a stable and fully functioning wetland and riparian system. However, restoration of the stream channels will also improve areas of adjacent wetlands through higher water table conditions (elevated stream profile) and a more frequent over-bank flooding regime.

6.5 Riparian Buffer Design Approach

One of the primary project goals includes restoring riparian buffer functions and corridor habitat. An objective identified in support of this goal includes planting to re-establish a native species vegetation riparian buffer corridor along the entire length of the project reaches. This objective will be met by establishing riparian buffers which extend a minimum of 30 feet from the top of the streambanks along each of the project stream reaches, as well as permanently protecting those buffers with a conservation easement. For project stream reaches proposed for restoration and enhancement, the riparian buffers will be restored through reforestation. Proposed plantings will be conducted using native species trees and shrubs, in the form of live stakes and seedlings. Proposed plantings will predominantly consist of bare root vegetation and will generally be planted at a total target density of 680 stems per acre. This planting density has proven successful with the reforestation of past completed mitigation projects, based on successful regulatory project closeout, and including the current USACE regulatory guidelines requiring levels of woody stem survival throughout the monitoring period, with a Year 7 final survival rate of 210 stems per acre.

WLS recognizes that riparian buffer conditions at mature reference sites are not reflected at planted or successional buffer sites until the woody species begin to establish and compete with herbaceous vegetation. To account for this, we will utilize a successful riparian buffer planting strategy that includes a combination of overstory, or canopy, and understory species. WLS will also consider the supplemental planting of larger and older planting stock to modify species density and type, based on vegetation monitoring results after the first few growing seasons. This consideration will be utilized particularly to increase the rate of buffer establishment and buffer species variety, as well as to decrease the vegetation maintenance costs. An example might include selective supplemental planting of older mast producing species as potted stock in later years for increased survivability. The site planting strategy also includes early successional, as well as climax species. The vegetation selections will be mixed throughout the project planting areas so that the early successional species will give way to climax species as they mature over time. The early successional species which have proven successful include river birch, green ash, and American sycamore. The climax species that have proven successful include oaks (*Quercus spp.*) and tuliptree. The understory and shrub layer species are all considered to be climax species in the riparian buffer community.

6.5.1 Proposed Vegetation Planting

The proposed plant selection will help to establish a natural vegetation community that will include appropriate strata (canopy, understory, shrub, and herbaceous species) based on an appropriate reference community. Schafale's (2012) guidance on vegetation communities for Piedmont Bottomland Forest (mixed riparian community), Piedmont Headwater Stream Forest and Dry-Mesic Oak-Hickory Forest (Piedmont Subtype), the USACE Wetland Research Program (WRP) Technical Note VN-RS-4.1 (1997), as well as existing mature species identified throughout the project area, were referenced during the development of riparian buffer and adjacent riparian wetland plants for the site. The proposed natural vegetation community will include appropriate strata (canopy, understory, shrub, and herbaceous species) based on the appropriate reference community. Within each of the four strata, a variety of species will be planted to ensure an appropriate and diverse plant community.

Tree species selected for restoration and enhancement areas will be weak to tolerant of flooding. Weakly tolerant species can survive and grow in areas where the soil is saturated or flooded for relatively short periods of time. Moderately tolerant species can survive in soils that are saturated or flooded for several months during the growing season. Flood tolerant species can survive on sites in which the soil is saturated or flooded for extended periods during the growing season (WRP, 1997). Species proposed for revegetation planting are presented in Table 21. The total planted area for the site is 29.4 acres with 24.3 acres being restoration planting and 5.10 acres of supplemental planting.

Table 21. Proposed Riparian Buffer Bare Root and Live Stake Plantings

Scientific Name	Name Common Name % Planting by Species		Wetland Tolerance				
Bare Root Plantings – Overstory							
(Proposed 8' x 8' Planting Spacing @ 680 Stems/Acre)							
Betula nigra	River birch	8%	FACW				
Tilia americana	Basswood	7%	FACU				
Platanus occidentalis	American sycamore	10%	FACW				
Nyssa sylvatica	Black gum	8%	FAC				
Liriodendron tulipifera	Tulip tree	10%	FACU				
Quercus alba	White oak	7%	FACU				
Quercus michauxii	Swamp Chestnut Oak	8%	FACW				
Quercus phellos	Willow Oak	7%	FACW				
Quercus falcata	Southern red oak	7%	FACU				
Fraxinus pennsylvanica	Green ash	4%	FACW				
Bare Root Plantings – Understory							
(Proposed 8' x 8' Planting Spacing @ 680 Stems/Acre)							
Diospyros virginiana	Persimmon	3%	FAC				
Amelanchier arborea	Amelanchier arborea Common serviceberry		FAC				
Carpinus caroliniana	American hornbeam	3%	FAC				
Hamamelis virginiana	Witch-hazel	3%	FACU				
Asimina triloba	Pawpaw	3%	FAC				
Lindera benzoin	Spicebush	3%	FACW				
Alnus serrulata	Hazel alder	3%	OBL				
Corylus americana	Hazelnut	3%	FACU				

Riparian Buffer Live Stake Plantings – Streambanks				
(Proposed 2'-3' Spacing @ Meander Bends and 6'- 8' Spacing @ Riffle Sections)				
Sambucus canadensis	Elderberry	20%	FACW	
Salix sericea	Silky Willow	30%	OBL	
Salix nigra	Black Willow	10%	OBL	
Cornus amomum	Silky Dogwood	40%	FACW	

Note: Final species selection may change due to refinement or availability at the time of planting. Species substitutions will be coordinated between WLS and planting contractor prior to the procurement of plant stock and final planted species will be documented in the as-built report.

6.5.2 Planting Materials and Methods

Planting will be conducted during the dormant season, with all trees installed between Mid-November and April 30th. No trees will be planted past April 30th unless otherwise approved by the IRT. Observations will be made during construction of the site regarding the relative wetness of areas to be planted as compared to the revegetation plan. The final planting zone limits may be modified based on these observations and comparisons, and the final selection of the location of the planted species will be matched according the species wetness tolerance and the anticipated wetness of the planting area. It should be noted that smaller tree species planted in the understory, such as paw paw, will unlikely meet the height targets for tree species after seven years.

Plant stock delivery, handling, and installation procedures will be coordinated and scheduled to ensure that woody vegetation can be planted within two days of being delivered to the project site. Soils at the site areas proposed for planting will be prepared by sufficiently loosening prior to planting. Bare root seedlings will be manually planted using a dibble bar, mattock, planting bar, or other approved method. Planting holes prepared for the bare root seedlings will be sufficiently deep to allow the roots to spread outward and downward without "J-rooting." Soil will be loosely re-compacted around each planting, as the last step, to prevent roots from drying out.

All topsoil to be excavated shall be stripped to required depths in a manner to prevent intermingling with underlying subsoil or other waste materials. In areas where excavation depths will exceed 10 inches with side slopes steeper than 3H:1V, native topsoil shall be harvested, if available, stockpiled and placed back over these areas to a minimum depth of 10 inches to achieve design grades and create a soil base for vegetation planting according to the design plans and construction specifications. In areas where topsoil or organic material cannot be salvaged or reused, topsoil from the adjacent areas will be mixed across the restored floodplain to create a more suitable soil base to insure successful vegetation planting, growth, and establishment. Soils across the side slopes and new floodplain, will be prepared by sufficiently disking and/or loosened prior to new channel excavation, in-stream structure installation and vegetation planting.

Herbicide treatment of fescue is not being proposed in the project area to prevent adverse environmental impacts. The site preparation includes clearing and grubbing which will help to reduce fescue pressure. Grading activities will also remove much of the fescue seed/root source. The combination of these two techniques will help control fescue regeneration. If fescue becomes pervasive within the conservation easement, WLS will address the issue through a remedial action plan.

Live Staking and Live Branch Cuttings: Where live staking is proposed, live stakes will typically be installed at a minimum of 40 stakes per 1,000 square feet and the stakes will be spaced approximately two to three feet apart in meander bends and six to eight feet apart in the riffle sections, using a triangular spacing pattern along the streambanks, between the toe of the streambank and bankfull elevation. When bioengineering is proposed, live branch cutting bundles comprised of similar live stake species, shall be installed at five linear feet per bundle approximately two to three branches thick. The basal ends of the live branch cuttings, or whips, shall contact the back of the excavated slope and shall extend six inches from the slope face.

Permanent Seeding: Permanent seed mixtures of native species herbaceous vegetation and temporary herbaceous vegetation seed mixtures will be applied to all disturbed areas of the project site. The individual species were specifically selected due to their native occurrence in Stokes County, NC. Temporary and permanent seeding will be conducted simultaneously at all disturbed areas of the site during construction and will conducted with mechanical broadcast spreaders. Simultaneous permanent and temporary seeding activities helps to ensure rapid growth and establishment of herbaceous ground cover and promotes soil stability and riparian habitat uplift.

Table 22 lists the proposed species, mixtures, and application rates for permanent seeding. The vegetation species proposed for permanent seeding are deep-rooted and have been shown to proliferate along restored stream channels, providing long-term stability. The vegetation species proposed for temporary seeding germinate quickly to swiftly establish vegetative ground cover and thus, short term stability. The permanent seed mixture proposed is suitable for streambank, floodplain, and adjacent riparian wetland areas, and the upland transitional areas in the riparian buffer. Beyond the riparian buffer areas, temporary seeding will also be applied to all other disturbed areas of the site that are susceptible to erosion. These areas include constructed streambanks, access roads, side slopes, and spoil piles. If temporary seeding is applied from November through April, rye grain will be used and applied at a rate of 130 pounds per acre. If applied from May through October, temporary seeding will consist of browntop millet, applied at a rate of 40 pounds per acre.

Table 22. Proposed Riparian Buffer Permanent Seeding

Scientific Name	Common Name	% Proposed for Planting by Species	Seeding Rate (lb/acre)	Wetland Tolerance
Andropogon gerardii	Big blue stem	10%	0.75	FAC
Dichanthelium clandestinum	Deer tongue	10%	0.75	FACW
Polygonum pennsylvanicum	Pennsylvania smartweed	5%	0.75	FACW
Agrostis alba	Redtop	5%	0.75	FACW
Chasmanthium latifolium	River oats	5%	0.75	FACU
Elymus virginicus	Virginia wildrye	5%	0.75	FAC
Juncus effusus	Soft rush	5%	0.75	FACW+
Carex Iurida	Lurid sedge	3%	0.75	OBL
Carex crinita	Fringed sedge	3%	0.75	OBL
Andropogon virginicus	Broom sedge	3%	0.75	FACU
Vernonia noveboracensis	New York Ironweed	3%	0.75	FACW
Lobelia cardinalis	Cardinal flower	3%	0.75	FACW
Andropogon glomeratus	Bushy bluestem	5%	0.75	FACW
Panicum virgatum	Switchgrass	10%	1.5	FACW
Bidens frondosa	idens frondosa Beggars tick		0.75	FACW
Coreopsis lanceolata	nceolata Lance-leaved tick seed		0.75	FACU
Schizachyrium scoparium	Little blue stem	5%	0.75	FACU
Tripsacum dactyloides	Eastern gamagrass	5%	0.75	FAC+
Sorghastrum nutans	Indiangrass	5%	0.75	FACU

Note: Final species selection may change due to refinement or availability at the time of planting. Species substitutions will be coordinated between WLS and planting contractor prior to the procurement of seeding stock.

Invasive species vegetation, such as Chinese privet, Multiflora rose, and Microstegium will be treated to allow native plants to become established within the conservation easement. Larger native tree species will be preserved and harvested woody material will be utilized to provide bank stabilization cover and/or nesting habitat. Hardwood species will be planted to provide the appropriate vegetation for the restored riparian buffer areas. During the project implementation, invasive species exotic vegetation will be treated both to control its presence and reduce its spread within the conservation easement areas. These efforts will aid in the establishment of native riparian vegetation species within the restored riparian buffer areas.

6.6 Agricultural Best Management Practices

WLS proposes various agricultural best management practices (BMPs) as practices or measures to be implemented with the mitigation activities. When combined with stream and riparian buffer, agricultural BMPs can be effective at reducing pollutants, particularly sediment loadings, and therefore provide additional ecological uplift to the project. The agricultural BMPs that are best suited at this project site include no till planting, grassed waterways, restricted grazing, livestock fencing, and alternate watering sources for livestock. Currently, the landowner actively employs the use of grassed waterways and restricted or rotational grazing. Therefore, livestock exclusion fencing, providing alternate watering sources for livestock, and the addition of treatment basins are proposed for this project. WLS will provide a permanent watering source for livestock at the project site through the installation of livestock drinkers

and associated watering infrastructure. The livestock watering stations will be designed and located in direct coordination with the landowner to ensure that adequate watering facilities are provided. The watering stations will be located outside of the conservation easement boundaries and well away from the restored stream corridors.

As previously discussed, direct livestock access and the resulting sedimentation, erosion, and pollutant inputs are the primary stressors for the project site. Permanent livestock exclusion from the applicable conservation easement areas will be provided with fencing, installed to NRCS technical standards. The permanent fencing will be installed to maximize the length of straight fence lines and minimize the number of fence corners. Permanent livestock exclusion fencing will be installed along both the upstream and downstream limits of the conservation easement "alley" or break to prevent livestock from accessing the stream from the permanent crossings. The locations of the proposed stream crossings are shown on Figure 9. The proposed conservation easement is broken at each of these proposed crossing locations to best facilitate the landowner's use of the property. The proposed culverted stream crossings will have pipes sized to pass the 10-year design storm to ensure proper hydraulic function and stream stability, as well as to encourage aquatic passage.

6.7 Water Quality Treatment Features

Water quality treatment features in the form of small basins or impoundments designed to treat runoff from the surrounding active cattle pastures and/or agricultural fields are proposed in multiple locations adjacent to the restored riparian buffer corridor. These small basins will capture overland flow, increase infiltration and groundwater recharge, diffuse flow energies, and allow nutrient uptake within the extended riparian buffer area. The water quality treatment features will be constructed inside the conservation easement and fenced out to prevent livestock intrusion. These features are sized to treat storage volumes, which have been calculated by comparing the SCS Curve Number Method and Simple Method. The features are intended to function most similar to a stormwater wetland to temporarily store surface runoff in shallow pools that support emergent and native riparian vegetation. They will be designed and constructed such that they do not require any long-term maintenance and will be sited inside the conservation easement boundary.

The features will be excavated along non-jurisdictional flat or depressional areas where ephemeral drainages intersect with the proposed restored stream corridor. The areas will be improved by grading flatter side slopes (>3H:1V) and planting appropriate wetland vegetation. Over time, as vegetation becomes established, the areas will function as shallow wetland complexes or depressions. The weir and outlet channels will be constructed with suitable material and stabilized with permanent vegetation and stone that will deliver reduced runoff and prevent headcut migration or erosion into the newly constructed areas. This strategy will allow these features to function properly with minimal risk and without long-term maintenance requirements. See Appendix 1 design plan sheets for details and feature locations.

6.8 Site Construction Methods

6.8.1 Site Grading and Construction Elements

Following initial evaluation of the design criteria, detailed refinements were made to the design plans in the field to accommodate the existing valley characteristics, vegetation influences and channel morphology. This was done to minimize unnecessary disturbance of the riparian area, and to allow for some natural channel adjustments following construction. The design plans and construction elements have been tailored to produce a cost and resource efficient design that is constructible, using a level of detail that corresponds to the tools of construction. A general construction sequence is included on the project design plan sheets located in Appendix 1.

Much of the grading across the site will be conducted within the existing riparian corridor. The restored streams will be excavated within the existing headwater valley. Suitable fill material will be generated from new channel excavation and adjacent upland areas and hauled to ditch fill/plugs or stockpile locations as necessary. Portions of the existing, unstable channels will be partially to completely filled in along their length using compactable material excavated from construction of the restored channels.

Wetland and floodplain grading activities will focus on restoring pre-disturbance valley topography by removing field crowns, overburden/spoil, surface drains, and legacy pond sediments that were imposed during conversion of the land for agriculture. In general, floodplain grading activities will be minor, with the primary goal of soil scarification, creating depressional areas, water quality and habitat features, and microtopographic crenulations by filling the drainage features on the site back to natural ground elevations (Scherrer, 1999). Depressional areas created by general site grading will not exceed a depth of more than eight inches. Any excess material not used for ditch plugging or suitable as a soil base for vegetation will be spread across upland areas outside of the easement boundary and jurisdictional WOTUS.

6.8.2 In-stream Structures and Site Improvement Features

A variety of in-stream structures are proposed for the project. Structures include log vanes, constructed log and stone riffles, grade control log j-hook vanes, rootwads, log weirs, and stone and log step pools. Geolifts with toe wood, various other bioengineering measures, and native species vegetation transplants will be used to stabilize the newly restored stream and improve bedform diversity and habitat functions. All in-stream structures will be constructed from native materials such as hardwood trees, trunks/logs, brush/branches, and gravel stone materials. Native woody debris will be harvested on-site during the project construction and incorporated into the stream channel restoration whenever possible. To ensure sustainability of these structures, WLS will use design and construction methods that have proven successful on numerous past projects in the same geographic region and similar site conditions.

Floodplain features such as meander scars, vernal pools, and tree throws are commonly found in natural riparian systems. These features will be appropriately added to provide additional habitat and serve as water storage and sediment sinks throughout the riparian corridor. When appropriate, these depressional features will be added adjacent to abandoned channel sections and/or strategic locations throughout the floodplain to provide habitat and serve as water storage and sediment sinks throughout the corridor (Metcalf, 2004).

6.8.3 Construction Feasibility

WLS has field verified that the project site has adequate, viable construction access, staging, and stockpile areas. Physical constraints or barriers, such as ford and culverted stream crossings and pond dams, account for only a small percentage of the proposed total stream reach length within the project boundary. Existing site access points and features may be used for future access after the completion of construction. Any potential impacts to existing wetland areas will be avoided whenever possible during construction. Only minimal, temporary impacts will be allowed when necessary for maximized permanent stream, wetland, and riparian buffer functional uplift.

6.8.4 Future Project Risks and Uncertainties

In general, this Project has low risk due to the rural nature of the watershed. There is minimal risk that changes in land use upstream in the project watershed would alter the hydrology or sediment supply enough to damage the project streams after construction. The project area has seen little to no development in recent years and it is unlikely development will the threaten the site. Restoration and reforestation of the site streams will reduce the likelihood of future degradation from watershed changes, as erosive flood flows will spread over a wider reconnected floodplain.

There is potential for landowner encroachment into the permanent conservation easement, but this is also low risk. The majority of the conservation easement will have permanent livestock exclusion fencing, and WLS has had discussions with the landowner regarding the requirements of the conservation easement. The easement boundaries will be clearly marked per NCDMS requirements. Any encroachment issues will be addressed by WLS or the long-term steward.

There are six easement breaks on the Project for landowner crossings. Four of these crossings are already existing and will be improved: ford crossings on UT4-R1 lower, BB-R2, and UT2, and culvert crossings on UT1-R2 and UT1-R3. A new 30-foot culvert crossing will be installed on UT4-R1 upper to allow landowner access to their property.

While there was no evidence of recent beaver activity during recent assessments, there is potential for beavers to colonize the site during the monitoring period of the project. WLS will take steps to trap and remove beaver if they colonize the site during the monitoring period.

7 Performance Standards

The applied success criteria for the project will follow the approved performance standards and monitoring protocols presented in this mitigation plan, which have been developed in compliance with the *DMS Stream and Wetland Mitigation Plan Template Guidance*, adopted June 2017, as well as the *USACE Wilmington District Stream and Wetland Compensatory Mitigation Update* issued in October 2016, and *Compensatory Mitigation for Losses of Aquatic Resources; Final Rule*, issued in 2008.

In addition, the monitoring success criteria, practices, and corresponding reporting will follow DMS's Stream and Wetland Mitigation Monitoring Guidelines issued April 2015, the As-built Baseline Monitoring Report Format, Data Requirements, and Content Guidance issued in June 2017, the Annual Monitoring Report Format, Data Requirements, and Content Guidance, issued June 2017, and the NCDMS Closeout

Report Template, Version 2.2, adopted January 2016. Monitoring activities will be conducted for a period of seven years with the final duration dependent upon performance trends toward achieving project goals and objectives. Specific success criteria components and evaluation methods are described below.

7.1 Streams

Stream Hydrology: Four bankfull flow events must be documented within the seven-year monitoring period. The bankfull events must occur in separate years. Otherwise, the stream monitoring will continue until four bankfull events have been documented in separate years.

Stream Profiles, Vertical Stability, and Floodplain Access: Stream profiles, as a measure of vertical stability and floodplain access will be evaluated by looking at Bank Height Ratios (BHR). In addition, observed bedforms should be consistent with those observed for channels of the design stream type(s). The BHR shall not exceed 1.2 along the restored Project stream reaches. This standard only applies to restored reaches of the channel where BHRs were corrected through design and construction. Vertical stability and floodplain access will both be evaluated by looking at Entrenchment Ratios (ER) which is lateral extent of flooding during bankfull. The ER shall be no less than 2.2 (\geq 1.4 for 'B' stream types) along the restored project stream reaches. This standard only applies to restored reaches of the channel where ERs were corrected through design and construction.

Stream Horizontal Stability: Cross-sections will be used to evaluate horizontal stream stability. There should be little change expected in as-built restoration cross-sections. If measurable changes do occur, they should be evaluated to determine if the changes represent a movement toward a more unstable condition (e.g., downcutting, erosion) or a movement towards increased stability (e.g., settling, vegetation establishment, deposition along the streambanks, decrease in width/depth ratio). Cross-sections shall be classified using the Rosgen Stream Classification method and all monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type.

Streambed Material Condition and Stability: After construction, it is anticipated that particle size distributions will migrate to those identified as appropriate for gravel dominated supply as part of the design process. Some fining of stream bed material may occur during the first few years after construction. However, long term trends are anticipated to demonstrate minimal change in the particle size distribution of the streambed materials, over time, given the current watershed conditions and future upstream sediment supply regime. Since the streams are predominantly gravel-bed systems with minimal sand, significant changes in particle size distribution are not expected.

Jurisdictional Stream Flow: The restored stream systems must be classified as at least intermittent, and intermittent streams must exhibit 30 days of continuous flow for some portion of the year during a year with normal rainfall conditions.

7.2 Wetlands

Wetland Hydrology: The performance standard for wetland hydrology will be 8% percent based on the suggested wetland saturation thresholds for soils taxonomic subgroups. The proposed success criteria for wetland hydrology will be when the soils are saturated within 12 inches of the soil surface for 8% (14 days) of the 177-day growing season (April through October) based on WETS data table for Stokes County, NC.

The saturated conditions should occur during a period when antecedent precipitation has been normal or drier than normal for a minimum frequency of 5 years in 10 (USACE, 2005 and 2010b). Precipitation data will be obtained from an on-site rain gauge and the Danbury WETS Station, approximately 11 miles south of the Project site. If a normal year of precipitation does not occur during the first seven years of monitoring, WLS will continue to monitor the Project hydrology until the Project site has been saturated for the appropriate hydroperiod. If rainfall amounts for any given year during the monitoring period are abnormally low, reference wetland hydrology data will be compared to determine if there is a correlation with the weather conditions and site variability.

7.3 Vegetation

Vegetative restoration success for the project during the intermediate monitoring years will be based on the survival of at least 320, three-year-old planted trees per acre at the end of Year 3 of the monitoring period (MY3) and at least 260, five-year-old, planted trees per acre at the end of Year 5 of the monitoring period (MY5). The final vegetative restoration success criteria will be achieving a density of no less than 210, seven-year-old planted stems per acre in Year Seven of monitoring (MY7). In addition, planted trees in each vegetation plot must average six feet in height after MY5 and eight feet in height at MY7 before closeout.

8 Monitoring Plan

In accordance with the approved mitigation plan, the baseline monitoring document and as-built report documenting the mitigation activities will be developed within 60 days of the completion of planting and monitoring device installation at the restored Project. In addition, a period of at least six months will separate the as-built baseline measurements and the first-year monitoring measurements. The baseline monitoring document and as-built monitoring report will include all information required by current DMS templates and guidance referenced above, including planimetric (plan view) and elevation (profile view) information, photographs, sampling plot locations, a description of initial vegetation species composition by community type, and location of monitoring stations. The report will include a list of the vegetation species planted, along with the associated planting densities

WLS will conduct mitigation performance monitoring based on these methods and will submit annual monitoring reports to DMS by December 31st of each monitoring year during which required monitoring is conducted. The annual monitoring reports will organize and present the information resulting from the methods described in detail below. The annual monitoring reports will provide a project data chronology for DMS to document the project status and trends, for population of DMS's databases for analyses, for research purposes, and to assist in decision making regarding project close-out. Project success criteria must be met by the final monitoring year prior to project closeout, or monitoring will continue until unmet criteria are successfully met. Table 23 in Section 8.4 summarizes the monitoring methods and linkage between the goals, parameters, and expected functional lift outcomes. Figure 6 illustrates the preconstruction and Figure 10 illustrates the post-construction monitoring feature types and location.

In addition to the performance monitoring tied to success criteria, WLS will also collect benthic macroinvertebrate (BMI) communities, aquatic habitat, and water quality samples at two locations (Site 1

along BB-R3 and Site 2 along UT4-R2) within the proposed project area. Pre-restoration sampling was conducted in October 2019 (See assessment forms in Appendix 1) following DWR Biological Assessment Branch protocols and additional sampling will be conducted again in Spring/Summer months during post-construction monitoring years 3 and 7. Water sampling procedures will measure basic parameters such as water temperature (°C), Dissolved oxygen (mg/l), Conductivity (uS/cm) and pH levels to document any changes during the monitoring period.

8.1 Visual Assessment Monitoring

WLS will conduct visual assessments in support of mitigation performance monitoring. Visual assessments of all stream reaches will be conducted twice per monitoring year with at least five months in between each site visit for each of the seven years of monitoring. Photographs will be used to visually document system performance and any areas of concern related to streambank and bed stability, condition of instream structures, channel migration, active headcuts, live stake mortality, impacts from invasive plant species or animal browsing, easement boundary encroachments, cattle exclusion fence damage, and the general condition of pools and riffles. The monitoring activities will be summarized in DMS's Visual Stream Morphology Stability Assessment Table and the Vegetation Conditions Assessment Table as well as a Current Conditions Plan View (CCPV) drawing formatted to DMS digital drawing requirements, which are used to document and quantify the visual assessment throughout the monitoring period.

A series of photographs over time will be also be compared to subjectively evaluate channel aggradation (bar formations) or degradation, streambank erosion, successful maturation of riparian vegetation, and effectiveness of sedimentation and erosion control measures. More specifically, the longitudinal profile photos should indicate the absence of developing bars within the channel or excessive increase in channel depth, while lateral photos should not indicate excessive erosion or continuing degradation of the banks. The photographs will be taken from a height of approximately five feet to ensure that the same locations (and view directions) at the site are documented in each monitoring period and will be shown on a plan view map and taken at the cross-sections. WLS will also have photo points at the culvert crossing locations. The results of the visual monitoring assessments will be used to support the development of the annual monitoring document that provides the visual assessment metrics.

8.2 Stream Assessment Monitoring

Based on the stream design approaches, different stream monitoring methods are proposed for the various project reaches. Hydrologic monitoring will be conducted for all project stream reaches. For reaches that involve a combination of traditional Restoration (Rosgen Priority Level I and II) and Enhancement Level I (bed/bank stabilization) approaches, geomorphic monitoring methods that follow those recommended by the USACE Wilmington District Stream and Wetland Compensatory Mitigation Update, and NCEEP's Stream and Wetland Mitigation Monitoring Guidelines, which are described below, will be employed to evaluate the effectiveness of the restoration practices.

Visual monitoring will be conducted along these reaches as described herein. For project reaches involving an Enhancement Level II approach, monitoring efforts will focus primarily on visual inspections, photo documentation, and vegetation assessments, each as described herein. The monitoring of these project

reaches will utilize the methods described under visual monitoring. Each of the proposed stream monitoring methods are described in detail below.

8.2.1 Hydrologic Monitoring

The occurrence of four required bankfull events (overbank flows) within the monitoring period, along with floodplain access by flood flows, will be documented using pressure transducers and photography. The pressure transducers will be installed on the floodplain of the restored channels for monitoring. The pressure transducers will record the flood stage between monitoring site visits and used to determine if a bankfull or significant flow event occurred since the previous site visit. Corresponding photographs will be used to document the occurrence of debris lines and sediment deposition on the floodplain during monitoring site visits. This hydrologic monitoring will help establish that the restoration objectives of restoring floodplain functions and promoting more natural flood processes are being met.

8.2.2 Geomorphic Monitoring

Pattern: A planimetric survey will be conducted for the entire length of restored channel immediately after construction to document as-built baseline conditions (Monitoring Year 0). The survey will be tied to a permanent benchmark and measurements will include thalweg, bankfull, and top of banks. The plan view measurements such as sinuosity, radius of curvature, meander width ratio will be taken on newly constructed meanders during baseline documentation (Monitoring Year 0) only. The described visual monitoring will also document any changes or excessive lateral movement in the plan view of the restored channel. The results of the planimetric survey should show that the restored horizontal geometry is consistent with intended design stream type. These measurements will demonstrate that the restored stream channel pattern provides more stable planform and associated features than the old channel, which provide improved aquatic habitat and geomorphic function, as per the restoration objectives.

Profile: A longitudinal profile will be surveyed for the entire length of restored channel immediately after construction to document as-built baseline conditions for the first year of monitoring only. The survey will be tied to a permanent benchmark and measurements will include thalweg, water surface, bankfull, and top of low bank. Each of these measurements will be taken at the head of each feature (e.g., riffle, pool) and at the maximum pool depth. The longitudinal profile should show that the bedform features installed are consistent with intended design stream type. The longitudinal profiles will not be taken during subsequent monitoring years unless vertical channel instability has been documented or remedial actions/repairs are deemed necessary.

These measurements will demonstrate that the restored stream profile provides more bedform diversity than the old channel with multiple facet features (such as scour pools and riffles) that provide improved aquatic habitat, as per the restoration objectives. BHRs will be measured along each of the restored reaches using the results of the longitudinal profile.

Dimension: Permanent cross-sections will be installed and surveyed at an approximate rate of one cross-section per 20 bankfull widths or an average distance interval (not to exceed 500 LF) of restored stream, with approximately 20 cross-sections with half located at riffles and half located at pools. Each cross-section will be monumented on both streambanks to establish the exact transect used and to facilitate repetition each year and easy comparison of year-to-year data. The cross-section surveys will occur in years 0 (as-

built), 1, 2, 3, 5, and 7, and will include measurements of bankfull cross-sectional area (Abkf) at low bank height, Bank Height Ratio (BHR) and Entrenchment Ratio (ER). The monitoring survey will include points measured at all breaks in slope, including top of streambanks, bankfull, inner berm, edge of water, and thalweg, if the features are present.

There should be minimal change in as-built cross-sections. Stable cross-sections will establish that the restoration goal of creating geomorphically stable stream conditions has been met. If changes do take place, they will be documented in the survey data and evaluated to determine if they represent a movement toward a more unstable condition (e.g., down-cutting or erosion) or a movement toward increased stability (e.g., settling, vegetative changes, deposition along the streambanks, or decrease in width-to-depth ratio). Using the Rosgen Stream Classification System, all monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type. Given the smaller channel sizes and meander geometry of the proposed steams, bank pin arrays will not be installed unless monitoring results indicate active lateral erosion at cross-sections occurring in meander bends, typically at pools.

Reference photo transects will be taken at each permanent cross-section. Lateral photos should not indicate excessive erosion or continuing degradation of the streambanks. Photographs will be taken of both streambanks looking downstream at each cross-section. A survey tape stretched between the permanent cross-section monuments/pins will be centered in each of the streambank photographs. The water elevation will be shown in the lower edge of the frame, and as much of the streambank as possible will be included in each photo. Photographers should attempt to consistently maintain the same area in each photo over time.

Substrate: Representative streambed material samples will be collected in year 5 and 7 at the locations where riffles are installed in reaches that are proposed for restoration as part of the Project. The post-construction riffle substrate samples will be compared to the existing riffle substrate data collected during the design phase. Any significant changes (e.g., aggradation, degradation, embeddedness) will be noted after streambank vegetation becomes established and a minimum of two bankfull flows or greater have been documented. If changes are observed within stable riffles and pools, additional sediment transport analyses and calculations may be required.

8.2.3 Flow Duration Monitoring

Jurisdictional Stream Flow Documentation: Monitoring of stream flow will be conducted to demonstrate that the restored stream systems classified as intermittent exhibit surface flow for a minimum of 30 consecutive days throughout some portion of the year during a year with normal rainfall conditions. To determine if rainfall amounts are normal for the given year, a rainfall gauge will be installed on the site to compare precipitation amounts using tallied data obtained from on site and the Danbury WETS station. If a normal year of precipitation does not occur during the first seven years of monitoring, monitoring of flow conditions on the site will continue until it documents that the intermittent streams have been flowing during the appropriate times of the year.

The proposed monitoring of restored intermittent reaches will include the installation of flow devices (continuous-read pressure transducers) within the thalweg (bottom) of the channel towards the upper-third portion of the reach. In addition, photographic documentation using a continuous series of remote

photos over time may be used to subjectively evaluate and document channel flow conditions throughout the year. More specifically, the longitudinal photos should indicate the presence of flow within the channel to illustrate water levels within the pools and riffles. The photographs will be taken from a height of approximately five feet to ensure that the same locations (and view directions) at the Project site are documented in each monitoring period and will be shown on a plan view map. The devices will be inspected on a quarterly basis to document surface hydrology and provide a basis for evaluating flow response to rainfall events and surface runoff throughout the monitoring period (KCI, 2010).

8.3 Wetland Monitoring

Automated groundwater monitoring wells will be installed to document hydrologic conditions of the restored wetland areas to determine hydrologic success criteria are achieved. An additional gauge will be installed in an on-site reference wetland area and used to compare the hydrologic response within the restored wetland area. Groundwater monitoring wells will be installed to record daily groundwater levels in accordance with the USACE standard methods described in "Technical Standard for Water Table Monitoring of Potential Wetland Sites" (ERDC TN-WRAP-05-2, June 2005). The objective for the monitoring well data is to demonstrate that the Project site exhibits an increased flood frequency as compared to pre-restoration conditions and on-site reference conditions.

8.4 Vegetation Monitoring

Successful restoration of the vegetation at the project site is dependent upon successful hydrologic restoration, active establishment and survival of the planted preferred canopy vegetation species, and volunteer regeneration of the native plant community. To determine if these criteria are successfully achieved, vegetation-monitoring quadrants or plots will be installed and monitored across the restoration site in accordance with the CVS-EEP Level I & II Monitoring Protocol (CVS, 2008) and DMS Stream and Wetland Monitoring Guidelines (DMS, 2014). The vegetation monitoring plots shall be approximately 2% of the planted portion of the site with a minimum of 20 plots established randomly within the planted riparian buffer areas. The sampling may employ quasi-random plot locations which may vary upon approval from DMS and IRT. Any random plots should comprise no more than 50% of the total required plots, and the location (GPS coordinates and orientation) will identified in the monitoring reports.

No monitoring quadrants will be established within undisturbed wooded areas, however visual observations will be documented in the annual monitoring reports to describe any changes to the existing vegetation community. The size and location of individual quadrants will be 100 square meters (10m X 10m or 5m X 20m) for woody tree species and may be adjusted based on site conditions after construction activities have been completed. Vegetation monitoring will occur in the fall each required monitoring year, prior to the loss of leaves. Mortality will be determined from the difference between the previous year's living, planted seedlings and the current year's living, planted seedlings. Data will be collected at each individual quadrant and will include specific data for monitored stems on diameter, height, species, date planted, and grid location, as well as a collective determination of the survival density within that quadrant. Relative values will be calculated, and importance values will be determined. Individual planted seedlings will be marked at planting or monitoring baseline setup so that those stems can be found and identified consistently each successive monitoring year. Volunteer species will be noted and if they are on the approved planting list and meet success criteria standards, they will be counted towards success

criteria. Other species not included on the list may be considered by the IRT on a case-by-case basis. The presence of invasive species vegetation within the monitoring quadrants will also be noted, as will any wildlife effects.

At the end of the first full growing season (from baseline/year 0) or after 180 days, species composition, stem density and survival will be evaluated. For each subsequent year, vegetation plots shall be monitored for seven years in years 1, 2, 3, 5 and 7, and visual monitoring in years 4 and 6, or until the final success criteria are achieved. While measuring species density is the current accepted methodology for evaluating vegetation success on mitigation projects, species density alone may be inadequate for assessing plant community health. For this reason, the vegetation monitoring plan will incorporate the evaluation of native volunteer species, and the presence of invasive species vegetation to assess overall vegetative success. WLS will provide required remedial action on a case-by-case basis, such as replanting more wet/drought tolerant species vegetation, conducting beaver and beaver dam management/removal, and removing undesirable/invasive species vegetation, and will continue to monitor vegetation performance until the corrective actions demonstrate that the site is trending towards or meeting the standard requirement. Existing mature woody vegetation will be visually monitored during annual site visits to document any mortality, due to construction activities or changes to the water table, that negatively impact existing forest cover or favorable buffer vegetation.

Table 23. Proposed Monitoring Plan Summary

Functional Category (Level)	Project Goal / Parameter	Measurement Method	Performance Standard	Potential Functional Uplift	
Hydrology (Level 1)	Improve Stream Base Flow Duration and Overbank Flows (i.e. channel forming discharge); Wetland Hydrology	Well device (pressure transducer), regional curve, regression equations, catchment assessment; Percent saturation with well device	Maintain seasonal flow on intermittent stream for a minimum of 30 consecutive days during normal annual rainfall; Wetland hydrology for 8% of growing season	Create a more natural and higher functioning headwater flow regime and provide aquatic passage; reestablish appropriate wetland hydroperiods and provide hydrologic storage	
Hydraulics (Level 2)	Reconnect Floodplain / Increase Floodprone Area Widths	Bank Height Ratio, Entrenchment Ratio, crest gauge	Maintain average BHRs ≤1.2 and ERs ≥2.2 (1.4 for 'B' stream types) and document out of bank and/or significant flow events using pressure transducers or photographs & crest gauges	Provide temporary water storage and reduce erosive forces (shear stress) in channel during larger flow events.	
	Improve Bedform Diversity	Pool to Pool spacing, riffle-pool sequence, pool max depth ratio, Longitudinal Profile	Increase riffle/pool percentage and pool-to-pool spacing ratios compared to reference reach conditions.	Provide a more natural stream morphology, energy dissipation and aquatic habitat/refugia.	
Geomorphology (Level 3)	Increase Vertical and Lateral Stability	BEHI / NBS, Cross- sections and Longitudinal Profile Surveys, visual assessment, sediment sampling	Decrease streambank erosion rates comparable to reference condition cross-section, pattern and vertical profile values. Compare changes to bedform and substrate at year five and seven of monitoring period.	Reduce sedimentation, excessive aggradation, and embeddedness to allow for interstitial flow habitat.	
	Establish Riparian Buffer Vegetation	CVS Level I & II Protocol Tree Veg Plots (Strata Composition, Vigor, and Density), visual assessment	Within planted portions of the site, a minimum of 320 stems per acre must be present at year three; a minimum of 260 stems per acre must be present at year five; and a minimum of 210 stems per acre and average eight foot tree heights must be present at year seven.	Increase woody and herbaceous vegetation will provide channel stability and reduce streambank erosion, runoff rates and exotic species vegetation.	
Physiochemical Improve Water (Level 4) Ouality (°C), Dis		Water temperature (°C), Dissolved oxygen (mg/I), Conductivity (uS/cm) and pH	N/A	Removal of excess nutrients, fecal coliform bacteria, and organic pollutants will increase the hyporheic exchange and dissolved oxygen (DO) levels.	
Biology (Level 5)			N/A ties will not be tied to perform	Increase leaf litter and organic matter critical to provide in-stream cover/shade, wood recruitment, and carbon sourcing.	

Note: Level 4 and 5 project parameters and monitoring activities will not be tied to performance standards nor required to demonstrate success for credit release.

9 Adaptive Management Plan

In the event the mitigation site or a specific component of the mitigation site fails to achieve the necessary performance standards as specified in the mitigation plan, the sponsor shall notify DMS and the members of the NCIRT, and will work with DMS and the NCIRT to develop contingency plans and remedial actions.

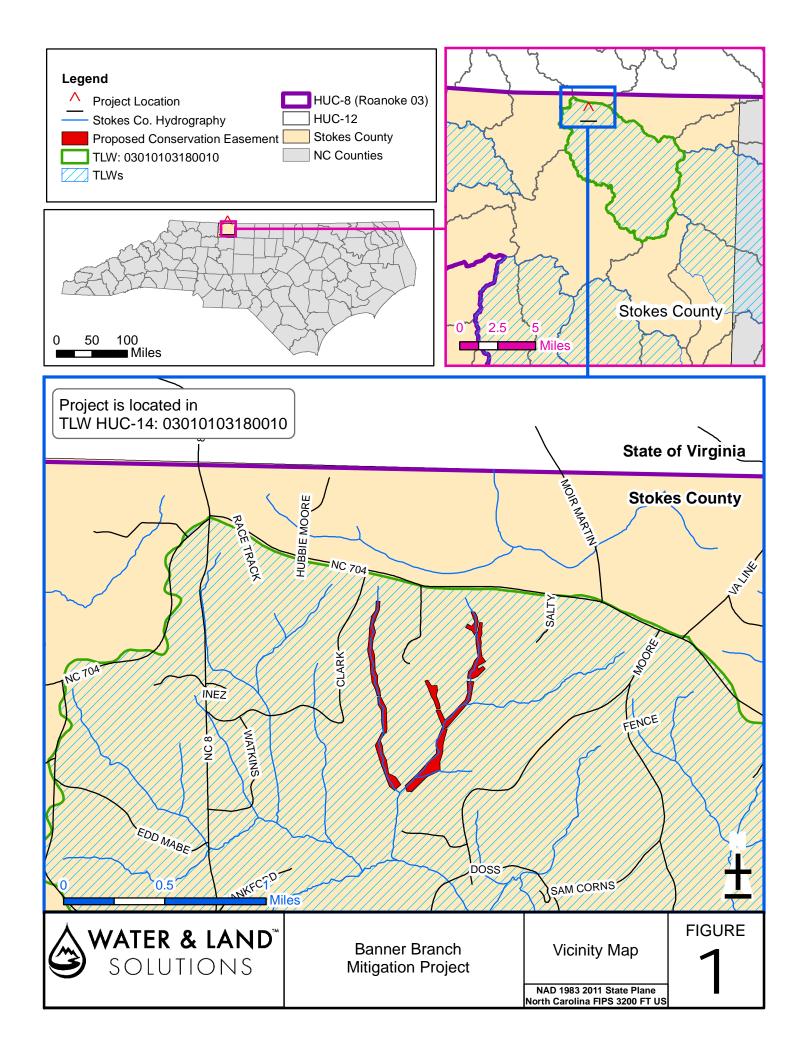
10 Long-Term Management Plan

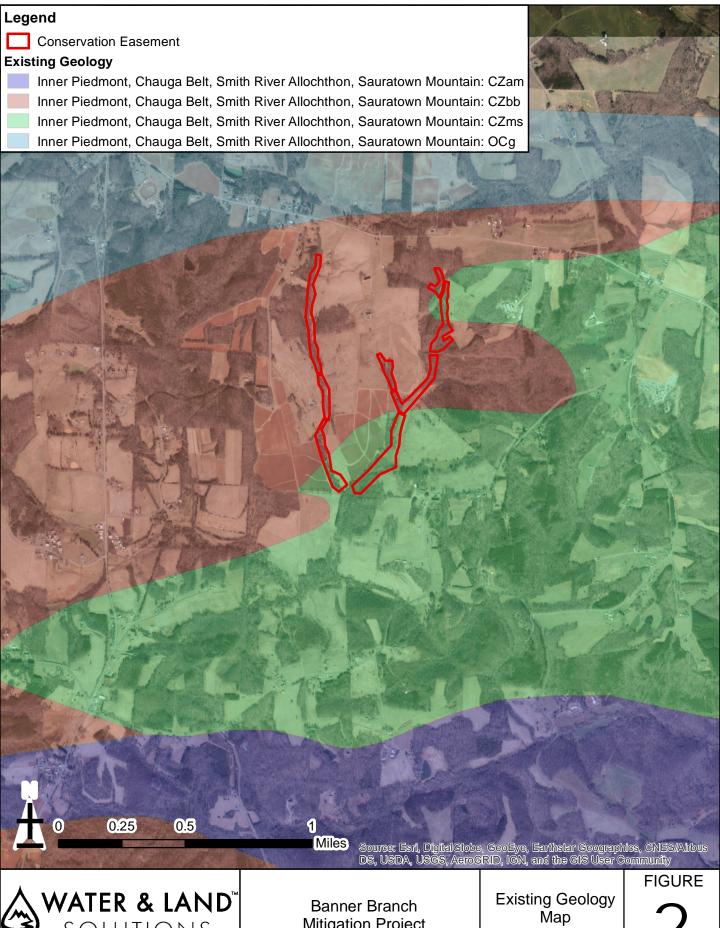
The site will be transferred to the NCDEQ Stewardship Program. This party shall serve as conservation easement holder and long-term steward for the property and will conduct periodic inspection of the site to ensure that restrictions required in the conservation easement are upheld. Funding will be supplied by the responsible party on a yearly basis until such time and endowments are established. The NCDEQ Stewardship Program is developing an endowment system within the non-reverting, interest-bearing Conservation Lands Stewardship Endowment Account. The use of funds from the Endowment Account is governed by NC General Statue GS 113A-232(d) (3). Interest gained by the endowment fund may be used only for stewardship, monitoring, stewardship administration, and land transaction costs, if applicable. WLS does not expect that easement compliance and management will require any additional or alternative management planning, strategies or efforts beyond those typically prescribed and followed for DMS full-delivery projects.

11 References

- Bain, Daniel J. 2012. Legacy Effects in Material Flux: Structural Catchment Changes Predate Long-Term Studies. BioScience. Vol. 62 No. 6.
- Bilby, R. E. 1984. Removal of woody debris may affect stream channel stability. Journal of Forestry 82:609-
- Cooper, A. B.; Smith, C. M.; Smith, M. J. 1995: Effects of riparian set-aside on soil characteristics in an agricultural landscape: implications for nutrient transport and retention. Agriculture Ecosystems & Environment 55: 61-67.
- Copeland, R.R, D.N. McComas, C.R. Thorne, P.J. Soar, M.M. Jones, and J.B. Fripp. 2001. United States Army Corps of Engineers (USACE). Hydraulic Design of Stream Restoration Projects. Washington, DC.
- Division of Mitigation Services. 2016. Quantifying Benefits to Water Quality from Livestock Exclusion and Riparian Buffer Establishment for Stream Restoration.
- Doyle, M.W. Stanley, E.H. Strayer, D.L. Jacobson, R.B. & Schmidt, J.C. 2005. Effective discharge analysis of ecological processes in streams. Water Resources Research, 41, W11411, doi: 10.1029/2005WR004222.
- Dunne, T. & Leopold, L.B. (1978): Water in Environmental Planning W.HG. Freeman Co., San Francisco, 818 pp.
- Ecological Flows Science Advisory Board (EFSAB). 2013. Recommendations for Estimating Flows to Maintain Ecological Integrity in Streams and Rivers in North Carolina.
- Federal Interagency Stream Restoration Working Group (FISRWG). 1998. Stream corridor restoration: Principles, processes and practices. National Technical Information Service. Springfield, VA.
- Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J.R. Everhart, and R.E. Smith. 1999. Bankfull hydraulic geometry relationships for North Carolina streams. Wildland Hydrology. AWRA Symposium Proceedings. D.S. Olsen and J.P. Potyondy, eds. American Water Resources Association. June 30-July 2, 1999. Bozeman, MT.
- Harman, W.A. and C.J. Jones. 2016. Functional Lift Quantification Tool for Stream Restoration Projects in North Carolina: Spreadsheet User Manual. Environmental Defense Fund, Raleigh, NC.
- Harman, W., R. Starr, M. Carter, K. Tweedy, M. Clemmons, K. Suggs, C. Miller. 2012. A function based framework for developing stream assessments, restoration goals, performance standards and standard operating procedures. U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, D.C.
- Harman, W., R. Starr. 2011. Natural Channel Design Review Checklist. US Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD and US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Wetlands Division. Washington D.C. EPS 843-B-12-005.

- Hey, R.D. 2006. Fluvial Geomorphological Methodology for Natural Stable Channel Design. Journal of American Water Resources Association. April 2006. Vol. 42, No. 2. pp. 357-374. AWRA Paper No. 02094.
- Hess, Hydrology and Earth System Sciences. 2014. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography. V 18, 5125–5148.
- Jacobson, R.B. and Coleman, D.J., 1986. Stratigraphy and recent evolution of Maryland Piedmont Flood Plains. American Journal of Science 286:617-637.
- James, Allan L., 2013. Legacy sediment: Definitions and processes of episodically produced anthropogenic sediment. Geography Department, University South Carolina. Anthropocene, v. 2, pg 16–26.
- Johnson, P.A., and T.M. Heil, 1996. Uncertainty in Estimating Bankfull Conditions. Journal of the American Water Resources Association 32(6): 1283-1292.
- KCI Associates of NC, DMS. 2010. Using Pressure Transducers for Stream Restoration Design and Monitoring.
- Knighton, D. 1998. Fluvial Forms and Processes A New Perspective. Arnold Publishers. London.
- Kilpatrick, F.A. and H.H. Barnes, Jr. 1964. Channel Geometry of Piedmont Streams as Related to Frequency of Floods. U.S. Geological Survey Professional Paper 422-E. U.S. Government Printing Office. Washington, D.C. 10 pp.
- King, S. E., Osmond, D.L., Smith, J., Burchell, Dukes, M., Evans, M., Knies, M., Kunickis, S. 2016. Effects of Riparian Buffer Vegetation and Width: A 12-Year Longitudinal Study. Journal of Environmental Quality.
- Leopold, Luna B., 1994. A View of the River. Harvard University Press. Cambridge, Mass.
- McKenney, R., R. B. Jacobson, and R. C. Wertheimer. 1995. Woody vegetation and channel morphogenesis in low gradient gravel-bed streams. Geomorphology 13:175-198.
- Metcalf, C. 2004. Regional Channel Characteristics for Maintaining Natural Fluvial Geomorphology in Florida Streams. U.S. Fish and Wildlife Service, Panama City Fisheries Resource Office. Panama City, FL. http://www.dot.state.fl.us/researchcenter/Completed_Proj/Summary_EMO/FDOT_BD470 final.pdf
- Montgomery D.R. and S. M. Bolton 2003. Hydrogeomorphic variability and river restoration, 39–80. © 2003 by the American Fisheries Society.
- Nixon, M.A. 1959. A study of the bankfull discharges of rivers in England and Wales. Institute of Civil Engineers Proceedings Paper No. 6322, pp. 157-174.
- North Carolina Department of Environmental Quality, Division of Water Resources, Water Sciences Section, Biological Assessment Branch. 2016. Standard Operating Procedures for the Collection and Analysis of Benthic Macroinvertebrates, v. 5.0.
- North Carolina Division of Water Quality. 2010. Methodology for Identification of Intermittent and Perennial Streams and Their Origins. Version 4.11, September 2010.

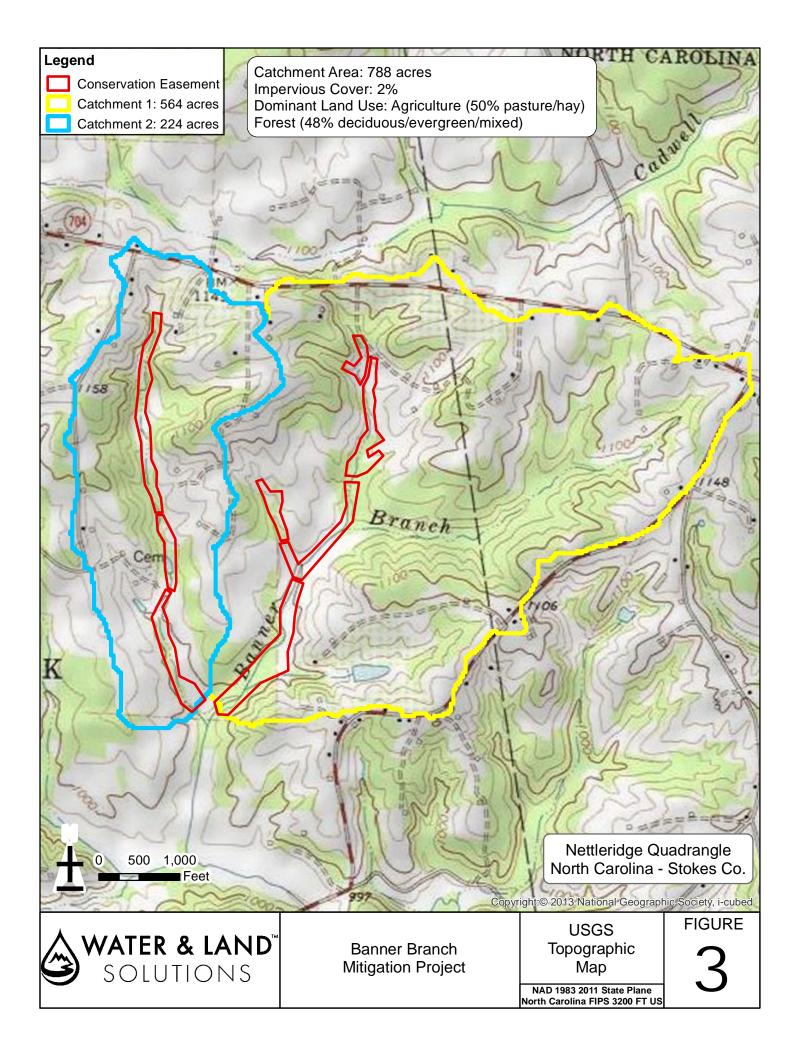

- North Carolina Geological Survey. 1998. North Carolina Department of Environment and Natural Resources, Raleigh, NC. Cited from http://www.geology.enr.state.nc.us/usgs/geomap.htm on July 17, 2016.
- North Carolina Stream Functional Assessment Team, 2015. "NC Stream Assessment Method (NC SAM) User Manual". Version 2.1, August 2015.
- Omernik, J.M. and G.E. Griffith. 2014. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental Management 54(6):1249-1266.
- Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg. 1997. The natural flow regime. BioScience 47:769-784.
- Postel, S. and B. D. Richter. 2003. Rivers for Life: Managing Water for People and Nature. Washington, D.C.: Island Press.
- Power, M. E., R. J. Stout, C. E. Cushing, P. P. Harper, F. R. Hauer, W. J. Mathews, P. B. Moyle, B. Statzner, AND I. R. Wais De Badgen. 1988. Biotic and abiotic controls in river and stream communities. Journal of the North American Benthological Society 7:456-479.
- (RBRP) North Carolina Division of Mitigation Services, 2018. Roanoke River Basin Watershed Restoration Priorities (RBRP). August 2018.
- Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace, and R. C. Wissmar. 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7:433–455.
- Rosgen, D. L., 1994. A Classification of Natural Rivers. Catena 22: 169-199.
- Rosgen, D.L., 2006. Watershed Assessment of River Stability and Sediment Supply. Wildland Hydrology Books, Pagosa Springs, CO.
- Schafale, M.P. 2012. Guide to the Natural Communities of North Carolina, Fourth Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDENR, Raleigh, NC.
- Schlosser, I. J. 1985. Flow regime, juvenile abundance, and the assemblage structure of stream fishes. Ecology 66: 1484- 1490.
- Schumm, S.A., 1960. The Shape of Alluvial Channels in Relation to Sediment Type. U.S. Geological Survey Professional Paper 352-B. U.S. Geological Survey. Washington, DC.
- Simon, Andrew. 1989. A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms. Volume 14, Issue 1, pg 11–26.
- Skidmore, P.B, Shields, F., Doyle, M., and Miller, D. (2001). A Categorization of Approaches to Natural Channel Design. Wetlands Engineering & River Restoration: pg 1-12.
- United States Army Corps of Engineers. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. Environmental Laboratory. US Army Engineer Waterways Experiment Station. Vicksburg, MS.
- _____. 1997. Corps of Engineers Wetlands Research Program. Technical Note VN-RS-4.1. Environmental Laboratory. U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS.

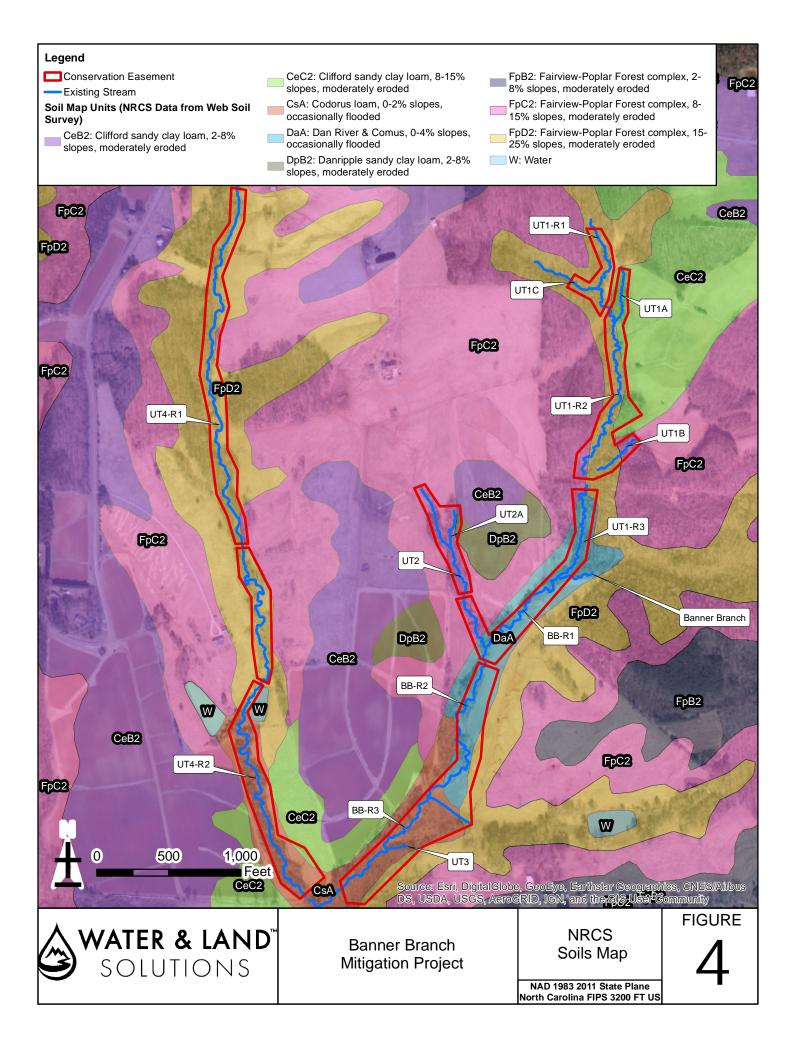

- ____. 2003. Stream Mitigation Guidelines, April 2003, U.S. Army Corps of Engineers. Wilmington District.
- ____. 2008. Stream Mitigation Guidelines, April 2008, U.S. Army Corps of Engineers. Wilmington District.
- United States Department of Agriculture, Natural Resources Conservation Service Soil Survey Division. A. Walker, Personal communication, 2015. NC BEHI/NBS rating curve.
- United States Department of Agriculture, Natural Resources Conservation Service Soil Survey Division. 2007. Soil Survey of Stokes County, North Carolina.
- United States Department of Agriculture, Natural Resources Conservation Service. 2007. Stream Restoration Design Part 654, National Engineering Handbook.
- United States Department of Agriculture, Natural Resources Conservation Service. 2007. National Climate Dataset.
- United States Environmental Protection Agency (USEPA), Michigan Department of Environmental Quality, 1999. Region 5 Model for Estimating Load Reductions. v4.3.
- United States Geological Survey. 1998.
- Williams, G.P., 1978. Bank-Full Discharge of Rivers. Water Resources Research 14(6):1141-1154, doi: 10.1029/WR014i006 p01141.
- Wolman, M. G., and Leopold, L. B., 1957, River flood plains; some observations on their formation: U.S. Geol. Survey Prof. Paper 282-C, pg 22.

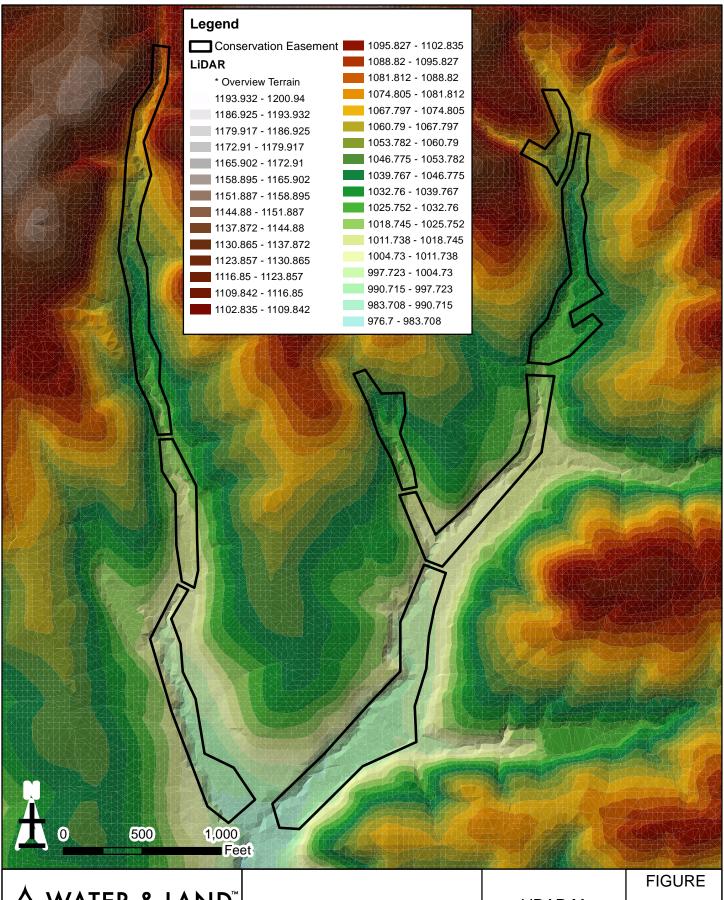
Figures

Banner Branch Mitigation Project

- Figure 1 Vicinity Map
- Figure 2 Existing Geology Map
- Figure 3 USGS Topographic Map
- Figure 4 NRCS Soils Map
- Figure 5 LiDAR Map
- Figure 6 Current Conditions Map
- Figure 7a 1996 Aerial Photograph
- Figure 7b 2008 Aerial Photograph
- Figure 7c 2013 Aerial Photograph
- Figure 8 FEMA Floodplain Map
- Figure 9 Proposed Mitigation Features Map
- Figure 10 Proposed Monitoring Features Map
- Figure 11 Reference Site Location Map

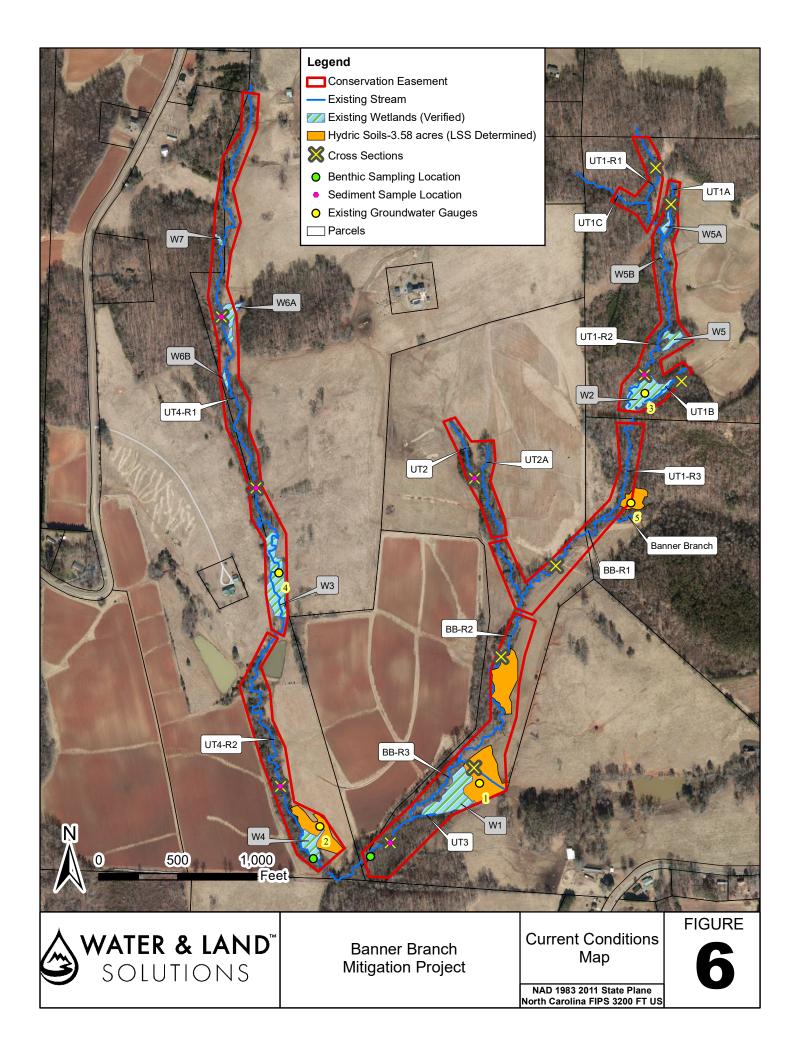


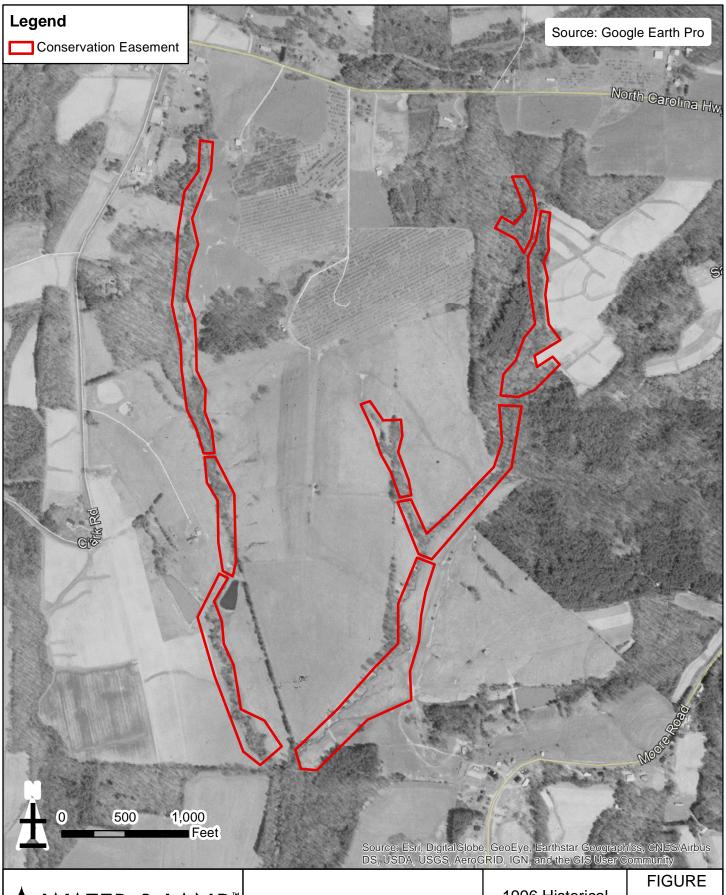



WATER & LAND® SOLUTIONS

Mitigation Project

NAD 1983 2011 State Plane North Carolina FIPS 3200 FT US

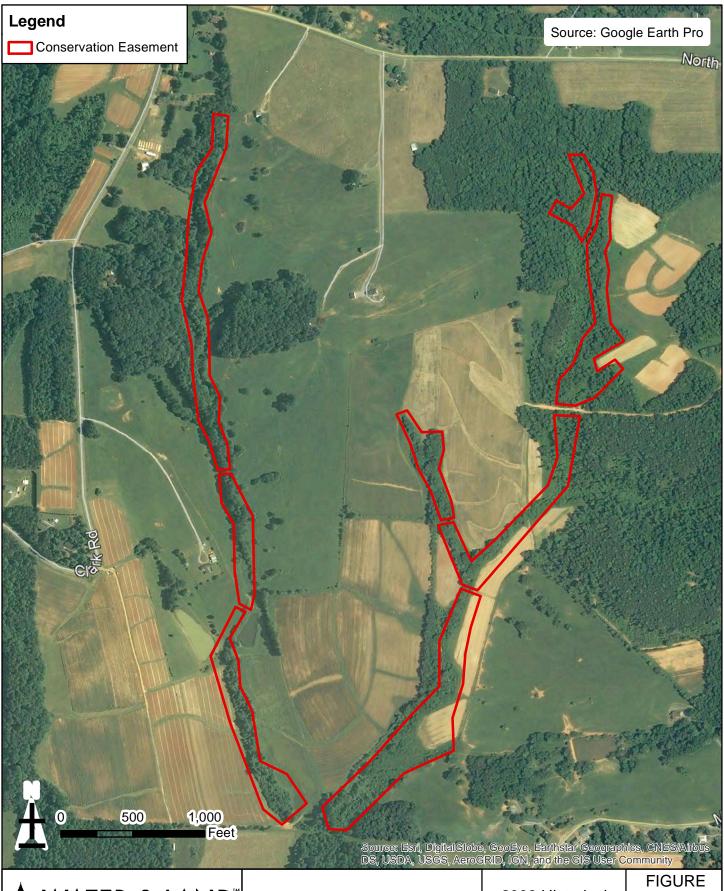




WATER & LAND™ SOLUTIONS

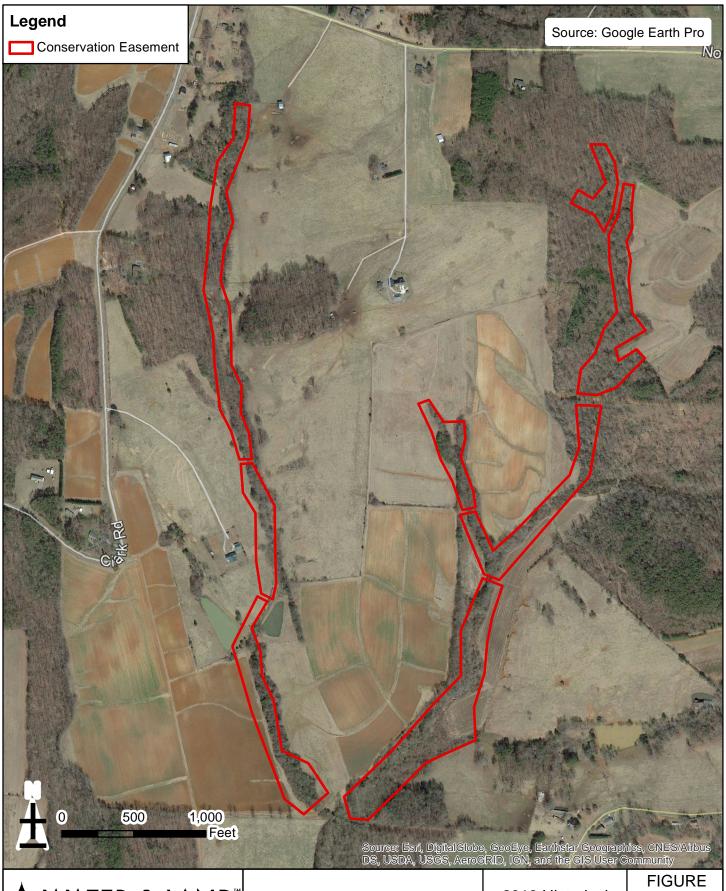
Banner Branch Mitigation Project LiDAR Map

NAD 1983 2011 State Plane North Carolina FIPS 3200 FT US 5



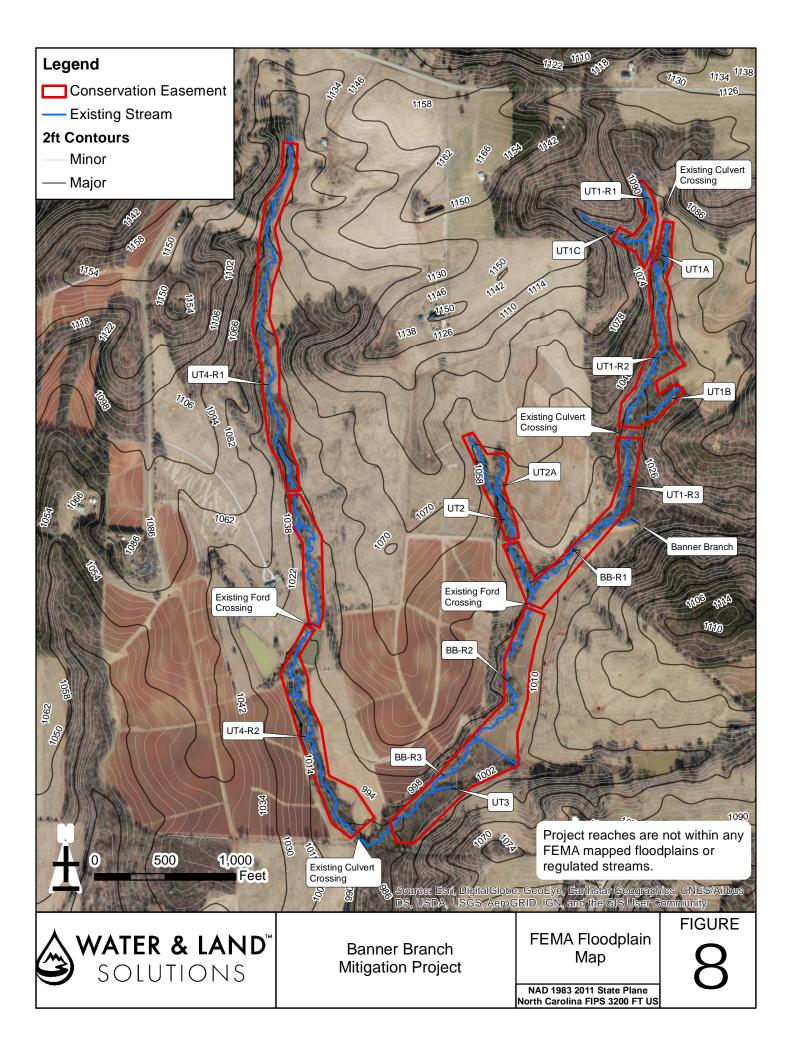
WATER & LAND™ SOLUTIONS

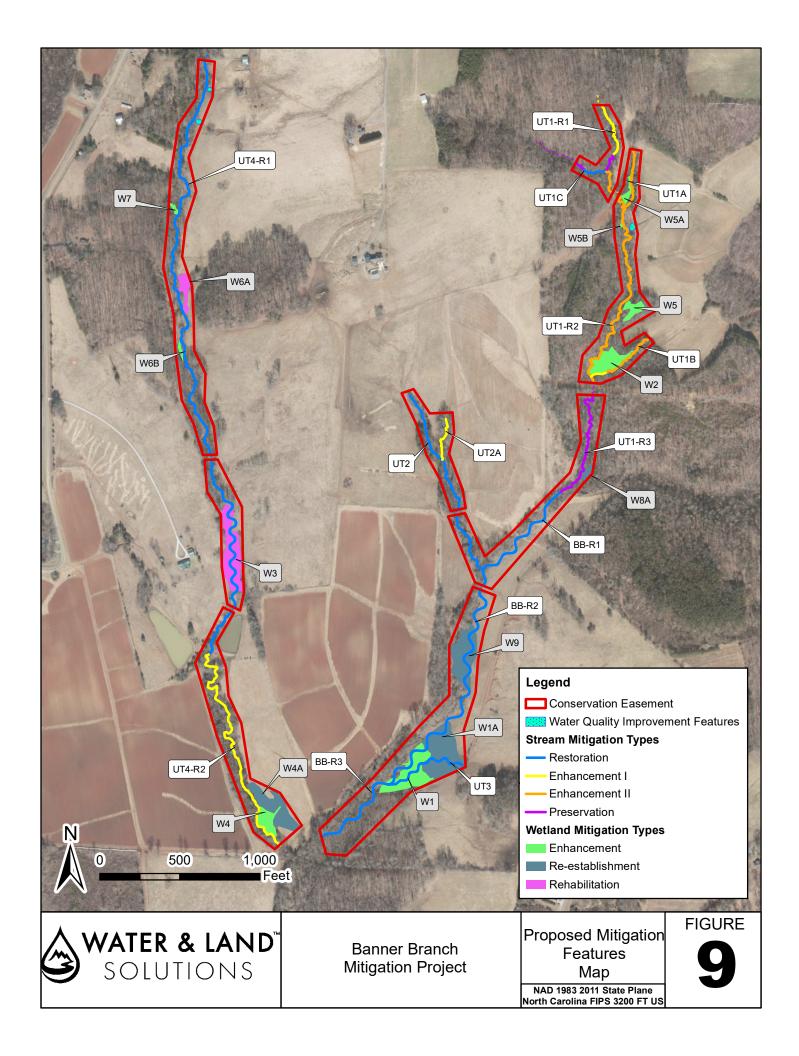
Banner Branch Mitigation Project 1996 Historical Aerial

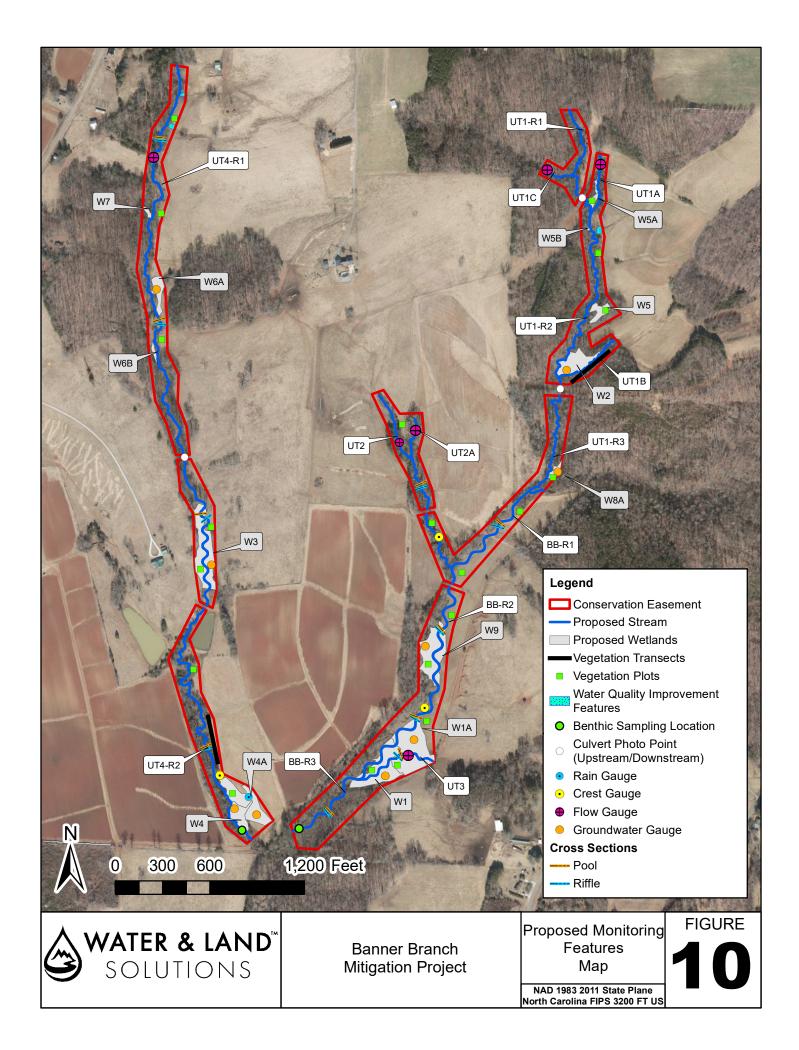

NAD 1983 2011 State Plane North Carolina FIPS 3200 FT US 7a

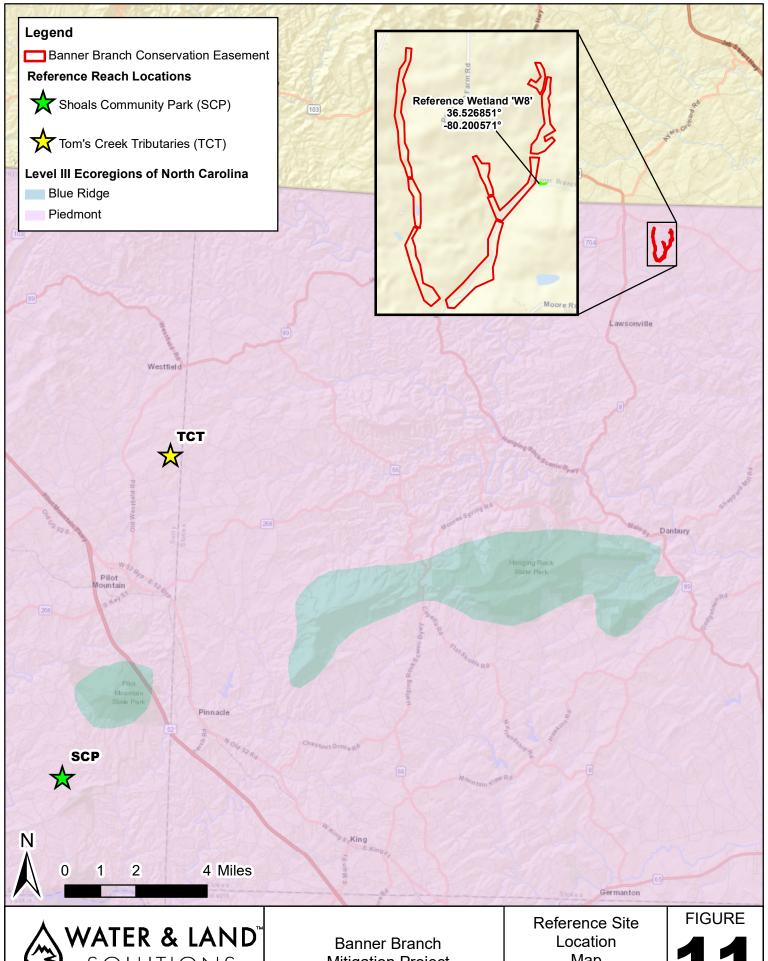
SOLUTIONS

Banner Branch Mitigation Project 2008 Historical Aerial


NAD 1983 2011 State Plane North Carolina FIPS 3200 FT US 7b




SOLUTIONS


Banner Branch Mitigation Project 2013 Historical Aerial

NAD 1983 2011 State Plane North Carolina FIPS 3200 FT US 7c

WATER & LAND™ SOLUTIONS

Mitigation Project

Мар

NAD 1983 2011 State Plane North Carolina FIPS 3200 FT US

Appendix 1 – Plan Sheets

DEPARTMENT OF ENVIRONMENTAL QUALITY - DIVISION OF MITIGATION SERVICES

BANNER BRANCH MITIGATION PROJECT

STOKES COUNTY, NORTH CAROLINA

NCDEQ - DMS PROJECT ID #100080

NCDEQ - DMS CONTRACT #7610 & #7701 UNDER RFP 16-007405 ROANOKE RIVER BASIN (CU 03010103)

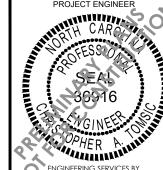
USACE ACTION ID # SAW-2018-01760

VICINITY MAP

PROJECT: LOCATION

CLARK ROAD

TYPE OF WORK: STREAM & WETLAND MITIGATION


PROJECT SUMMARY

Project Reach Designation	Mitigation Type	Proposed Stream Length (LF)	Mitigation Ratio	Stream Mitigation Credits (SMCs)	Project Wetland Area	Mitigation Type	Proposed Wetland Acreage (AC)	Mitigation Ratio	Riparian Wetland Mitigation Credits (RWMCs)
UT1-R1 (upper)	Stream Enhancement Level I	373	1.5:1	248.667	W1	Wetland Enhancement	0.825	2:1	0.413
UT1-R1 (lower)	Stream Preservation	136	10:1	13.600	W1A	Wetland Re-establishment	1.240	1:1	1.240
UT1-R2	Stream Enhancement Level II	1,783	2.5:1	713.200	W2	Wetland Enhancement	0.524	2:1	0.262
UT1-R3	Stream Preservation	822	10:1	82.200	W3	Wetland Rehabilitation	0.888	1.5:1	0.592
UT1A	Stream Enhancement Level II	410	2.5:1	164.000	W4	Wetland Enhancement	0.321	2:1	0.161
UT1B (upper)	Stream Enhancement Level II	391	2.5:1	156.400	W4A	Wetland Re-establishment	0.808	1:1	0.808
UT1B (lower)	Stream Enhancement Level I	97	1.5:1	64.667	W5	Wetland Enhancement	0.203	2:1	0.102
UT1C (upper)	Stream Preservation	69	10:1	6.900	W5A	Wetland Enhancement	0.097	2:1	0.048
UT1C (lower)	Stream Restoration	151	1:1	151.000	W5B	Wetland Enhancement	0.010	2:1	0.005
UT2	Stream Restoration (Pf)	1,287	1:1	1,287.000	W6A	Wetland Rehabilitation	0.251	1.5:1	0.167
UT2A	Stream Enhancement Level I	289	1.5:1	192.667	W6B	Wetland Enhancement	0.045	2:1	0.022
UT3	Stream Restoration (PI)	589	1:1	589.000	W7	Wetland Enhancement	0.041	2:1	0.020
BB-R1	Stream Restoration (PI)	808	1:1	808.000	W8A	Wetland Re-establishment	0.107	1:1	0.107
BB-R2	Stream Restoration (PI)	1,835	1:1	1,835.000	W9	Wetland Re-establishment	0.823	1:1	0.823
BB-R3	Stream Restoration (PVPII)	636	1:1	636.000	Total		6.182		4.770
UT4-R1 (upper)	Stream Restoration (PI/PII)	2,346	1:1	2,346.000	Note 1: No mitigation	n credits were calculated outsid	e the conservation	easement bou	ndaries.
UT4-R1 (lower)	Stream Restoration (PI)	1,963	1:1	1,916.400			·		
UT4-R2	Stream Enhancement Level I	1,722	1.5:1	1,148.000					

1	COVER SHEET
2	LEGEND/CONSTRUCTION SEQUENCE /GENERAL NOTES
3	TYPICAL SECTIONS
4-8	DETAILS
9-34	PLAN AND PROFILE

REVEGETATION PLAN

SHEET INDEX

WATER & LAND

SOLUTIONS

7721 Six Forks Rd., Suite 130 Raleigh, NC 27615

(919)614-5111 waterlandsolutions.com

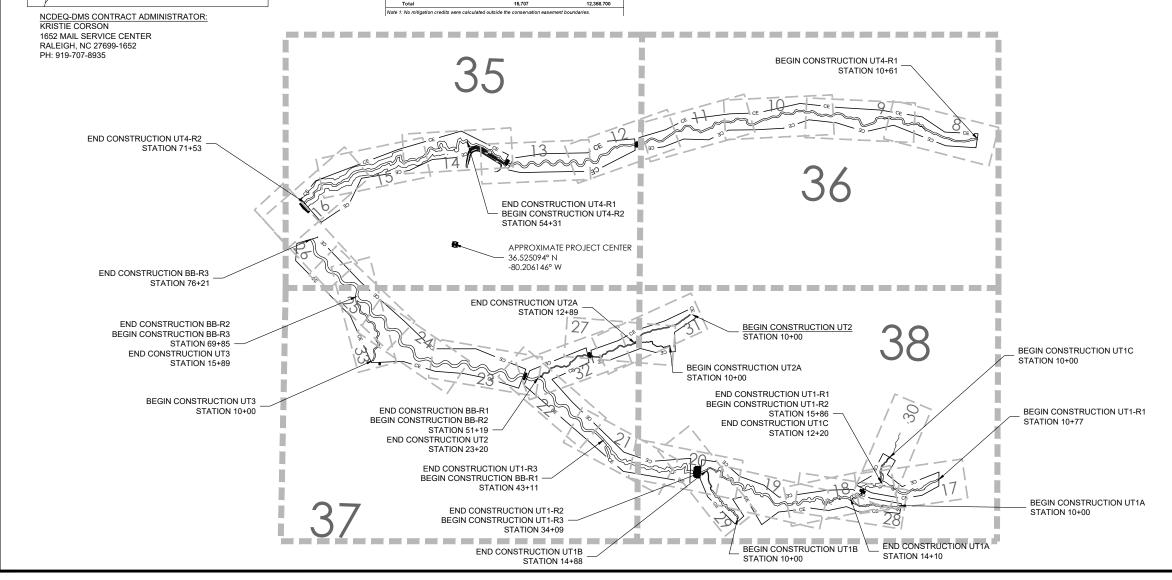
	REVISIONS	
Α	DRAFT MIT PLAN	12-27-19
В	FINAL DRAFT PLAN	3-26-20
С	FINAL MIT PLAN	7-24-20
NO.	DESCRIPTION	DATE

PROJECT NAME

BANNER BRANCH MITIGATION **PROJECT**

STOKES COUNTY, NC

DRAWING INFORMATION		
PROJECT NO.	18-007	
FILENAME	01_BANNER BRANCH_COVER.DV	
DESIGNED BY	CAT	
DRAWN BY	APL	
DATE	7-24-20	
HORIZ. SCALE	1" = 700'	
VERT. SCALE	N/A	



GRAPHIC SCALE

SHEET NAME

COVER SHEET

SHEET NUMBER

LEGEND LOG VANE STONE AND LOG STEP POOR CONSTRUCTED STONE RIFFLE GRADE CONTROL LOG J-HOOK VANE 0000 CONSTRUCTED BOULDER CROSS VANE CONSTRUCTED LOG RIFFLE GEOLIFT W/ TOEWOOD $\Longrightarrow\Longrightarrow\Longrightarrow\Longrightarrow\Longrightarrow$ PROPOSED OUTLET CHANNEL — FP — FP — 100 YEAR FLOOD PLAIN OHPL -EXISTING OVERHEAD ELECTRIC TEMPORARY STREAM CROSSING PERMANENT STREAM CROSSING PROPOSED CONSERVATION EASEMENT BOUNDARY ___ CF ____ CF ___ EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR LIMITS OF DISTURBANCE — LD — ____ C/F _____ C/F ___ CUT/FILL LIMITS EXISTING WETLAND BOUNDARY EXISTING HYDRIC SOIL BOUNDARY

_ _ _ _ _ _

 $\times\!\!\times\!\!\times$

----×----

15+00_____

PROPOSED WETLAND BOUNDARY

PROPOSED TOP OF STREAM BANK

EXISTING PROPERTY BOUNDARY

PROPOSED CENTERLINE (THALWEG)

PROPOSED TREE PROTECTION FENCE

EXISTING WOODLINE

EXISTING FENCE

PROPOSED FIELD FENCE

EXISTING FARM PATH

PROPOSED FARM PATH

PROPOSED WATER QUALITY TREATMENT FEATURE

FLOODPLAIN DEPRESSION

GRADE, SEED, MATT, AND LIVE STAKE

EXISTING TREE

CHANNEL BLOCK

CHANNEL FILL

PROPOSED GATE

EXISTING STRUCTURE

CONSTRUCTION SEQUENCE

THE ENGINEER WILL PROVIDE CONSTRUCTION OBSERVATION DURING THE CONSTRUCTION PHASE OF THIS PROJECT. THE FOLLOWING CONSTRUCTION SEQUENCE SHALL BE USED DURING PROJECT CONSTRUCTION IMPLEMENTATION. PRIOR TO BEGINNING ANY LAND DISTURBING ACTIVITIES, NOTIFICATION OF AND RECEIPT OF THE CERTIFICATE OF APPROVAL MUST BE RECEIVED FROM NCDEO LAND QUALITY SECTION. THE CONTRACTOR SHALL CALL NO EDGLOS AT 918-7914-701 TO SCHEDULE A PRE-CONSTRUCTION MEETING AT LEAST 72 HOURS PRIOR TO PROJECT ACTIVATION. THE CONTRACTOR SHALL REAL FOR THE APPROVED EROSION AND SEDIMENTATION CONTROL PERMIT AND CORRESPONDING PLANS AND TECHNICAL SPECIFICATIONS FOR SPECIFIC CONSTRUCTION SEQUENCING ITEMS AND SHALL BE RESPONSIBLE FOR FOLLOWING THE APPROVED PLANS AND PERMIT CONDITIONS.

- THE CONTRACTOR SHALL NOTIFY (NC 811) (1-800-632-4949) BEFORE ANY EXCAVATION BEGINS. ANY UTILITIES AND RESPECTIVE EASEMENTS SHOWN ON THE PLANS ARE CONSIDERED APPROXIMATE AND THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF ANY DISCREPANCIES. THE CONTRACTOR IS RESPONSIBLE FOR LOCATING ALL UTILITIES AND ADJOINING EASEMENTS AND SHALL REPAIR OR REPLACE ANY DAMAGED UTILITIES AT HISTHER OWN EXPENSE.
- THE CONTRACTOR SHALL PREPARE STABILIZED CONSTRUCTION ENTRANCES, HAUL ROADS AND SHALL MOBILIZE EQUIPMENT, MATERIALS, PREPARE STAGING AREA(S) AND STOCKPILE AREA(S) AS SHOWN ON THE PLANS, HAUL ROADS SHALL BE PROPERLY MAINTAINED AT ALL TIMES DURING CONSTRUCTION.
- 3. CONSTRUCTION TRAFFIC SHALL BE RESTRICTED TO THE AREA DENOTED AS LIMITS OF DISTURBANCE OR HAUL ROADS AS SHOWN ON THE PLANS.
- 4. THE CONTRACTOR SHALL INSTALL TEMPORARY ROCK DAMS AT LOCATIONS INDICATED ON THE
- 5. THE CONTRACTOR SHALL INSTALL TEMPORARY SILT FENCE AROUND THE STAGING AREA(S). TEMPORARY SILT FENCING WILL ALSO BE PLACED AROUND THE TEMPORARY STOCKPILE AREAS AS MATERIAL IS STOCKPILED THROUGHOUT THE CONSTRUCTION PERIOD.
- 6. THE CONTRACTOR SHALL INSTALL ALL TEMPORARY AND PERMANENT STREAM CROSSINGS AS SHOWN ON THE PLANS IN ACCORDANCE WITH THE APPROVED SEDIMENTATION AND EROSION CONTROL PERMIT. THE EXISTING CHANNEL AND DITCHES ON SITE WILL REMAIN OPEN DURING THE INITIAL STAGES OF CONSTRUCTION TO ALLOW FOR DRAINAGE AND TO MAINTAIN SITE
- 7. THE CONTRACTOR SHALL CONSTRUCT ONLY THE PORTION OF CHANNEL THAT CAN BE COMPLETED AND STABILIZED WITHIN THE SAME DAY. THE CONTRACTOR SHALL APPLY TEMPORARY AND PERMANENT SEED AND MULCH TO ALL DISTURBED AREAS AT THE END OF EACH WORK DAY, WITH THE REQUIREMENT OF ESTABLISHING TEMPORARY AND PERMANENT GROUND COVER THROUGH VEGETATION ESTABLISHMENT.
- . THE CONTRACTOR SHALL CLEAR AND GRUB AN AREA ADEQUATE TO CONSTRUCT THE STREAM CHANNEL AND GRADING OPERATIONS AFTER ALL EROSION AND SEDIMENTATION MEASURES HAVE BEEN INSTALLED AND APPROVED. IN GENERAL, THE CONTRACTOR SHALL WORK FROM UPSTREAM TO DOWNSTREAM AND IN-STREAM STRUCTURES AND CHANNEL FILL MATERIAL SHALL BE INSTALLED USING A PUMP-AROUND OR FLOW DIVERSION MEASURE AS SHOWN ON THE PLANS.
- DOWNSTREAM DIRECTION WITH CONSTRUCTION UPSTREAM AND PROCEED IN A DOWNSTREAM DIRECTION WITH CONSTRUCTION. THE DESIGN CHANNEL SHOULD BE CONSTRUCTED OFFLINE AND/OR IN THE DRY WHENEVER POSSIBLE. THE CONTRACTOR SHALL EXCAVATE AND CONSTRUCT THE PROPOSED CHANNEL TO PROPOSED DESIGN GRADES AND SHALL NOT EXTEND EXCAVATION ACTIVITIES ANY CLOSER THAN WITHIN 10 FEET (HORIZONTALLY) OF THE TOP OF EXISTING STREAM BANKS IN ORDER TO PROTECT THE INTEGRITY OF THE EXISTING STREAM BANKS IN ORDER TO PROTECT THE
- 10. THE CONTRACTOR WILL CONTINUE CONSTRUCTION BY EXCAVATING CHANNEL FILL MATERIAL.
 THE CONTRACTOR MAY FILL NON JURISDITRIONAL DITCHES WHICH DO NOT CONTAIN ANY
 WATER DURING THE GRADING OPERATIONS. ALONG STREAM REACHES EXCAVATED MATERIAL.
 SHOULD BE STOCKPILED IN AREAS SHOWN ON THE PLANS. IN ANY AREAS WHERE EXCAVATION
 DEPTHS WILL EXCEED IO INCHES, TOPSOIL SHALL BE HARVESTED, STOCKPILED AND PLACED
 BACK OVER THESE AREAS TO A WINNIMUM DEPTH OP 8 INCHES TO ACHIEVE DESIGN GRADES
 AND CREATE A SOIL BASE FOR VEGETATION PLANTING ACCORDING TO THE DESIGN PLANS AND
 CONSTRUCTION SPECIFICATIONS.
- 11. AFTER EXCAVATING AND CONSTRUCTING THE PROPOSED CHANNEL TO PROPOSED DESIGN GRADES, INSTALL IN-STREAM STRUCTURES, BIODENGINEERING MEASURES, PERMANENT AND TEMPORARY SEEDING AND ALL REQUIRED AMENOMENTS, MULCHING, VEGETATION TRANSPLANTS, TO COMPLETE CHANNEL CONSTRUCTION AND READY THE CHANNEL TO ACCEPT FLOW PER APPROVAL BY THE ENGINEER.
- 12. STREAM FLOW WILL BE DIVERTED BACK INTO THE CONSTRUCTED CHANNEL ONCE THE RESTORED STREAM CHANNEL AND ASSOCIATED RIPARIAN AREA HAS BEEN STABILIZED, AS DETERMINED BY THE ENGINEER AND IN COMPLIANCE WITH A PPROVED PERMIT REQUIREMENTS. ONCE STREAM FLOW IS RETURNED TO A RESTORED STREAM CHANNEL REACH, THE CONTRACTOR SHALL IMMEDIATELY BEGIN PLUGGING, FILLING, AND GRADING THE ASSOCIATED ABANDONED REACH OF STREAM CHANNEL, AS INDICATED ON PLANS, MOVING IN A DOWNSTREAM DIRECTION TO ALLOW FOR POSITIVE AND ADEQUATE DRAINAGE OF THE ABANDONED CHANNEL PREACH. STREAM FLOW SHALL NOT BE DIVERTED INTO ANY SECTION OF RESTORED STREAM CHANNEL, INCLUDING, BUT NOT LIMITED TO THAL GRADING, STABILIZATION WITH TEMPORARY AND PERMANENT SEEDING AND ALL REQUIRED AMENDMENTS, MULCHING, VEGETATION TRANSPLANT INSTALLATION, INSTREAM STRUCTURE INSTALLATION, BIOENGINEERING INSTALLATION, AND COIR FIBER MATTING INSTALLATION.
- 13. THE RESTORED CHANNEL SECTIONS SHALL REMAIN OPEN AT THEIR DOWNSTREAM END TO ALLOW FOR DRAINAGE DURING RAIN EVENTS.
- 14. ALL GRADING ACTIVITIES ADJACENT TO THE STREAM CHANNEL AND RIPARIAN AREAS SHALL BE COMPLETED PRIOR TO DIVERTING STREAM FLOW INTO THE RESTORED STREAM CHANNEL REACHES. ONCE CONSTRUCTION IS COMPLETED ON A REACH OF PROPOSED STREAM CHANNEL, ADDITIONAL GRADING ACTIVITIES SHALL NOT BE CONDUCTED WITHIN 10 FEET (HORIZONTALLY) OF THE NEWLY RESTORED STREAM CHANNEL BANKS. THE CONTRACTOR SHALL NOT FINALIZE GRADE OR ROUGHEN AREAS WHERE REQUIRED EXCAVATION ACTIVITIES HAVE NOT BEEN COMPLETED.
- 15. ONCE CONSTRUCTION IS COMPLETE WITHIN A PUMP-AROUND WORK AREA OR CONSTRUCTION WORK PHASE LIMIT, THE CONTRACTOR SHALL APPLY TEMPORARY SEEDING TO ANY AREAS DISTURBED DURING CONSTRUCTION WITHIN HOURS. ALL SLOPES STEEPER THAN 3:1 SHALL BE STABILIZED WITH GROUND COVER AS SOON AS PRACTICABLE WITHIN T CALENDAR DAYS. ALL OTHER DISTURBED AREAS AND SLOPES FLATTER THAN 3:1 SHALL BE STABILIZED WITHIN 14 CALENDAR DAYS FROM THE LAST LAND-DISTURBING ACTIVITY.
- 16. PERMANENT GROUND COVER SHALL BE ESTABLISHED FOR ALL DISTURBED AREAS WITHIN 15 WORKING DAYS OR 90 CALENDAR DAYS (WHICHEVER IS SHORTER) FOLLOWING COMPLETION OF CONSTRUCTION. ALL DISTURBED AREAS SHOULD HAVE ESTABLISHED GROUND COVER PRIOR TO DEMOBILIZATION. REMOVE ANY TEMPORARY STREAM CROSSINGS AND TEMPORARY EROSION CONTROL MEASURES. HAUL ROADS TO BE RESTORED TO A CONDITION EQUAL TO OR BETTER THAN FOUND PRIOR TO CONSTRUCTION.
- 17. ALL REMAINING DISTURBED AREAS SHALL BE STABILIZED BY TEMPORARY AND PERMANENT SEEDING AND MULCHING BEFORE CONSTRUCTION CLOSEOUT IS REQUESTED AND DEMOGLIZATION CAN OCCUR. ALL WASTE MATERIAL MUST BE REMOVED FROM THE PROJECT
- 18. THE CONTRACTOR SHALL TREAT AREAS OF INVASIVE SPECIES VEGETATION THROUGHOUT THE PROJECT AREA ACCORDING TO THE CONSTRUCTION CONTRACT DOCUMENTS, INCLUDING THE APPROVED PERMIT, PLANS AND TECHNICAL SPECIFICATIONS PRIOR TO DEMOBILIZATION.
- 19. THE CONTRACTOR COMPLETE ALL REMAINING PLANTING ACTIVITIES, INCLUDING SHRUB AND TREE PLANTING, REMAINING TRANSPLANT INSTALLATION, INSTALLATION OF REMAINING BIOENGINEERING MEASURES, AND LIVE STAKE INSTALLATION, ACCORDING TO THE CONSTRUCTION CONTRACT DOCUMENTS, INCLUDING THE APPROVED PERMIT, PLANS AND TECHNICAL SPECIFICATIONS, THE CONTRACTOR SHALL COMPLETE THE RE-FORESTATION PHASE OF THE PROJECT AND CONDUCT REMAINING PERMANENT SEEDING IN ACCORDANCE WITH THE CONSTRUCTION CONTRACT DOCUMENTS, INCLUDING THE APPROVED PERMIT, PLANS AND TECHNICAL SPECIFICATIONS.
- 20. THE CONTRACTOR SHALL ENSURE THAT THE SITE IS FREE OF TRASH AND LEFTOVER CONSTRUCTION MATERIALS PRIOR TO DEMOBILIZATION FROM THE SITE. THE CONTRACTOR SHALL BE RESPONDISILE FOR OFF-SITE REMOVAL OF ALL TRASH, EXCESS BACKFILL, AND ANY OTHER INCIDENTAL MATERIALS PRIOR TO DEMOBILIZATION OF EQUIPMENT FROM THE SITE. THE DISPOSAL AND STOCKPILE LOCATIONS SELECTED MUST BE APPROVED TO THE ENGINEER AND ANY FEES SHALL BE PAID FOR BY THE CONTRACTOR.

GENERAL NOTES

- THE PROJECT SITE IS LOCATED APPROXIMATELY THREE AND A HALF MILES NORTHEAST OF THE TOWN OF LAWSONVILLE IN STOKES COUNTY, NC (36.5250946421°, 80.2061457169°) AS SHOWN ON THE COVER SHEET VICINITY MAP. TO ACCESS THE SITE FROM WINSTON-SALEM, TAKE NC-8 NORTH FOR APPROXIMATELY 30 MILES, TURN RIGHT ONTO CLARK ROAD AND CONTINUE APPROXIMATELY 0.9 MILES. CONTINUE APPROXIMATELY 0.2 MILES AND ARRIVE AT THE SITE ENTRANCE ON THE RIGHT.
- 2. THE PROJECT SITE BOUNDARIES ARE SHOWN ON THE DESIGN PLANS AS THE PROPOSED CONSERVATION EASEMENT. THE CONTRACTOR SHALL PERFORM ALL RELATED WORK ACTIVITIES WITHIN THE PROJECT SITE BOUNDARIES AND/OR WITHIN THE LIMITS OF DISTURBANCE (LOD). THE PROJECT SITE SHALL BE ACCESSED THROUGH THE DESIGNATED ACCESS POINTS SHOWN ON THE PLANS. THE CONTRACTOR IS RESPONSIBLE FOR MAINTAINING PERMITTED ACCESS THROUGHOUT ALL CONSTRUCTION ACTIVITIES.
- 3. THE CONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONS AND MEASURES TO PROTECT ALL PROPERTIES FROM DAMAGE. THE CONTRACTOR SHALL REPAIR ALL DAMAGE CAUSED BY HIS/HER OPERATIONS TO ALL PUBLIC AND PRIVATE PROPERTY AND LEAVE THE PROPERTY IN GOOD CONDITION AND/OR AT LEAST EQUIVALENT TO THE PRE-CONSTRUCTION CONDITIONS. UPON COMPLETION OF ALL CONSTRUCTION ACTIVITIES, THE AREA IS TO BE RESTORED TO A CONDITION EQUAL TO OR BETTER THAN FOUND PRIOR TO CONSTRUCTION.
- 4. THE TOPOGRAPHIC BASE MAP WAS DEVELOPED USING SURVEY DATA COLLECTED BY ASCENSION LAND SURVEYING, PC (ALS) IN THE SUMMER OF 2019. THE HORIZONTAL DATUM WAS TIED TO NAD83 NO STATE PLANE COORDINATE SYSTEM, US SURVEY FEET AND NAVD88 VERTICAL DATUM USING VRS NETWORK AND NOGS MONUMENT. IT IS POSSIBLE THAT EXISTING ELEVATIONS AND SITE CONDITIONS MAY HAVE CHANGED SINCE THE ORIGINAL SURVEY WAS COMPLETED. IT IS THE CONTRACTOR'S RESPONSIBILITY TO CONFIRM EXISTING GRADES AND ADJUST QUANTITIES, EARTHWORK, AND WORK EFFORTS AS NECESSARY.
- 5. THE CONTRACTOR SHALL VISIT THE CONSTRUCTION SITE AND THOROUGHLY FAMILIARIZE HIMHERSELE WITH ALL EXISTING CONDITIONS. PRIOR TO BEGINNING CONSTRUCTION. THE CONTRACTOR SHALL VERIFY THE ACCURACY AND COMPLETENESS OF THE CONSTRUCTION SPECIFICATIONS AND DESIGN PLANS REGARDING THE NATURE AND EXTENT OF THE WORK DESCRIBED.
- THE CONTRACTOR SHALL BRING ANY DISCREPANCIES BETWEEN THE
 CONSTRUCTION PLANS AND SPECIFICATIONS AND/OR FIELD CONDITIONS TO
 THE ATTENTION OF THE SPONSORS ENGINEER BEFORE CONSTRUCTION
 BEGINS.
- 7. THERE SHALL BE NO CLEARING OR REMOVAL OF ANY NATIVE SPECIES VEGETATION OR TREES OF SIGNIFICANCE, OTHER THAN THOSE INDICATED ON THE PLANS OR AS DIRECTED BY THE ENGINEER.
- 8. THE CONTRACTOR SHALL EXERCISE CARE DURING GRADING ACTIVITIES IN THE VICINITY OF NATIVE VEGETATION AND TREES OF SIGNIFICANCE AT THE CONSTRUCTION SITE. ALL GRADING IN THE VICINITY OF TREES NOT IDENTIFIED FOR REMOVAL SHALL BE MADE IN A MANNER THAT DOES NOT DISTURB THE ROOT SYSTEM WITHIN THE DRIP LINE OF THE TREE.
- 9. WORK ACTIVITIES ARE BEING PERFORMED AS AN ENVIRONMENTAL RESTORATION PLAN. THE CONTRACTOR SHALL MAKE ALL REASONABLE EFFORTS TO REDUCE SEDIMENT LOSS, PROTECT PUBLIC SAFETY, AND MINIMIZE DISTURBANCE OF THE SITE WHILE PERFORMING THE CONSTRUCTION WORK. ALL AREAS SHALL BE KEPT NEAT, CLEAN, AND FREE OF ALL TRASH AND DEBRIS, AND ALL REASONABLE PRECAUTIONS SHALL BE TAKEN TO AVOID DAMAGE TO EXISTING ROADS, VEGETATION, TURF, STRUCTURES, AND PRIVATE PROPERTY
- 10. PRIOR TO START OF WORK, THE CONTRACTOR SHALL SUBMIT THE SOURCE OF MATERIALS, INCLUDING AGGREGATES, EROSION CONTROL MATTING, WOOD AND NATIVE PLANTING MATERIAL TO THE ENGINEER FOR REVIEW AND APPROVAL. NO WORK SHALL BE PERFORMED UNTIL THE SOURCE OF MATERIAL IS APPROVED BY THE ENGINEER.
- 11. THE CONTRACTOR SHALL BE HELD SOLELY RESPONSIBLE FOR ANY NECESSARY COORDINATION BETWEEN THE VARIOUS COUNTY, STATE OR FEDERAL AGENCIES, UTILITY COMPANIES, HIS/HER SUB-CONTRACTORS, AND THE ENGINEER FOR THE DURATION OF THE PROJECT.
- 12. PRIOR TO START OF WORK, THE CONTRACTOR SHALL SUBMIT THEIR DETAILED PLANTING SCHEDULE TO THE ENGINEER FOR REVIEW. NO WORK SHALL BE PERFORMED UNTIL THIS SCHEDULE IS APPROVED BY THE ENGINEER. THE DETAILED PLANTING SCHEDULE SHALL CONFORM TO THE PLANTING REVEGETATION PLAN AND SHALL INCLUDE A SPECIES LIST AND TIMING SEQUENCE.
- 13. THE CONTRACTOR IS REQUIRED TO INSTALL IN-STREAM STRUCTURES AND CULVERT PIPES USING A BACKHOE/EXCAVATOR WITH A HYDRAULIC THUMB OF SUFFICIENT SIZE TO PLACE STRUCTURES AND MATERIALS INCLUDING LOGS, STONE, AND TEMPORARY WOOD MAT STREAM CROSSINGS.

GRADING NOTES

- NO GRADING ACTIVITIES SHALL OCCUR BEYOND THE PROJECT LIMITS OF DISTURBANCE (LOD) AS SHOWN ON THE DESIGN PLANS.
- 2. ONCE DESIGN GRADES ARE ACHIEVED AS SHOWN ON THE PLAN AND PLAN AND PROFILE, THE HEADWATER VALLEY, STREAM AND WETLAND, AND FLOODPLAN AREAS SHALL BE ROUGHENED USING TECHNIQUES DESCRIBED IN THE CONSTRUCTION SPECIFICATIONS.
- 3. ALL SUITABLE SOIL MATERIAL REQUIRED TO FILL AND/OR PLUG EXISTING DITCHES AND/OR STREAM CHANNEL SHALL BE GENERATED ON-SITE AS DESCRIBED IN THE CONSTRUCTION SPECIFICATIONS, ANY EXCESS SPOIL MATERIAL SHALL BE STOCKPILED IN DESIGNATED AREAS AND OR HAULED OFF-SITE AS APPROVED BY THE ENGINEER.

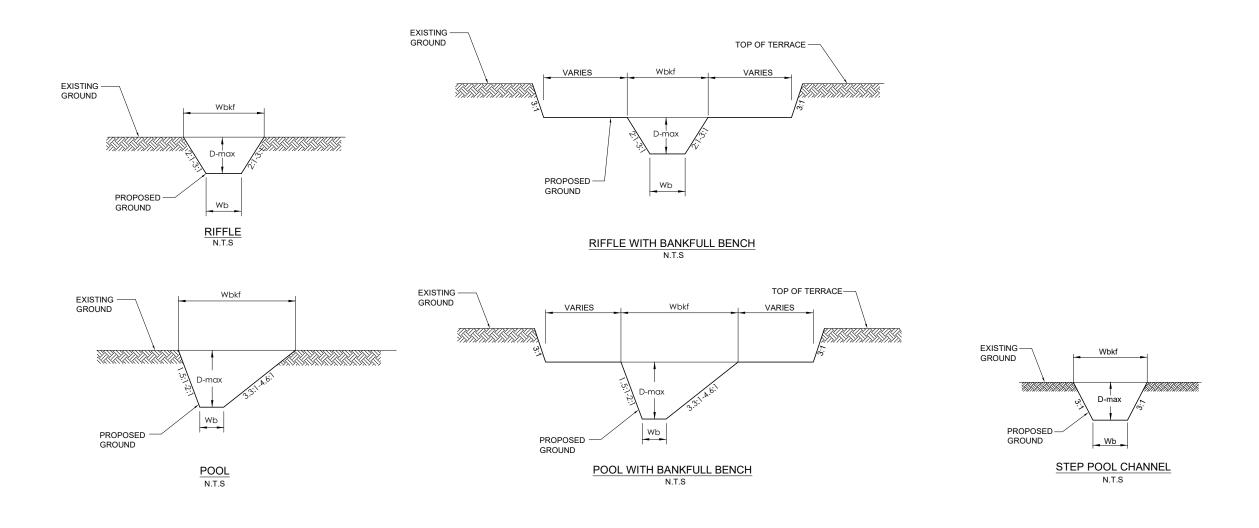
WATER & LAND SOLUTIONS

7721 Six Forks Rd., Suite 130 Raleigh, NC 27615 (919)614-5111 waterlandsolutions.com

	FIRM LICENSE NO. P-1480					
	REVISIONS					
Α	DRAFT MIT PLAN	12-27-19				
В	FINAL DRAFT PLAN	3-26-20				
С	FINAL MIT PLAN	7-24-20				
NO.	DESCRIPTION	DATE				
	DDO JEST HAME					

PROJECT NAME

BANNER BRANCH MITIGATION PROJECT

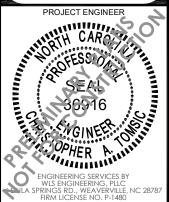

STOKES COUNTY, NC

DRAWING INFORMATION				
PROJECT NO.	18-007			
FILENAME	02_BANNER BRANCH_GENERAL NOTES.DWG			
DESIGNED BY	CAT			
DRAWN BY	APL			
DATE	7-24-20			
HORIZ. SCALE	N.T.S.			
VERT. SCALE	N/A			

SHEET NAME

LEGEND/
CONSTRUCTION
SEQUENCE/
GENERAL NOTES

SHEET NUMBER



SINGLE-THREAD CHANNEL

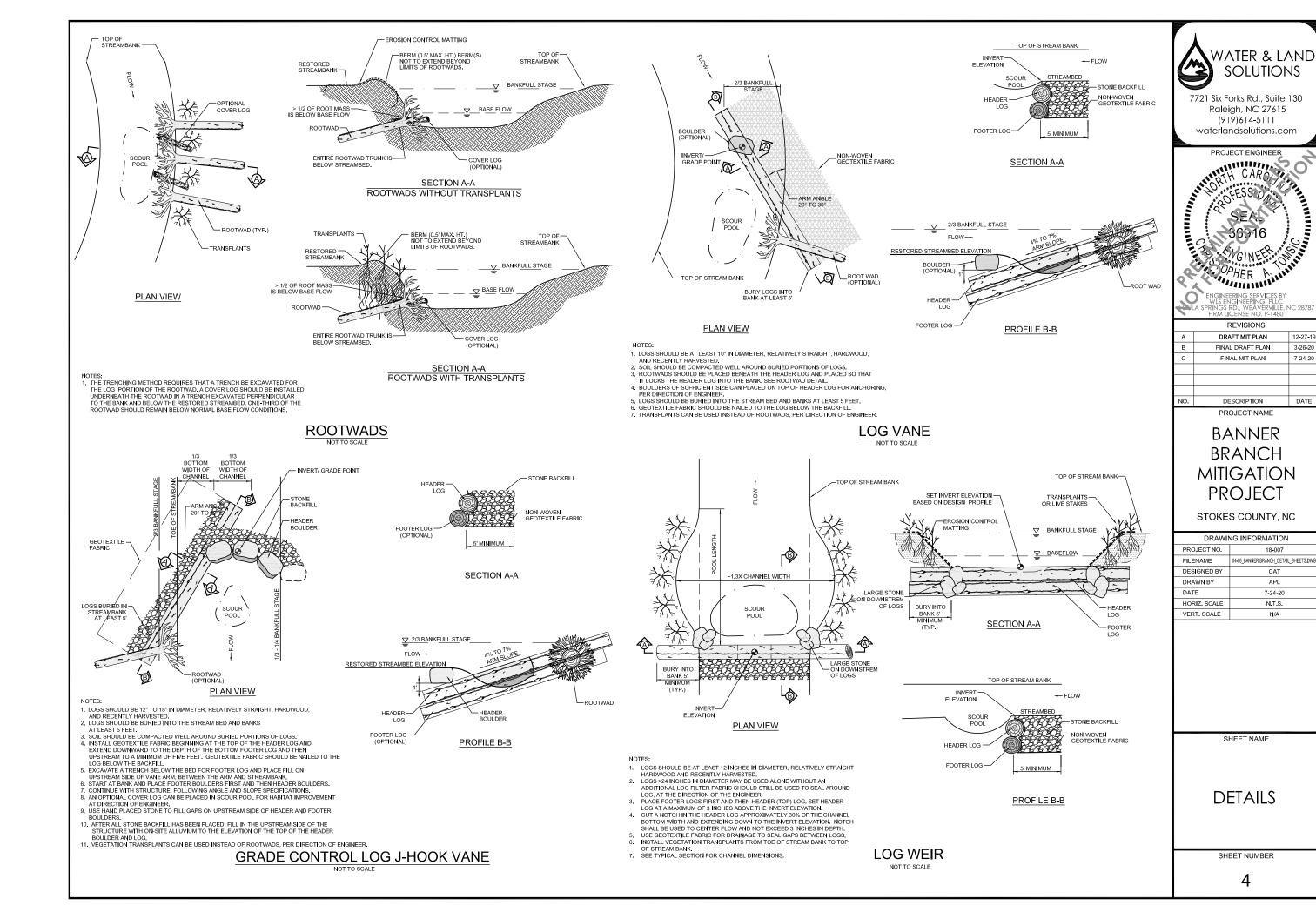
Reach Name	UT	1-R1	UT1	-R2	ВВ	-R1	ВВ	-R2	ВВ	-R3	UT	1B	UT	1C	U	T2	UT	2A	U	Т3	UT4	I-R1	UT4	I-R2	
Feature	Riffle	Pool	Outlet Channel																						
Width of Bankfull, Wbkf (ft)	8.0	11.0	9.0	14.0	13.0	20.0	14.0	21.5	15.0	22.0	7.0	10.0	4.5	6.0	6.0	8.0	3.0	4.0	8.0	12.0	11.0	15.0	12.0	18.0	3.0 (MIN.)
Average Depth, Dbkf (ft)	0.5	0.8	0.6	1.0	1.1	1.6	1.1	1.6	1.2	1.8	0.4	0.7	0.4	0.6	0.4	0.6	0.2	0.3	0.6	0.9	0.7	1.2	0.8	1.4	N/A
Maximum Depth, D-Max (ft)	0.6	1.3	0.7	1.6	1.4	2.5	1.5	2.5	1.6	2.8	6.0	1.1	0.5	0.9	0.5	1.0	0.3	0.5	0.7	1.5	0.9	2.0	1.0	2.2	0.5
Width to Depth Ratio, bkf W/D	16.4	13.3	15.4	13.6	12.1	12.8	12.3	13.5	12.6	12.6	16.2	14.0	12.5	10.7	16.0	12.8	16.0	12.8	14.1	12.8	15.8	12.5	15.2	12.8	N/A
Bankfull Area, Abkf (sq ft)	3.9	9.1	5.3	14.4	14.0	31.3	16.0	34.4	17.8	38.5	3.0	7.2	1.6	3.4	2.3	5.0	0.6	1.3	4.6	11.3	7.7	18.0	9.5	25.3	N/A
Bottom Width, Wb (ft)	5.0	3.0	6.0	4.0	7.0	5.0	8.0	6.0	8.0	6.0	4.0	3.0	2.0	1.5	3.0	2.0	1.5	1.0	5.0	3.0	6.0	3.0	7.0	5.0	N/A

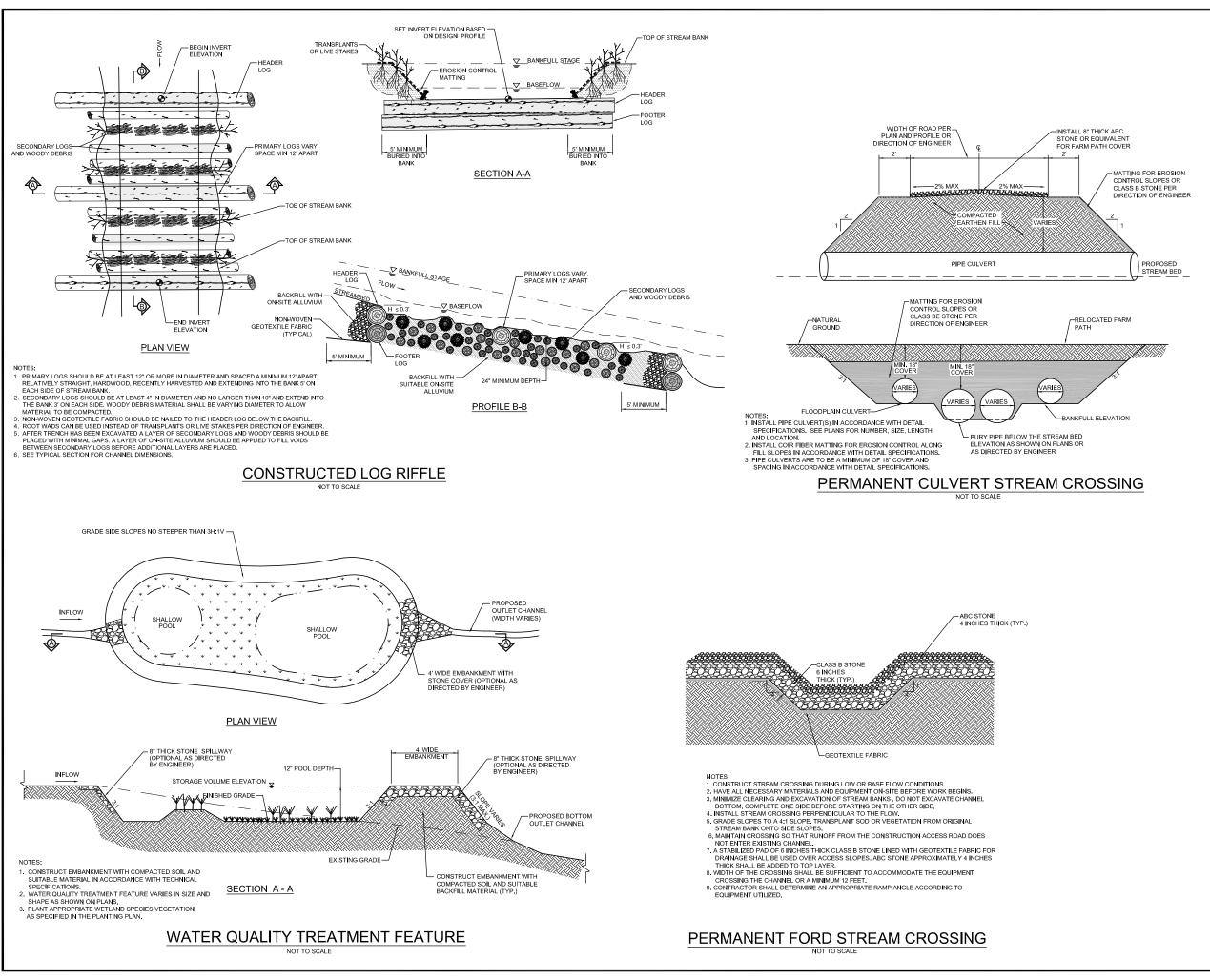
7721 Six Forks Rd., Suite 130 Raleigh, NC 27615 (919)614-5111 waterlandsolutions.com

	FIRM LICENSE NO. P-1480	
	REVISIONS	
Α	DRAFT MIT PLAN	12-27-19
В	FINAL DRAFT PLAN	3-26-20
С	FINAL MIT PLAN	7-24-20
NO.	DESCRIPTION	DATE

PROJECT NAME

BANNER BRANCH MITIGATION PROJECT


STOKES COUNTY, NC


DRAWING INFORMATION					
PROJECT NO.	18-007				
FILENAME	03_BANNER BRANCH_TYPICAL_SECTIONS.D\				
DESIGNED BY	CAT				
DRAWN BY	APL				
DATE	7-24-20				
HORIZ. SCALE	N.T.S.				
VERT. SCALE	N/A				

SHEET NAME

TYPICAL SECTIONS

SHEET NUMBER

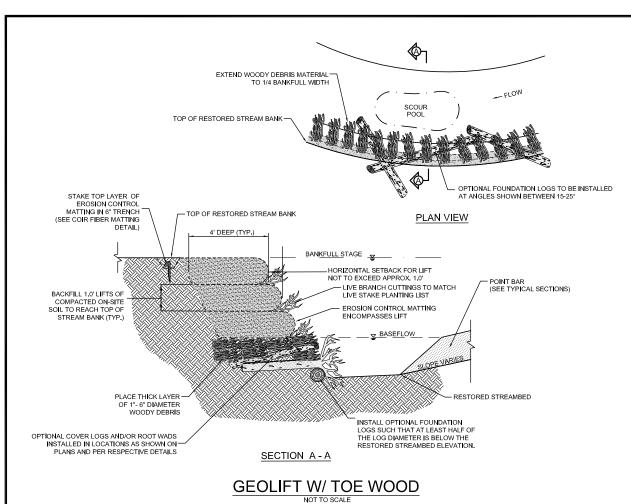
WATER & LAND SOLUTIONS

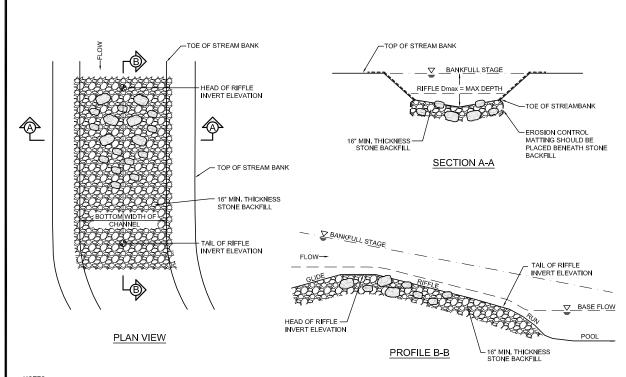
7721 Six Forks Rd., Suite 130 Raleigh, NC 27615 (919)614-5111 waterlandsolutions.com

,	FIRM LICENSE NO. F-1460	
	REVISIONS	
Α	DRAFT MIT PLAN	12-27-19
В	FINAL DRAFT PLAN	3-26-20
С	FINAL MIT PLAN	7-24-20
NO.	DESCRIPTION	DATE

PROJECT NAME

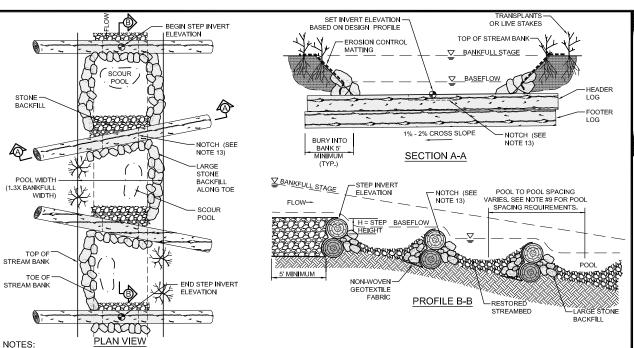
BANNER BRANCH MITIGATION PROJECT


STOKES COUNTY, NC


DRAWING INFORMATION				
PROJECT NO.	18-007			
FILENAME	04-08_BANNER BRANCH_DETAIL_SHEETS.DW			
DESIGNED BY	CAT			
DRAWN BY	APL			
DATE	7-24-20			
HORIZ. SCALE	N.T.S.			
VERT. SCALE	N/A			

SHEET NAME

DETAILS


SHEET NUMBER

- DIG A TRENCH BELOW THE RESTORED STREAMBED FOR THE STONE BACKFILL.
 FILL TRENCH WITH CLASS "A" AND "B" STONE BACKFILL.

CONSTRUCTED STONE RIFFLE

- 1. LOGS SHOULD BE AT LEAST 12 INCHES IN DIAMETER, RELATIVELY STRAIGHT HARDWOOD AND
- RECENTLY HARVESTED.
 2. LOGS >24 INCHES IN DIAMETER MAY BE USED ALONE WITHOUT AN ADDITIONAL LOG FILTER FABRIC SHOULD STILL BE USED TO SEAL AROUND LOG. LOGS SHOULD EXTEND INTO THE BANKS 5' ON EACH

- SIDE.

 SIDE.

 SOIL SHALL BE WELL COMPACTED AROUND BURIED PORTION OF FOOTER LOGS WITH BUCKET OF TRACK HOE.

 INSTALL GEOTEXTILE FILTER FABRIC UNDERNEATH LOGS.

 UNDERGUT POOL BED ELEVATION 8 INCHES TO ALLOW FOR LAYER OF STONE. INSTALL LARGE STONE BACKFILL ALONG SIDE SLOPES.

 INSTALL EROSION CONTROL MATTING ALONG COMPLETED BANKS SUCH THAT THE EROSION CONTROL MATTING AT THE TOE OF THE BANK EXTENDS DOWN TO THE UNDERCUT ELEVATION.

 INSTALL LARGE STONE BACKFILL ALONG SIDE SLOPES.

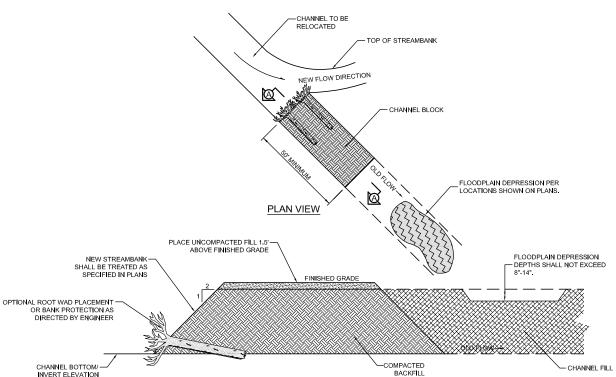
 FINAL CHANNEL BED SHAPE SHOULD BE ROUNDED. COMPACTED, AND CONCAVE WITH THE FLEVATION.
- FINAL CHANNEL BED SHAPE SHOULD BE ROUNDED, COMPACTED, AND CONCAVE, WITH THE ELEVATION
- OF THE BED APPROXIMATELY 0.5 FT DEEPER IN THE CENTER THAN AT THE EDGES.

 AVERAGE POOL TO POOL SPACING SHALL BE SHOWN ON THE PROFILE OR SPECIFIED BY ENGINEER

 BASED ON EXISTING CONDITIONS SUCH AS SLOPE AND SUITABLE FILL MATERIAL, RIFFLE STEP-POOLS

 OR CASCADE POOLS MAY BE SUBSTITUTED IN AREAS WHERE EXISTING SLOPES EXCEED 10% AS DETERMINED BY THE ENGINEER.
- 10. INTERIOR LOGS SHOULD BE AT A SLIGHT ANGLE (~70 DEGREES) FROM THE STREAMBANK AND CROSS SLOPES SHOULD BE 1-2%.

 11. PLACE FOOTER LOGS FIRST AND THEN HEADER (TOP) LOG. SET HEADER LOG AT A MAXIMUM OF 3 INCHES ABOVE THE INVERT ELEVATION.
- 12. AVERAGE STEP HEIGHTS/DROPS SHALL NOT EXCEED 0.5 UNLESS SHOWN OTHERWISE.


 13. CUT A NOTCH IN THE HEADER LOG APPROXIMATELY 30% OF THE CHANNEL BOTTOM WIDTH AND EXTENDING DOWN TO THE INVERT ELEVATION. NOTCI
- BOTTOM WIDTH AND EXTENDING DOWN TO THE INVERT ELEVATION. NOTC:
 SHALL BE USED TO CENTER FLOW AND NOT EXCEED 3 INCHES IN DEPTH.

 14. THE NUMBER OF STEPS MAY VARY BETWEEN BEGINNING AND END
 STATIONING. SEE LONGITUDINAL PROFILE FOR STATION AND ELEVATION.

 15. USE GEOTEXTILE FABRIC FOR DRAINAGE TO SEAL GAPS BETWEEN LOGS.

 16. PLACE VEGETATION TRANSPLANTS FROM TOE OF STREAMBANK TO TOP OF
- STREAMBANK. 17. SEE TYPICAL SECTION FOR CHANNEL DIMENSIONS.

STONE AND LOG STEP POOL

- 1. COMPACT DITCH PLUG MATERIAL FOR BACKFILL
- USING HEAVY EQUIPMENT IN 10 INCH LIFTS. 2. CONSTRUCT DITCH PLUG WITH COMPACTED SOIL USING
- SUITABLE MATERIAL IN ACCORDANCE WITH THE TECHNICAL SPECIFICATIONS.

 3. PLACE FILL MATERIAL IN LOCATIONS SHOWN ON PLANS OR AS DIRECTED BY ENGINEER TO ALLOW FOR SETTLING.

SECTION A-A

CHANNEL BLOCK

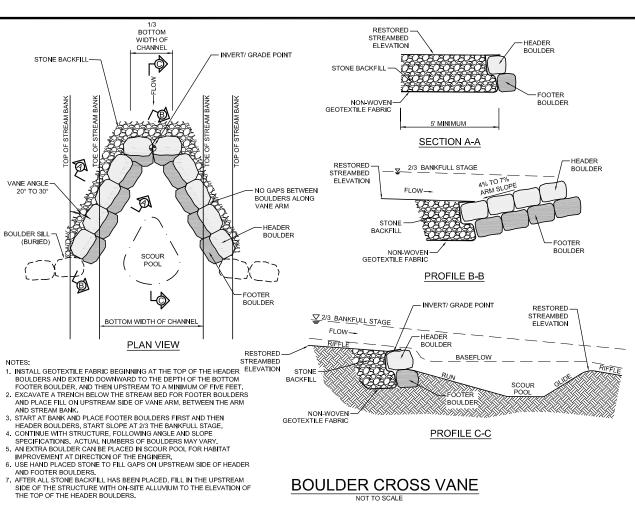
WATER & LAND **SOLUTIONS**

7721 Six Forks Rd., Suite 130 Raleigh, NC 27615 (919)614-5111 waterlandsolutions.com

-		REVISIONS	
	Α	DRAFT MIT PLAN	12-27-19
	В	FINAL DRAFT PLAN	3-26-20
L	С	FINAL MIT PLAN	7-24-20
Ж			
F	NO.	DESCRIPTION	DATE
		DDO IEOT NAME	

PROJECT NAME

BANNER BRANCH MITIGATION **PROJECT**


STOKES COUNTY, NC

DRAWII	NG INFORMATION
PROJECT NO.	18-007
FILENAME	04-08_BANNER BRANCH_DETAIL_SHEETS.DWG
DESIGNED BY	CAT
DRAWN BY	APL
DATE	7-24-20
HORIZ. SCALE	N.T.S.
VERT. SCALE	N/A

SHEET NAME

DETAILS

SHEET NUMBER

-24" MAX, TYP (TRENCH ONLY)

W

4

ARGE MATTING STAKES

RESTORED STREAMBED

EROSION CONTROL MATTING

4 36" MAX. TYP 4

SMALL MATTING STAKES (TYP.)

TOF OF STREAM BANK

BASEFLOW

INSTALL EROSION CONTROL MATTING AT TOE OF SLOPE BY KEYING IN MATTING NO LESS THAN 6 INCHES AND SECURING WITH LARGE

PLAN VIEW OF STREAM BANK

TOP OF STREAM BANK

INSTALL EDGE OF EROSION CONTROL MATTING IN 12 INCH DEEP TRENCH, AND SECURE BY STAKING, BACKFILLING, AND COMPACTING SOIL TO FINISHED GRADE.

BANKFULL STAGE

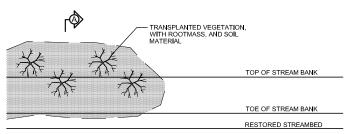
MATTING TO BE

INCHES.

EXTENDED TO TOE

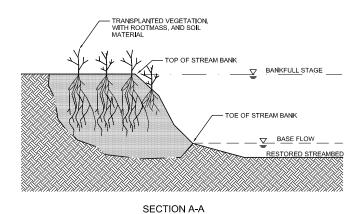
OF SLOPE. KEY IN

TRENCH LIMITS


4

LARGE MATTING STAKES

SMALL MATTING STAKES -


4

SECTION A - A

PLAN VIEW OF STREAM BANK

- 1. EXCAVATE A HOLE IN THE RESTORED STREAM BANK THAT WILL ACCOMMODATE THE SIZE OF TRANSPLANT TO BE PLANTED. BEGIN EXCAVATION AT TOE OF THE STREAM BANK.
- 2 EXCAVATE THE ENTIRE TRANSPLANT ROOT MASS AND AS EACAVALE THE ENTITE LIVANDS LAND FAOT MASS AND AS MUCH ADDITIONAL SOIL MATERIAL AS POSSIBLE. IF ENTIRE ROOT MASS CAN NOT BE EXCAVATED AT ONCE, THE TRANSPLANT IS TOO LARGE AND ANOTHER SHOULD BE
- 3. PLANT TRANSPLANT IN THE RESTORED STREAM BANK SO THAT
- VEGETATION IS ORIENTATED VERTICALLY.

 4. FILL IN ANY HOLES OR VOIDS AROUND THE TRANSPLANT AND
- COMPACT. 5 ANY LOOSE SOIL LEET IN THE STREAM SHOULD BE REMOVED.

WHEN POSSIBLE, PLACE MULTIPLE TRANSPLANTS CLOSE TOGETHER SUCH THAT THEIR ROOT MASSES CONTACT.

PROJECT ENGINEER RTH CARO NEERING NEERING NGINEERING SERVICES BY

WATER & LAND

SOLUTIONS

7721 Six Forks Rd., Suite 130 Raleigh, NC 27615

(919)614-5111

waterlandsolutions.com

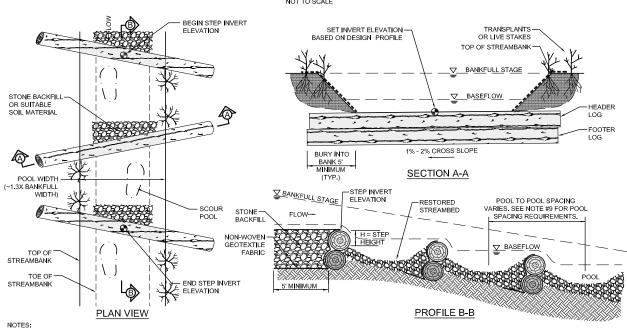
DRAFT MIT PLAN 12-27-1 FINAL DRAFT PLAN 3-26-20 FINAL MIT PLAN 7-24-20 DESCRIPTION DATE

PROJECT NAME

BANNER BRANCH MITIGATION **PROJECT**

STOKES COUNTY, NC

DRAWII	NG INFORMATION
PROJECT NO.	18-007
FILENAME	04-08_BANNER BRANCH_DETAIL_SHEETS.DWG
DESIGNED BY	CAT
DRAWN BY	APL
DATE	7-24-20
HORIZ. SCALE	N.T.S.
VERT. SCALE	N/A


SHEET NAME

DETAILS

SHEET NUMBER

7

VEGETATION TRANSPLANTS

TYPICAL SMALL MATTING STAKE

M) ERED TO POINT)

- 2.5 INCH GALVANIZED ROOFING NAIL

TYPICAL LARGE MATTING STAKE

RESTORED STREAM BANKS MUST BE SEEDED AND

2. SEE TECHNICAL SPECIFICATIONS FOR MATTING STAKE 2. SEE TECHNICAL SPECIFICATIONS FOR WATTING STAKE SPACING REQUIREMENTS.
3. PLACE LARGE STAKES ALONG ALL MATTING SEAMS, IN THE CENTER OF STREAM BANK, AND TOE OF SLOPE.

MATTING.

MULCHED PRIOR TO PLACEMENT OF EROSION CONTROL

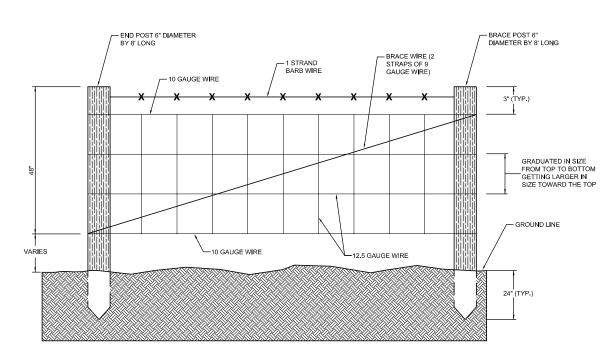
- BANKS 5' ON EACH SIDE
- SOIL SHALL BE WELL COMPACTED AROUND BURIED PORTION OF FOOTER LOGS WITH BUCKET OF TRACK HOE.

 INSTALL NON-WOVEN GEOTEXTILE FABRIC UNDERNEATH LOGS.

- INDIALL NOT-WOVEN GEVIEX HEE PABRIC UNDERNEATH LOGS.
 UNDERCUT POOL BED ELEVATION 8 INCHES TO ALLOW FOR LAYER OF STONE, INSTALL
 STONE BACKFILL OR SUITABLE ALLUVIUM ALONG SIDE SLOPES.
 INSTALL EROSION CONTROL MATTING ALONG COMPLETED BANKS SUCH THAT THE EROSION
 CONTROL MATTING AT THE TOE OF THE BANK EXTENDS DOWN TO THE UNDERCUT
 ELEVATION.
 INSTALL ERONE BACKFUL OR SUITABLE OR SUITABLE FOR THE STORE STORE
- EDGES.

 AVERAGE POOL TO POOL SPACING SHALL BE SHOWN ON THE PROFILE OR SPECIFIED BY

- LOGS SHOULD BE AT LEAST 12 INCHES IN DIAMETER, RELATIVELY STRAIGHT HARDWOOD AND RECENTLY HARVESTED.
 LOGS >24 INCHES IN DIAMETER MAY BE USED ALONE WITHOUT AN ADDITIONAL LOG FILTER FABRIC SHOULD STILL BE USED TO SEAL AROUND LOG. LOGS SHOULD EXTEND INTO THE


- INSTALL STONE BACKFILL OR SUITABLE SOIL MATERIAL ALONG SIDE SLOPES. FINAL CHANNEL BED SHAPE SHOULD BE ROUNDED. COMPACTED, AND CONCAVE, WITH THE ELEVATION OF THE BED APPROXIMATELY 0.5 FT DEEPER IN THE CENTER THAN AT THE
- ENGINEER BASED ON EXISTING CONDITIONS SUCH AS SLOPE AND SUITABLE FILL MATERIAL. RIFFLE STEP POOLS OR CASCADE POOLS MAY BE SUBSTITUTED IN AREAS WHERE EXISTING SLOPES EXCEED 10% AS DETERMINED BY THE ENGINEER.

- INTERIOR LOGS SHOULD BE AT A SLIGHT ANGLE (~70 DEGREES) FROM THE STREAMBANK AND CROSS SLOPES SHOULD BE 1-2%.
 PLACE FOOTER LOGS FIRST AND THEN HEADER (TOP) LOG. SET HEADER LOG AT A MAXIMUM OF 3 INCHES ABOVE THE INVERT ELEVATION.
- 12. AVERAGE STEP HEIGHTS/DROPS SHALL NOT EXCEED 0.5 UNLESS SHOWN
- 12. AVERAGE STEP REPORTS JUNCPS SHALL NOT EXCEED U.S DIRESS SHOWN
 OTHERWISE.

 13. CUT A NOTCH IN THE HEADER LOG APPROXIMATELY 30% OF THE CHANNEL
 BOTTOM WIDTH AND EXTENDING DOWN TO THE INVERT ELEVATION, NOTCH
 SHALL BE USED TO CENTER FLOW AND NOT EXCEED 3 INCHES IN DEPTH.
- 14. THE NUMBER OF STEPS MAY VARY BETWEEN BEGINNING AND END
 STATIONING. SEE LONGITUDINAL PROPILE FOR STATION AND ELEVATION.
 15. USE GEOTEXTILE FABRIC FOR DRAINAGE TO SEAL GAPS BETWEEN LOGS.
 16. PLACE VEGETATION TRANSPLANTS FROM TOE OF STREAMBANK TO TOP OF
- STREAMBANK.

 17. SEE TYPICAL SECTION FOR CHANNEL DIMENSIONS.

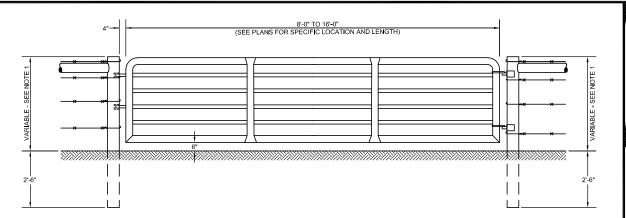
LOG STEP POOL

1. STANDARD WOVEN FIELD FENCES SHALL HAVE A MAXIMUM POST SPACING OF 16 FEET. HIGH TENSILE WOVEN WIRE MAXIMUM POST SPACING IS 25 FEET.

LARGE STONE BACKFILL AT THE TOE.

6. AVERAGE STEP HEIGHT (H) SHALL NOT EXCEED 0.5 FT.

7. AVERAGE POOL TO POOL SPACING SHALL BE SHOWN ON THE PROFILE OR
SPECIFIED BY ENGINEER BASED ON EXISTING CONDITIONS SUCH AS SLOPE


BE SUBSTITUTED IN AREAS WHERE EXISTING SLOPES EXCEED 5% AS

AND SUITABLE FILL MATERIAL RIFFLE STEP-POOLS OR CASCADE POOLS MAY

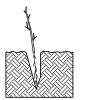
WOVEN FIELD FENCE

ROCK WEIR

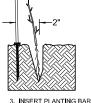
- POST HEIGHT DIMENSION SHALL BE THE SAME AS REQUIRED FOR THE ADJACENT FENCE.
 CONSTRUCT ENDS OR STRESS PANELS AS REQUIRED PER THE
- TECHNICAL SPECIFICATIONS ON EACH SIDE OF THE GATE.

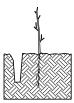
 3. HINGES AND LOCKS SHALL BE INSTALLED PER THE TECHNICAL SPECIFICATIONS AS RECOMMENDED BY GATE MANUFACTURER

STEEL FRAME GATE


PLANTING METHOD USING THE PLANTING BAR

1. INSERT PLANTING BAR AS


4. PULL HANDLE OF BAR TOWARD PLANTER. FIRMING SOIL AT BOTTOM.


2. REMOVE PLANTING BAR AND PLACE SEEDLING AT CORRECT DEPTH.

5. PUSH HANDLE FORWARD FIRMING SOIL AT TOP.

SEEDLING.

6. LEAVE COMPACTION HOLE OPEN, WATER THOROUGHLY.

PLANTING BAG

PLANTING BAR

NOTES:

- PLANT BARE ROOT VEGETATION TO THE WIDTH OF THE BUFFER/PLANTING ZONE AS SHOWN ON THE PLANS.
- 2. ALLOW FOR 8-15 FEET SPACING BETWEEN PLANTINGS, AS DEFINED IN THE TECHNICAL SPECIFICATIONS.
- 3. LOOSEN COMPACTED SOIL.
- 4. PLANT IN HOLES MADE BY A MATTOCK, DIBBLE, PLANTING BAR OR OTHER APPROVED MEANS.
- 5. PLANT IN HOLES DEEP AND WIDE ENOUGH TO ALLOW THE ROOTS TO SPREAD OUT AND DOWN WITHOUT J-ROOTING.
- KEEP ROOTS MOIST WHILE DISTRIBUTING OR WAITING TO PLANT BY MEANS OF WET CANVAS, BURLAP OR STRAW. 7. HEEL-IN PLANTS IN MOIST SOIL OR SAWDUST IF NOT PROMPTLY
- PLANTED UPON ARRIVAL TO THE PROJECT SITE. DURING PLANTING, SEEDLINGS SHALL BE KEPT IN A MOIST CANVAS BAG OR SIMILAR CONTAINER TO PREVENT ROOT SYSTEMS FROM DYING.
- 9. PLANTING BAR SHALL HAVE A BLADE WITH A TRIANGULAR CROSS SECTION AND SHALL BE 12 INCHES LONG, 4 INCHES WIDE AND 1 INCH THICK AT CENTER.
- 10. ALL SEEDLINGS SHALL BE PRUNED IF NECESSARY, SO THAT NO ROOTS EXTEND MORE THAN 10 INCHES BELOW THE ROOT COLLAR.

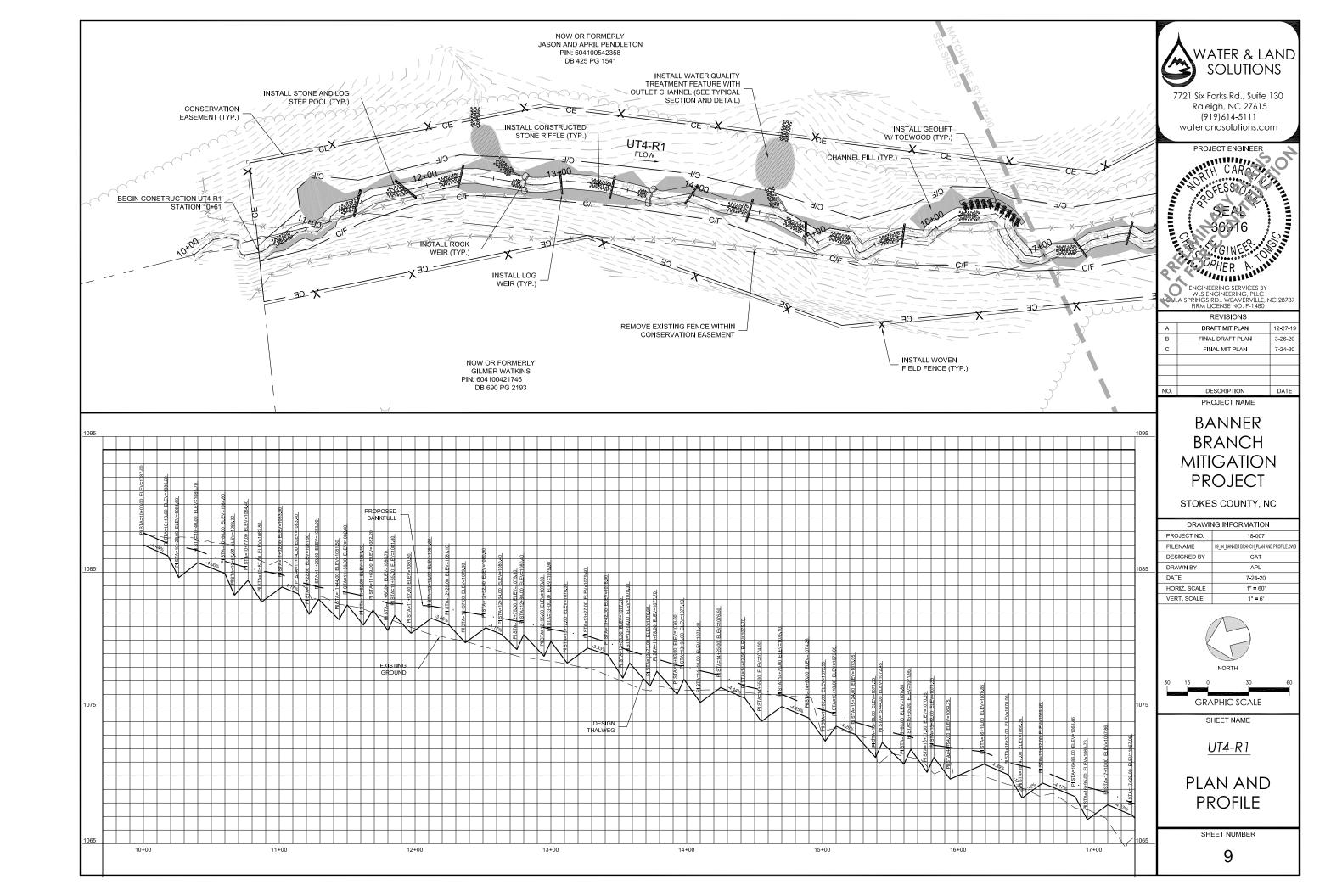
WATER & LAND SOLUTIONS

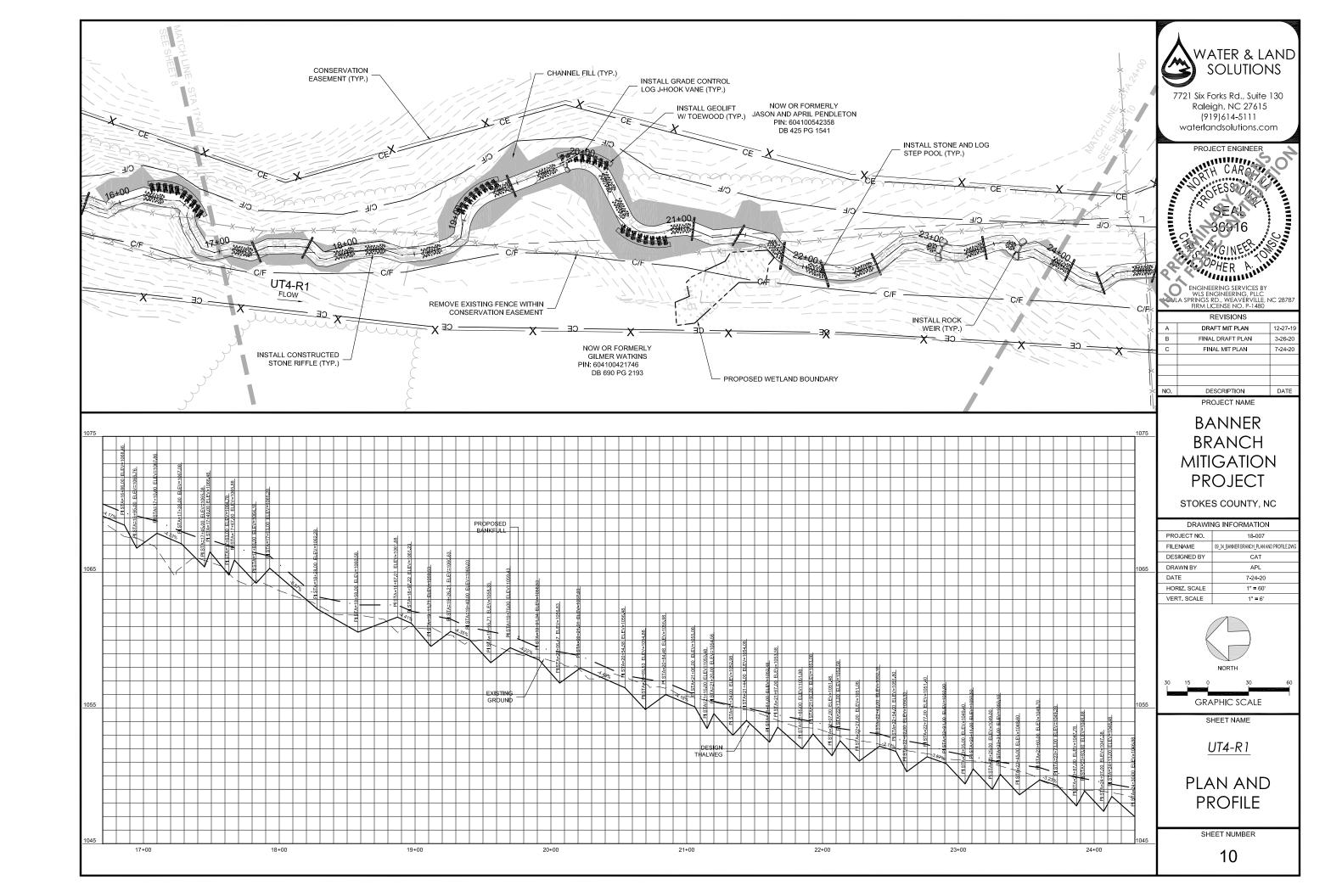
7721 Six Forks Rd., Suite 130 Raleigh, NC 27615 (919)614-5111 waterlandsolutions.com

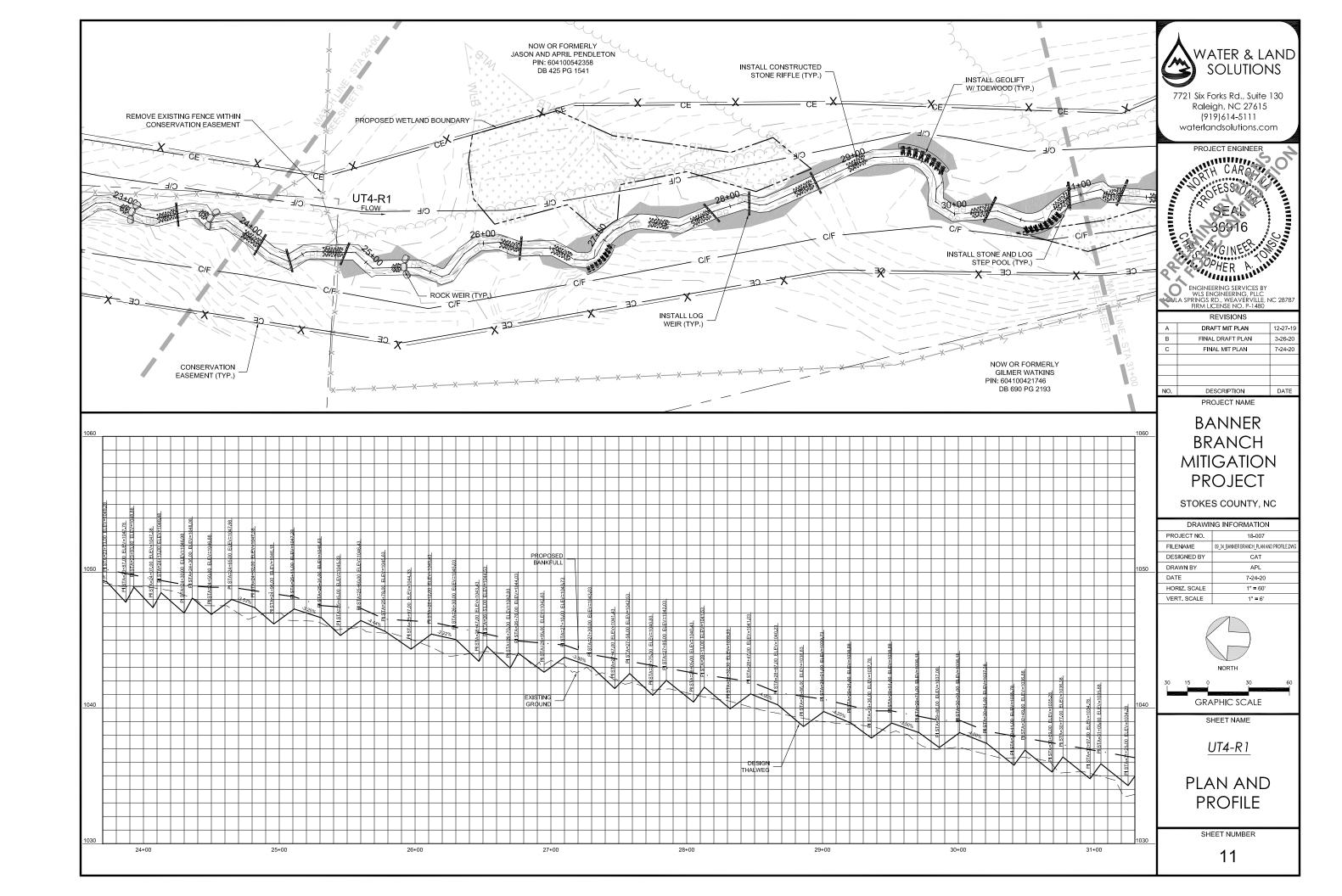
Γ	REVISIONS				
I	Α	DRAFT MIT PLAN	12-27-1		
Γ	В	FINAL DRAFT PLAN	3-26-20		
Γ	С	FINAL MIT PLAN	7-24-20		
Γ					
I					
	NO.	DESCRIPTION	DATE		

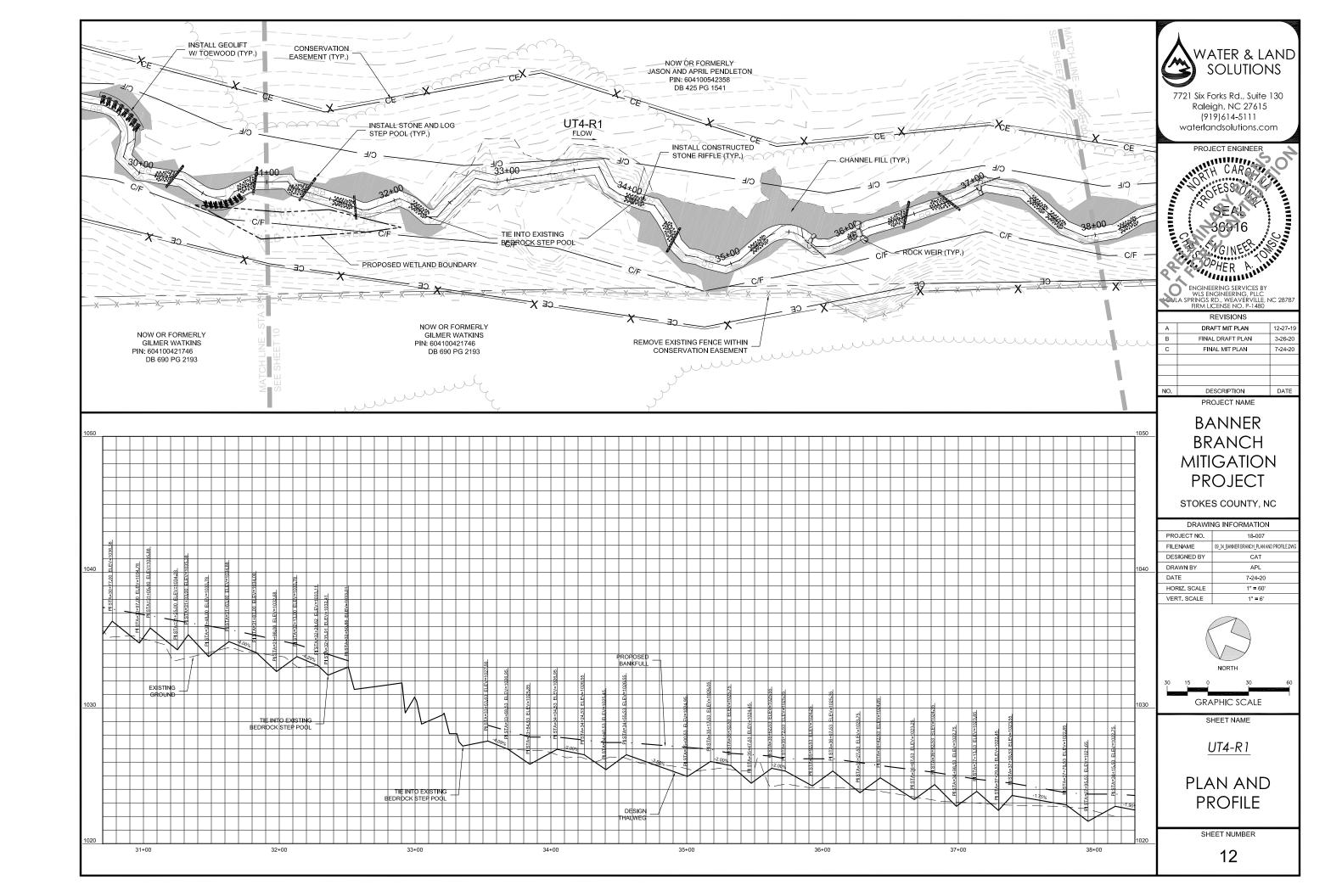
PROJECT NAME

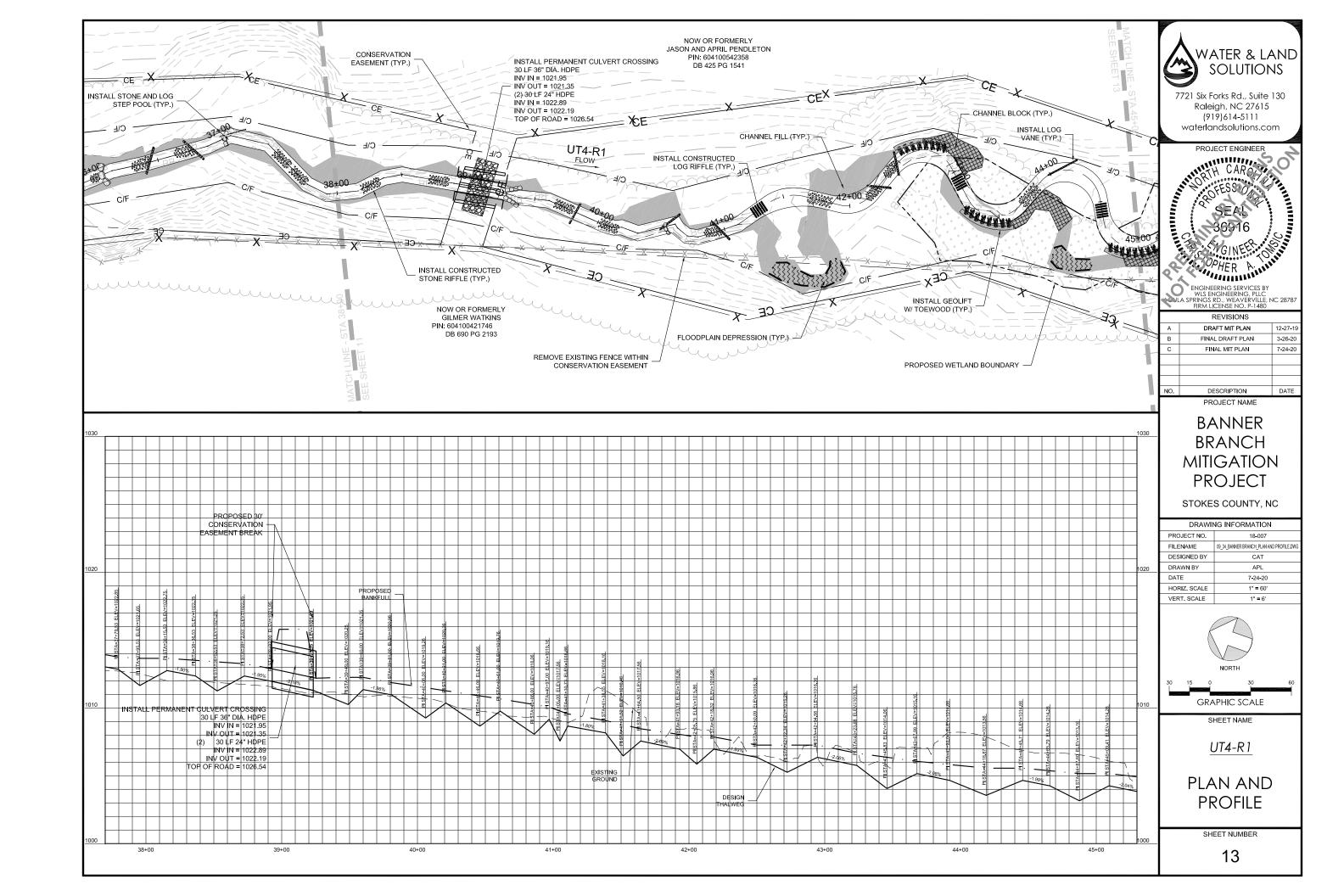
BANNER BRANCH MITIGATION **PROJECT**

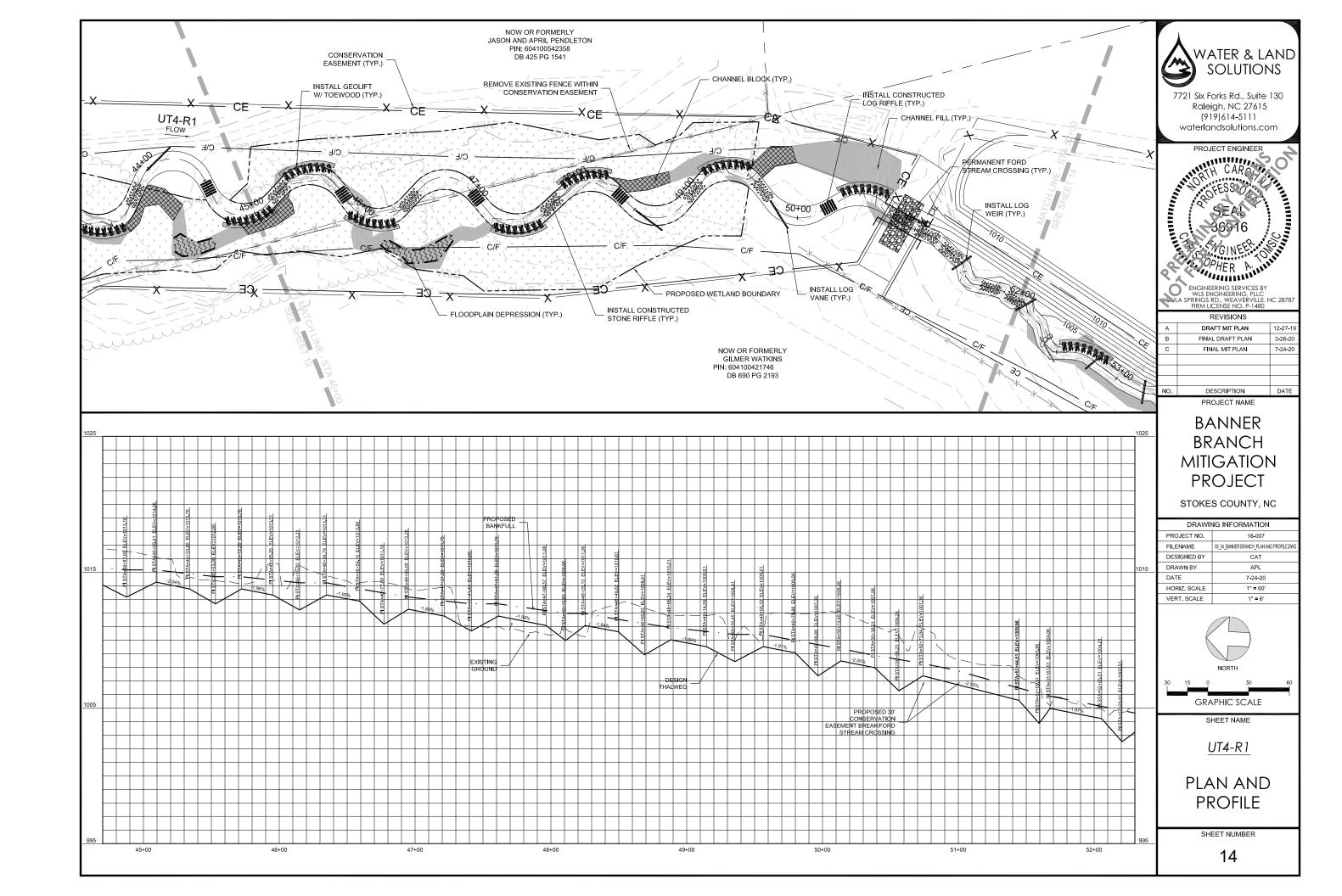

STOKES COUNTY, NC

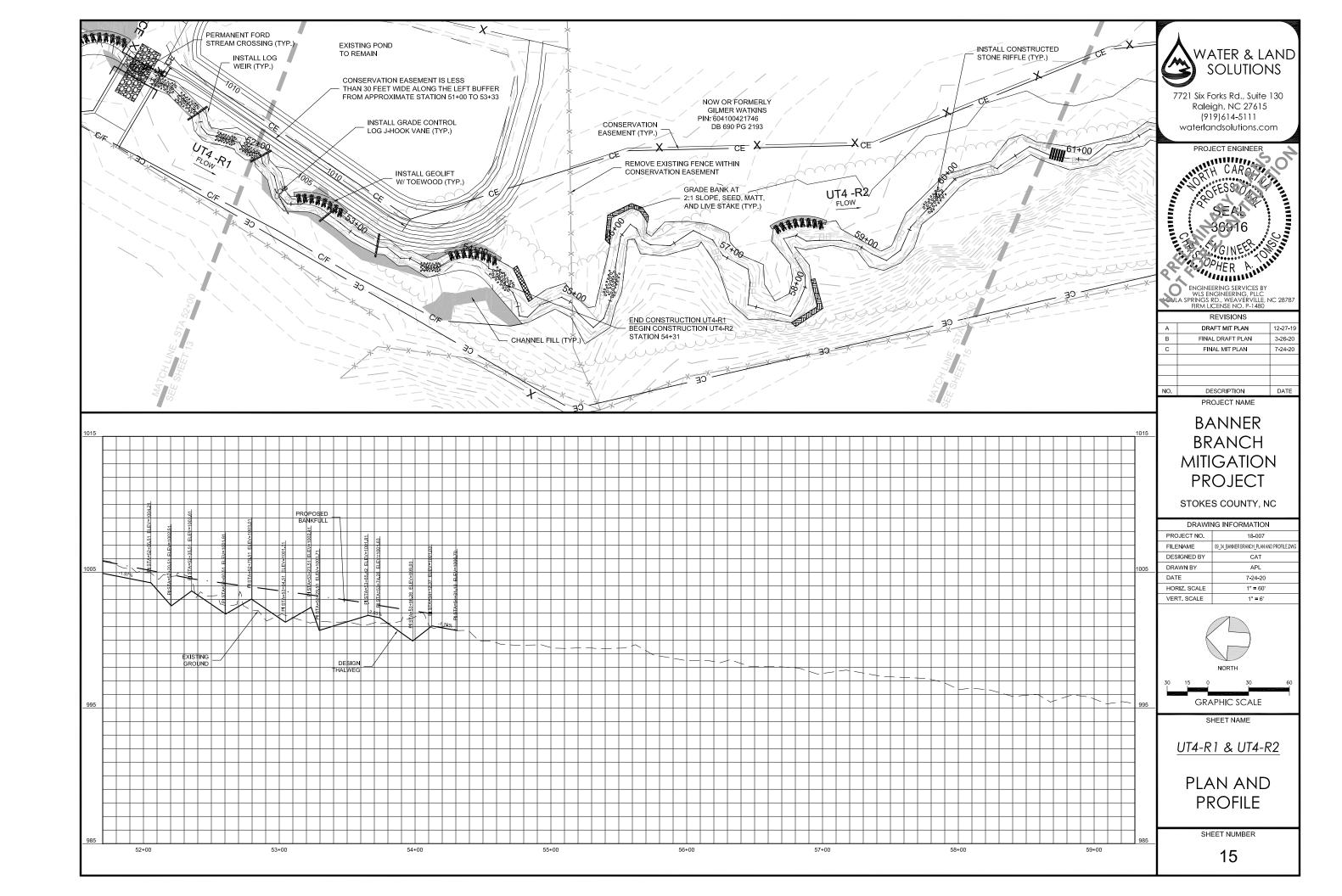

DRAWING INFORMATION				
PROJECT NO.	18-007			
FILENAME	04-08_BANNER BRANCH_DETAIL_SHEETS.DWG			
DESIGNED BY	CAT			
DRAWN BY	APL			
DATE	7-24-20			
HORIZ. SCALE	N.T.S.			
VERT. SCALE	N/A			

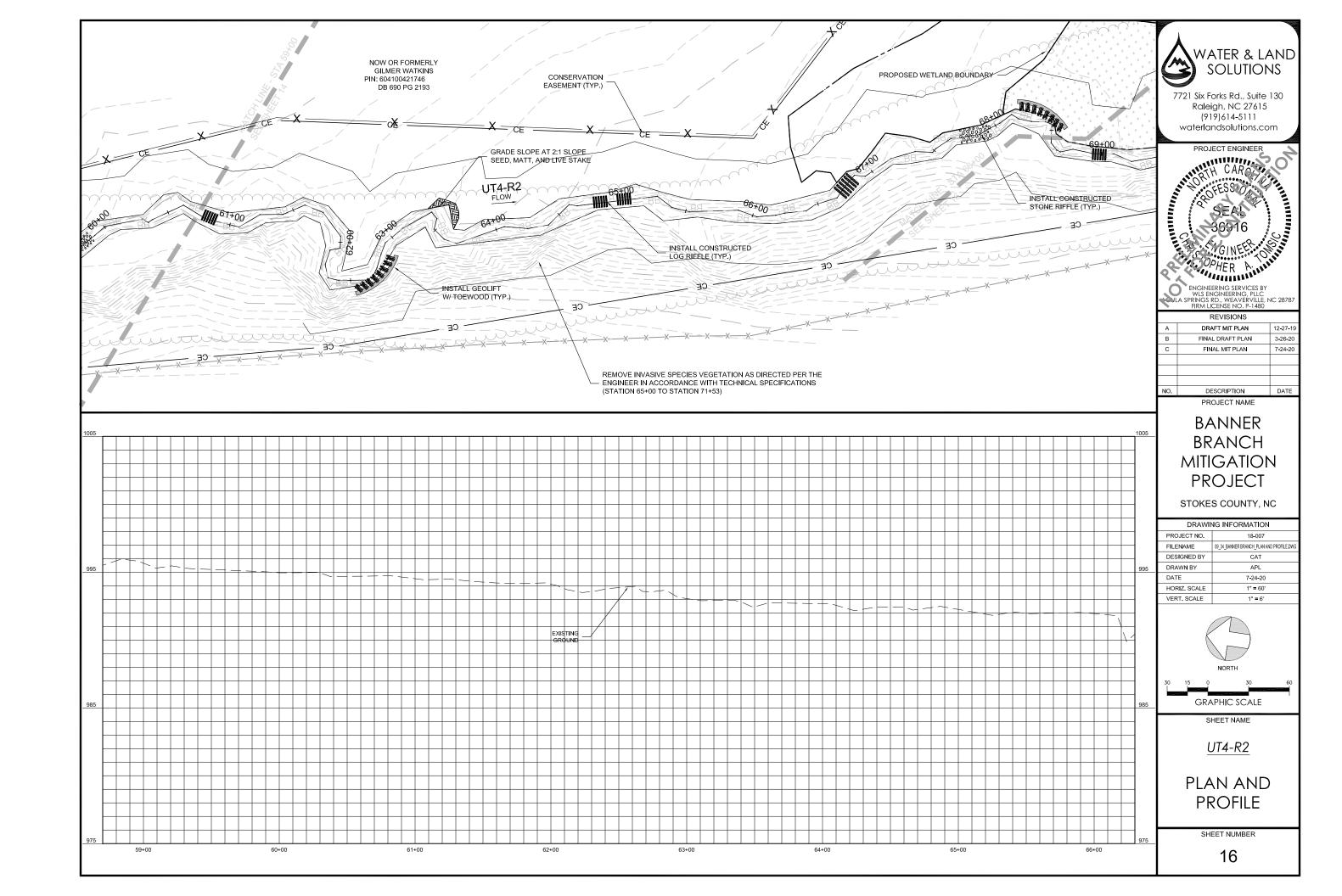

SHEET NAME

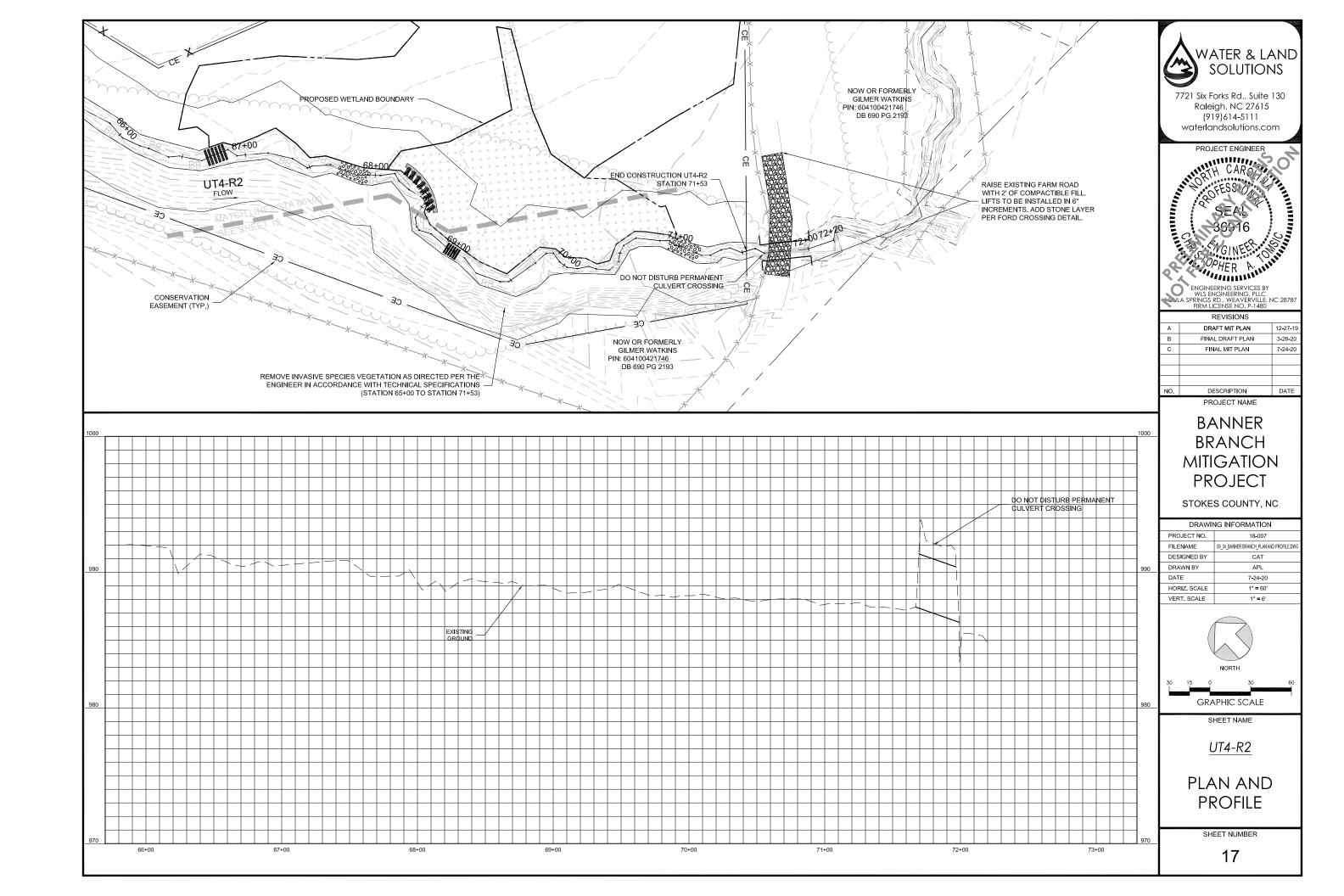

DETAILS

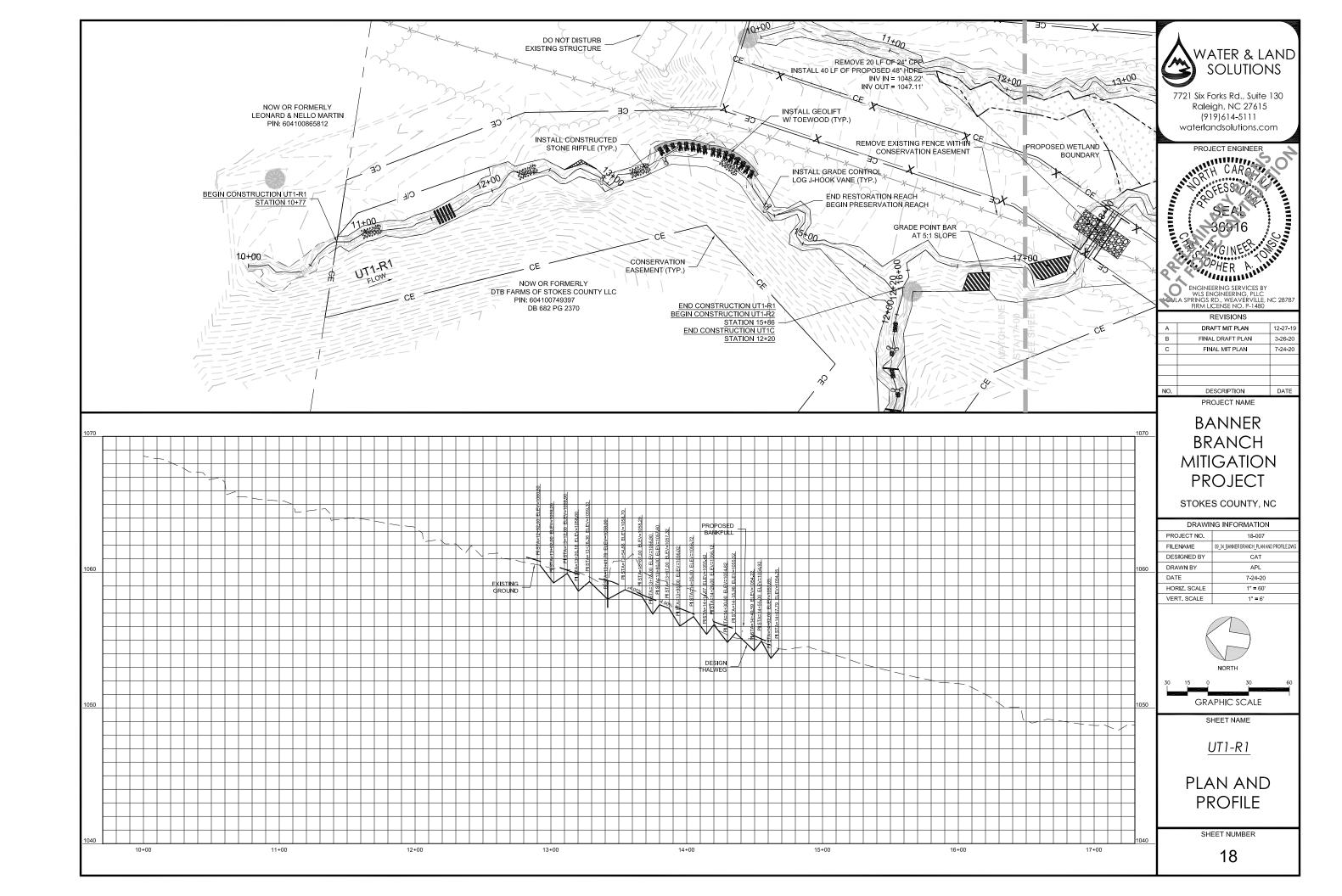

SHEET NUMBER

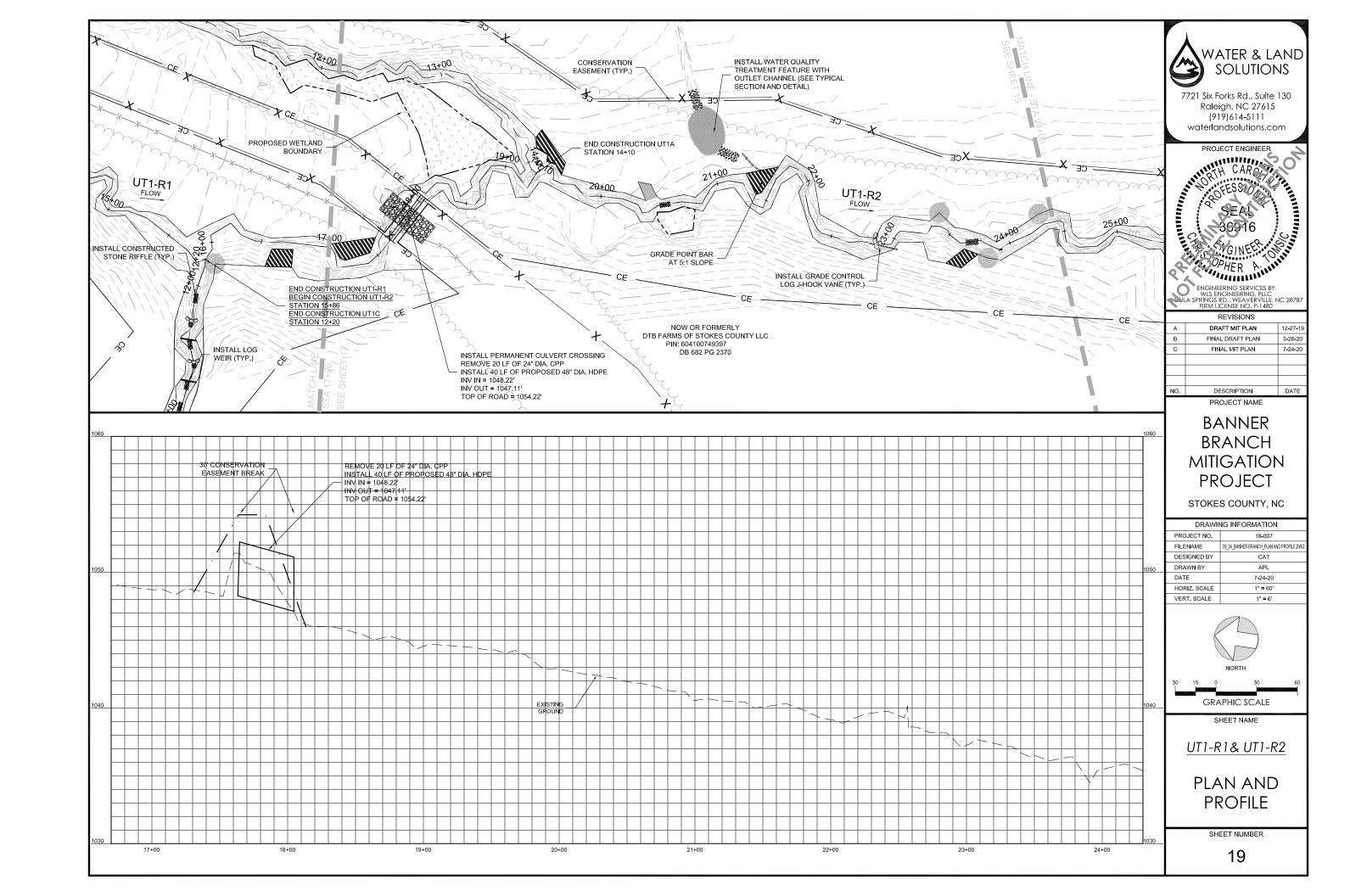


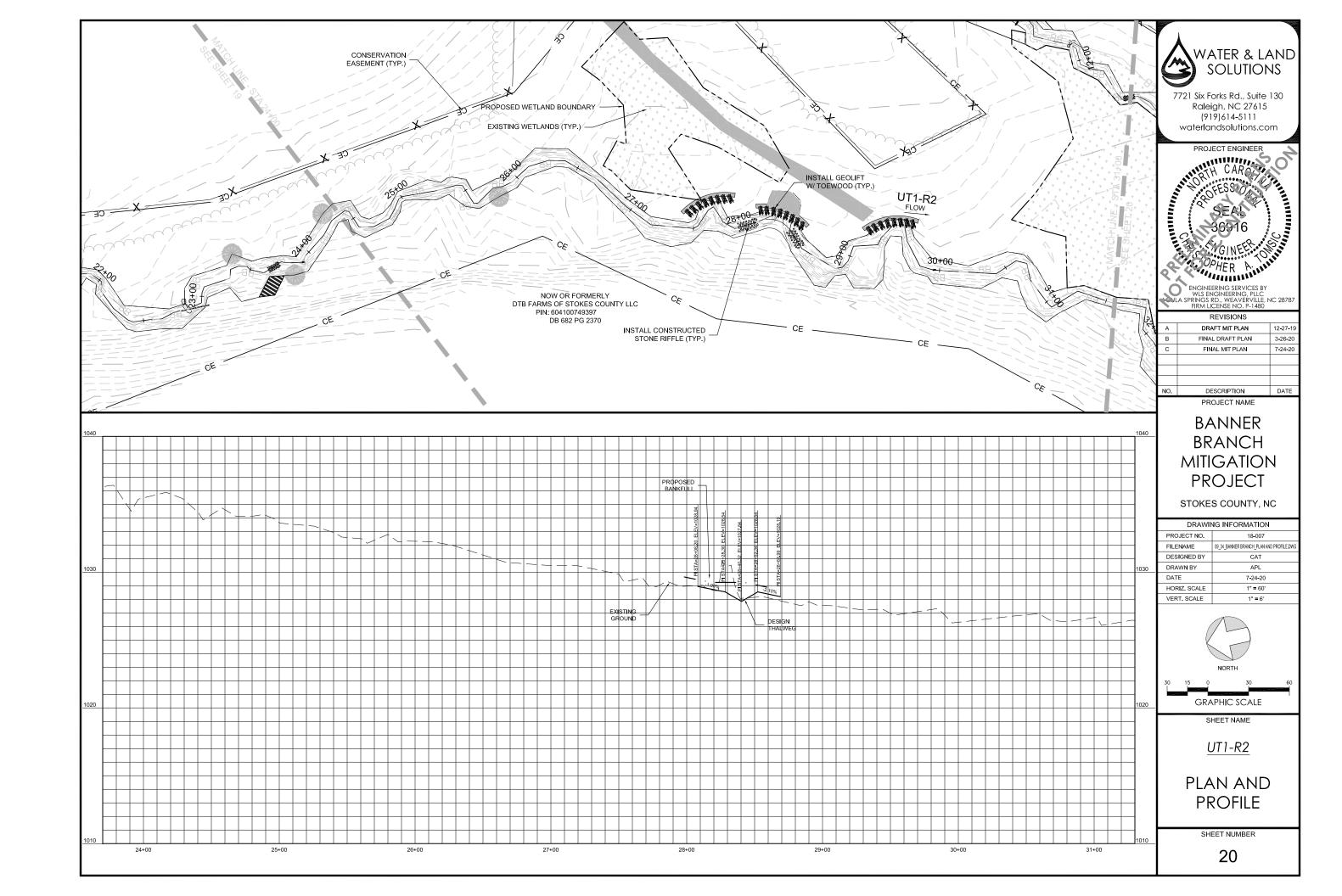


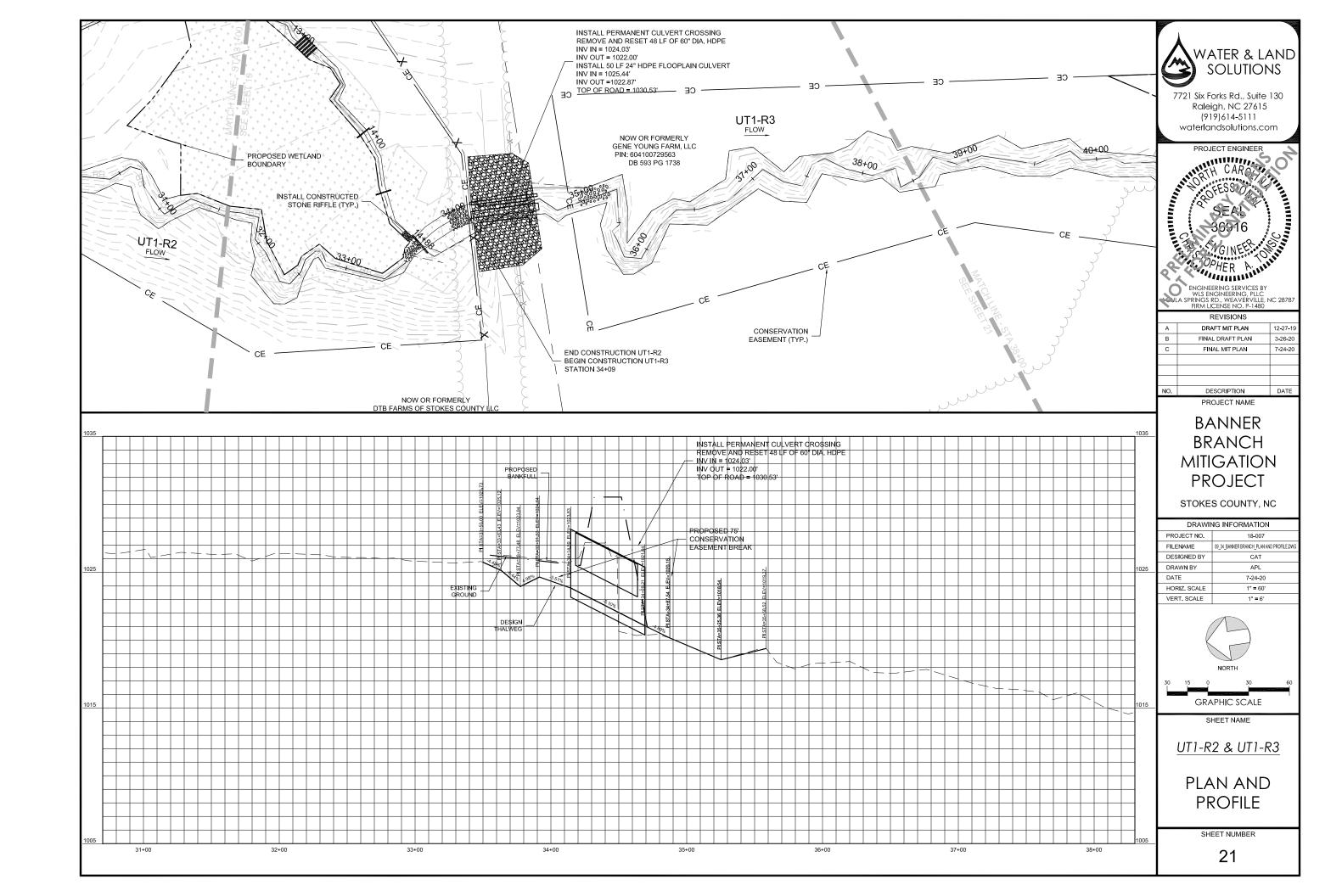


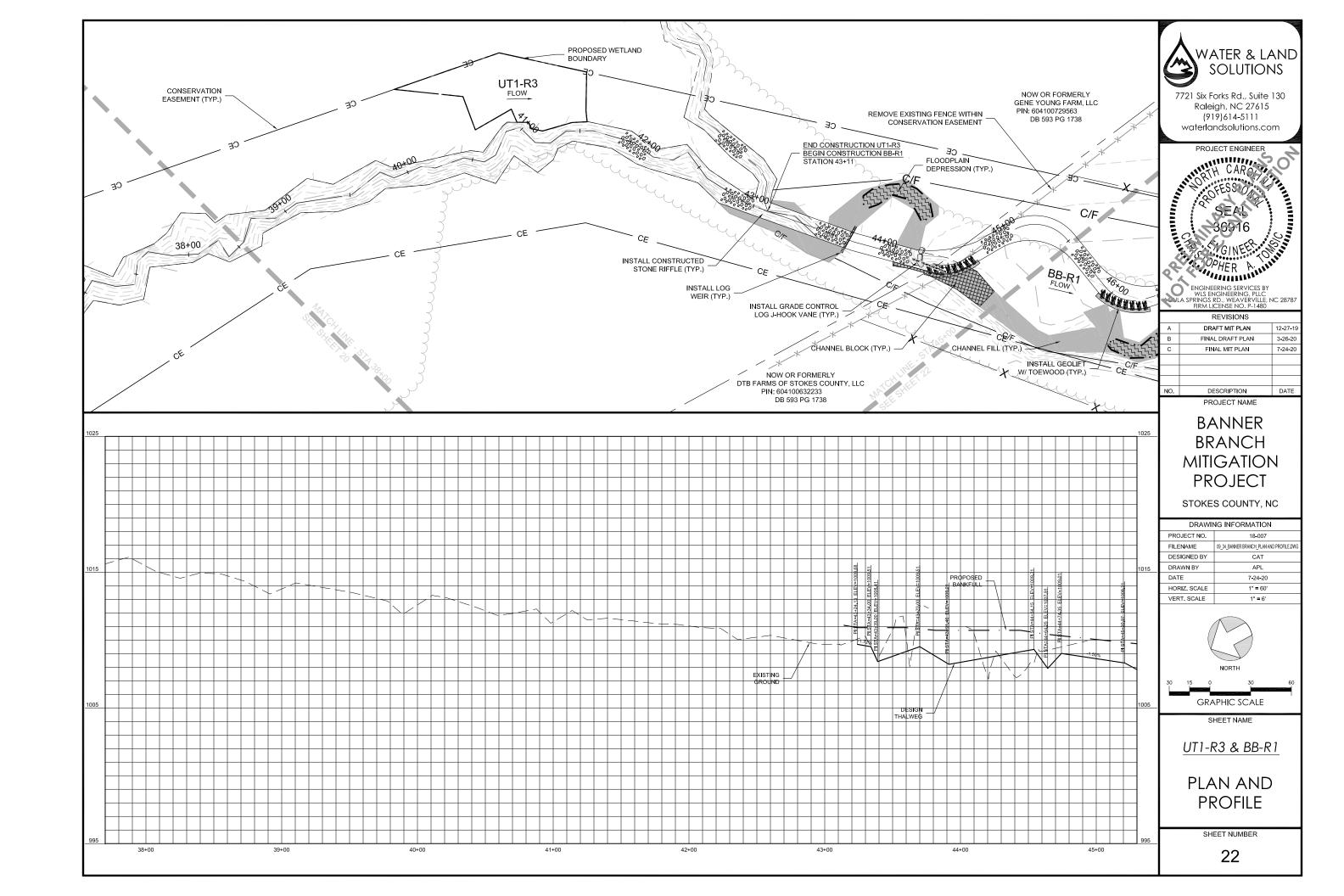


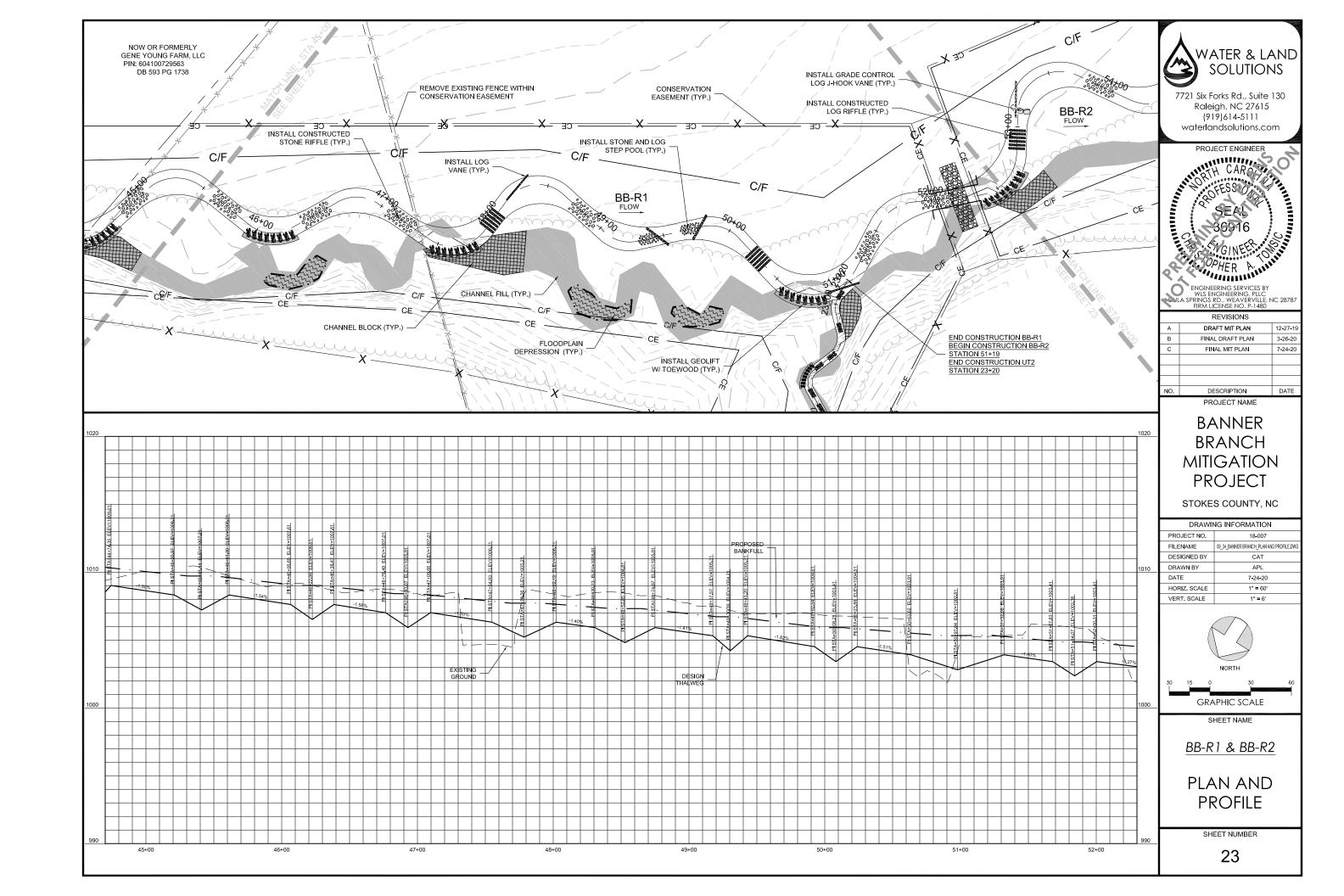


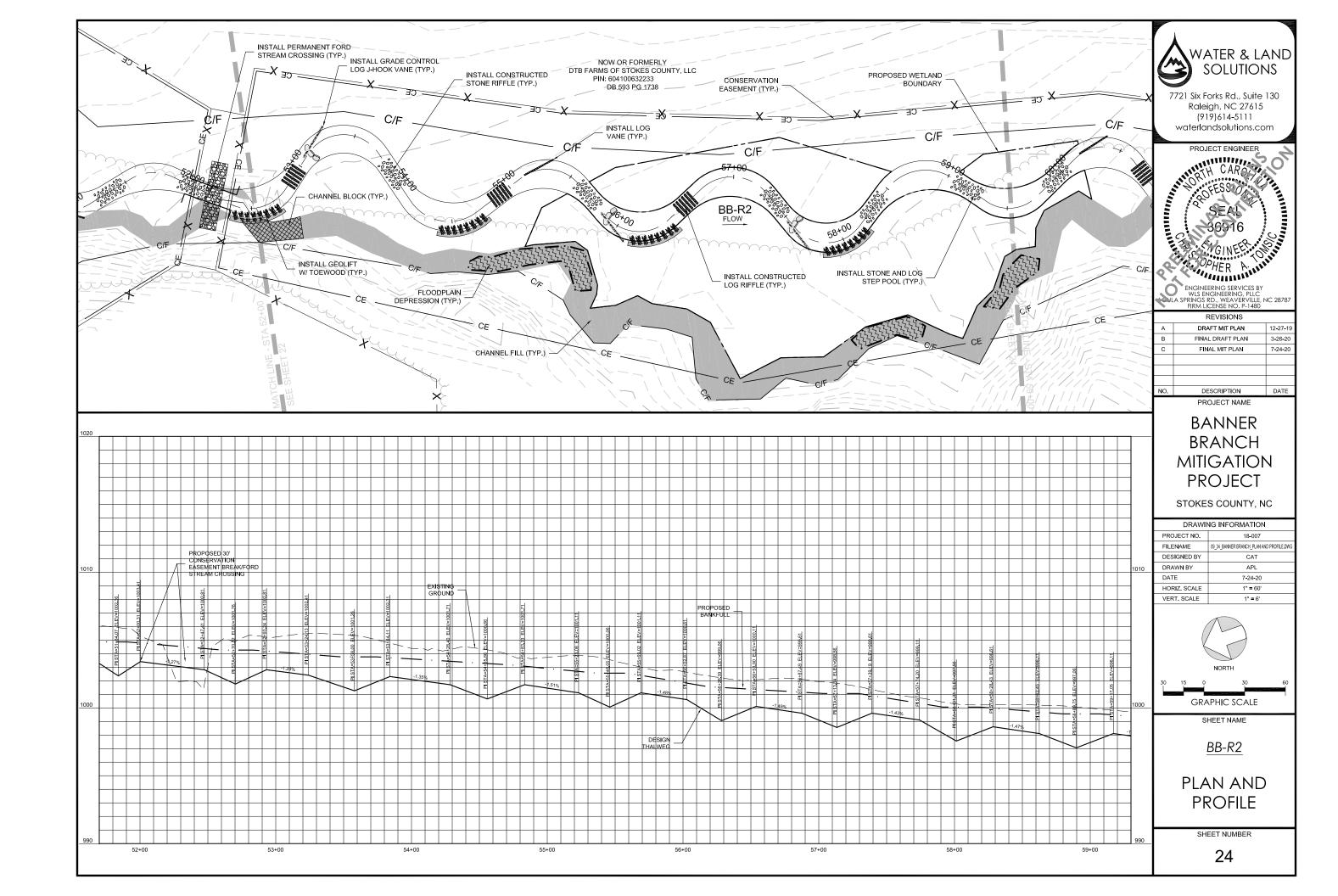


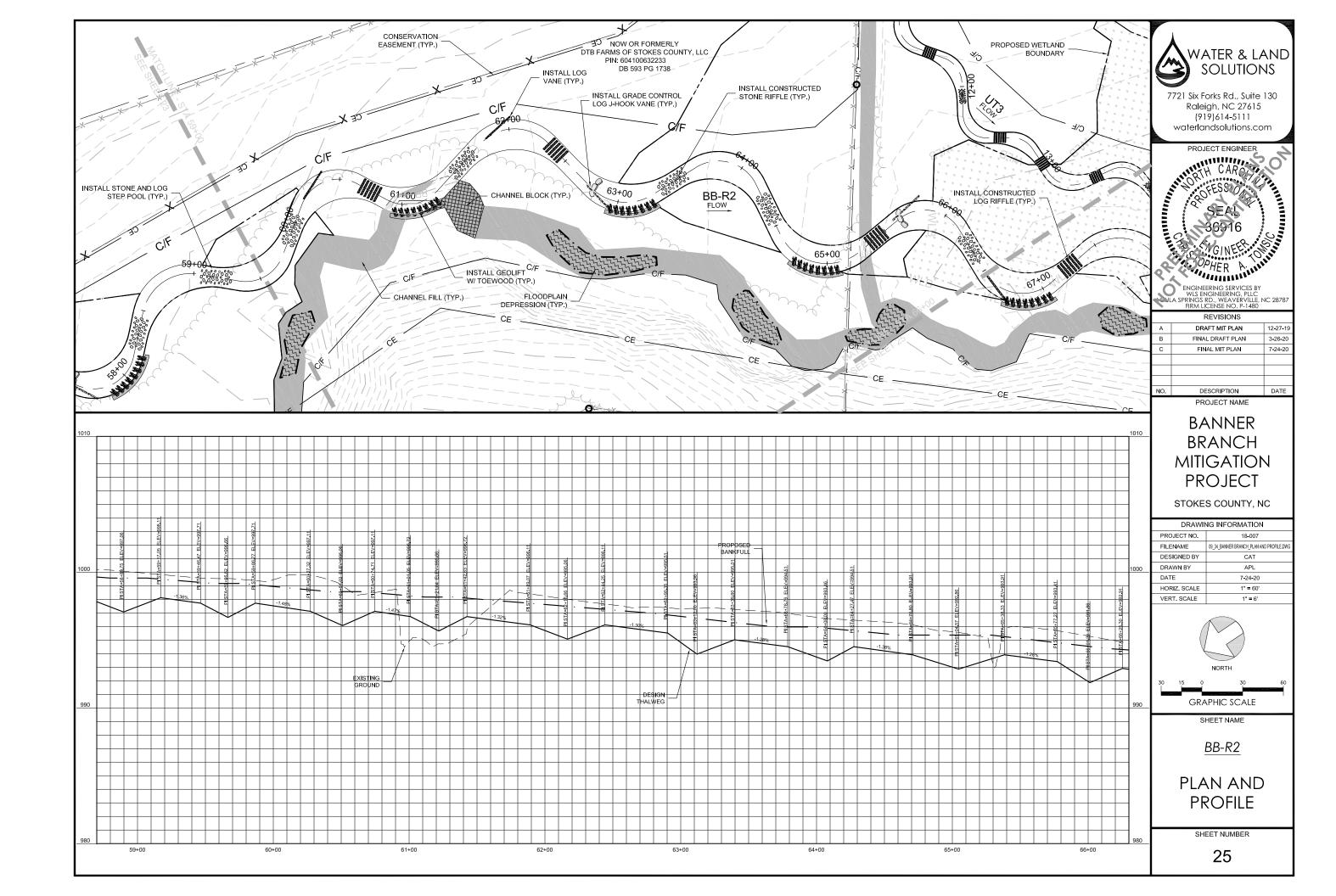


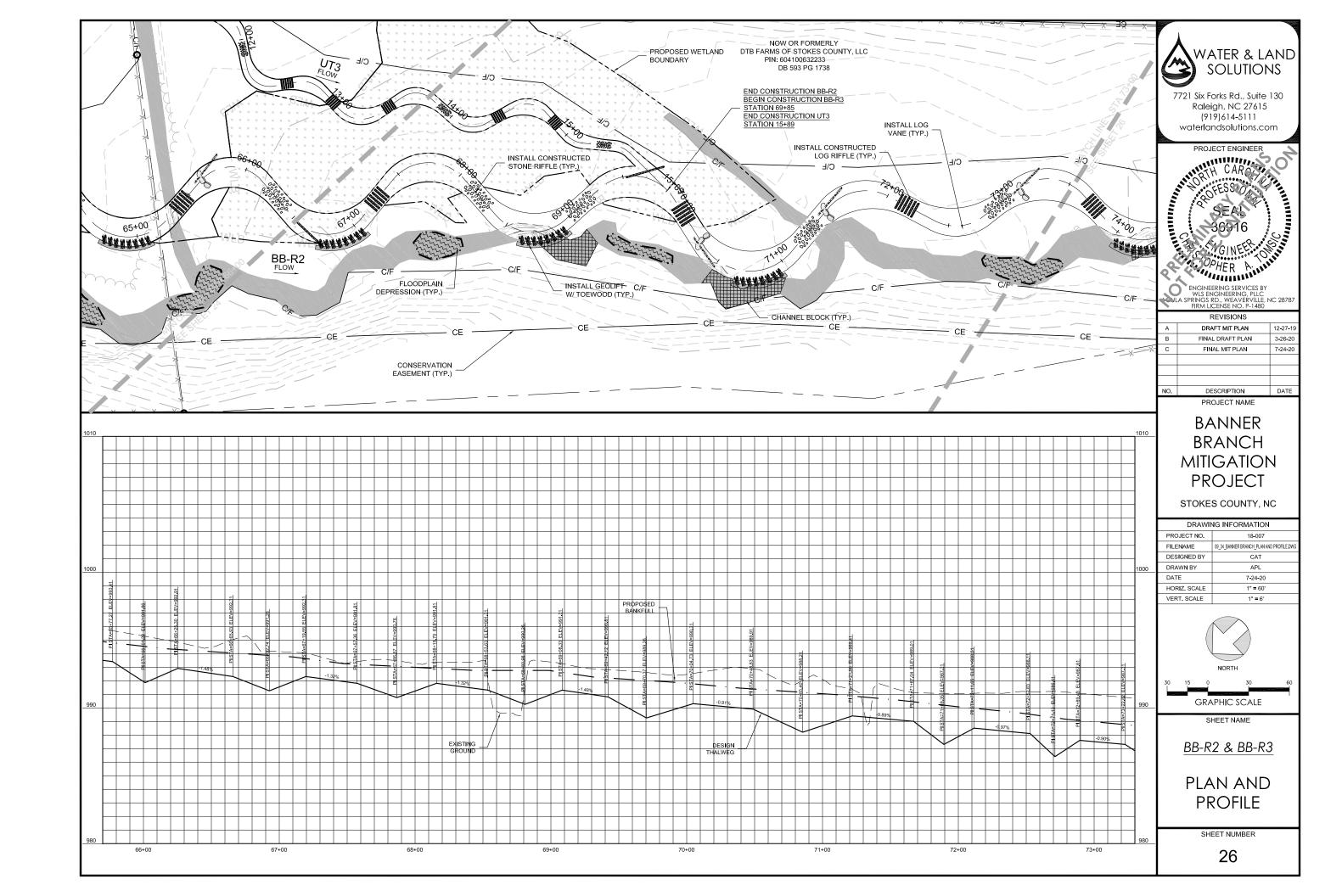


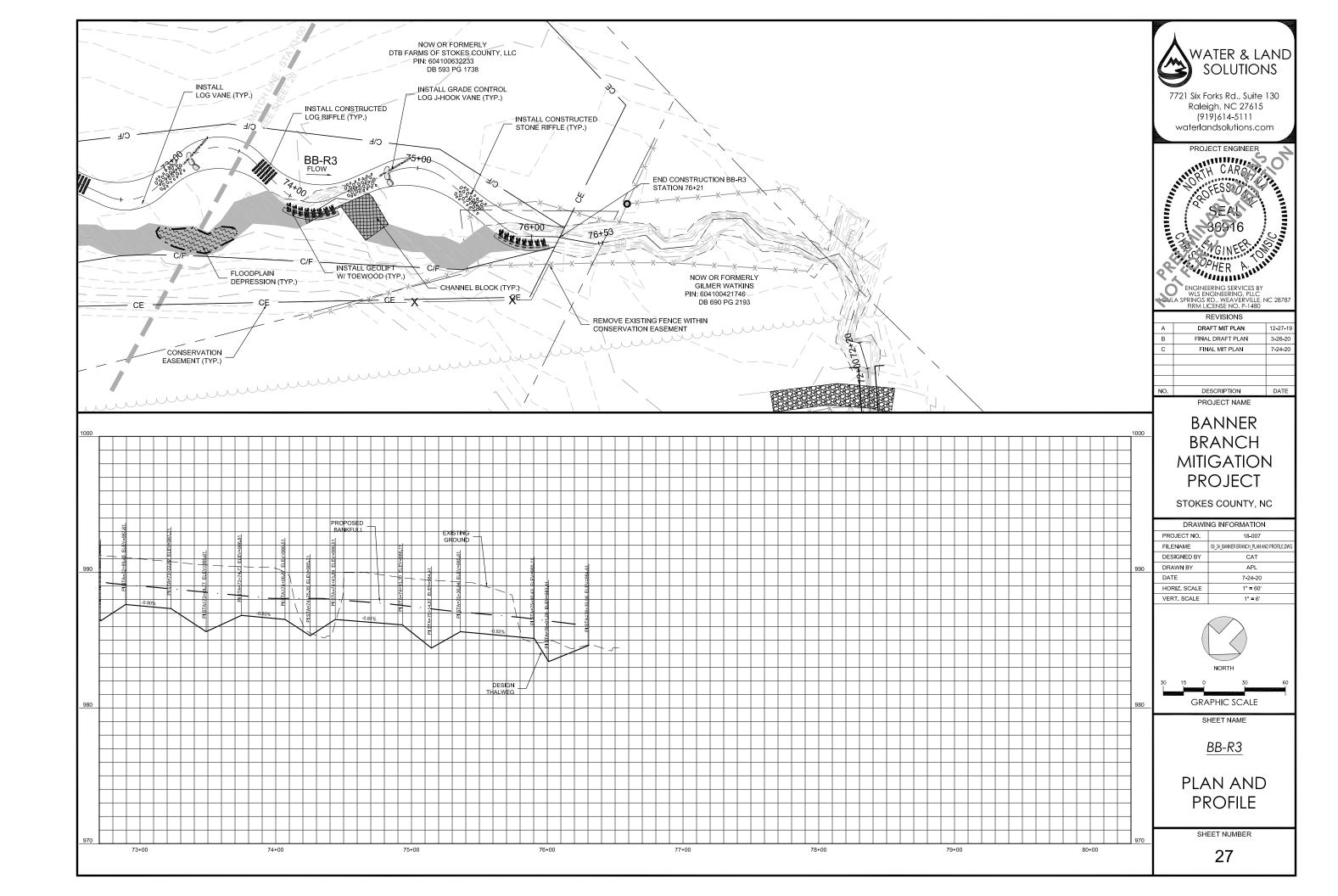


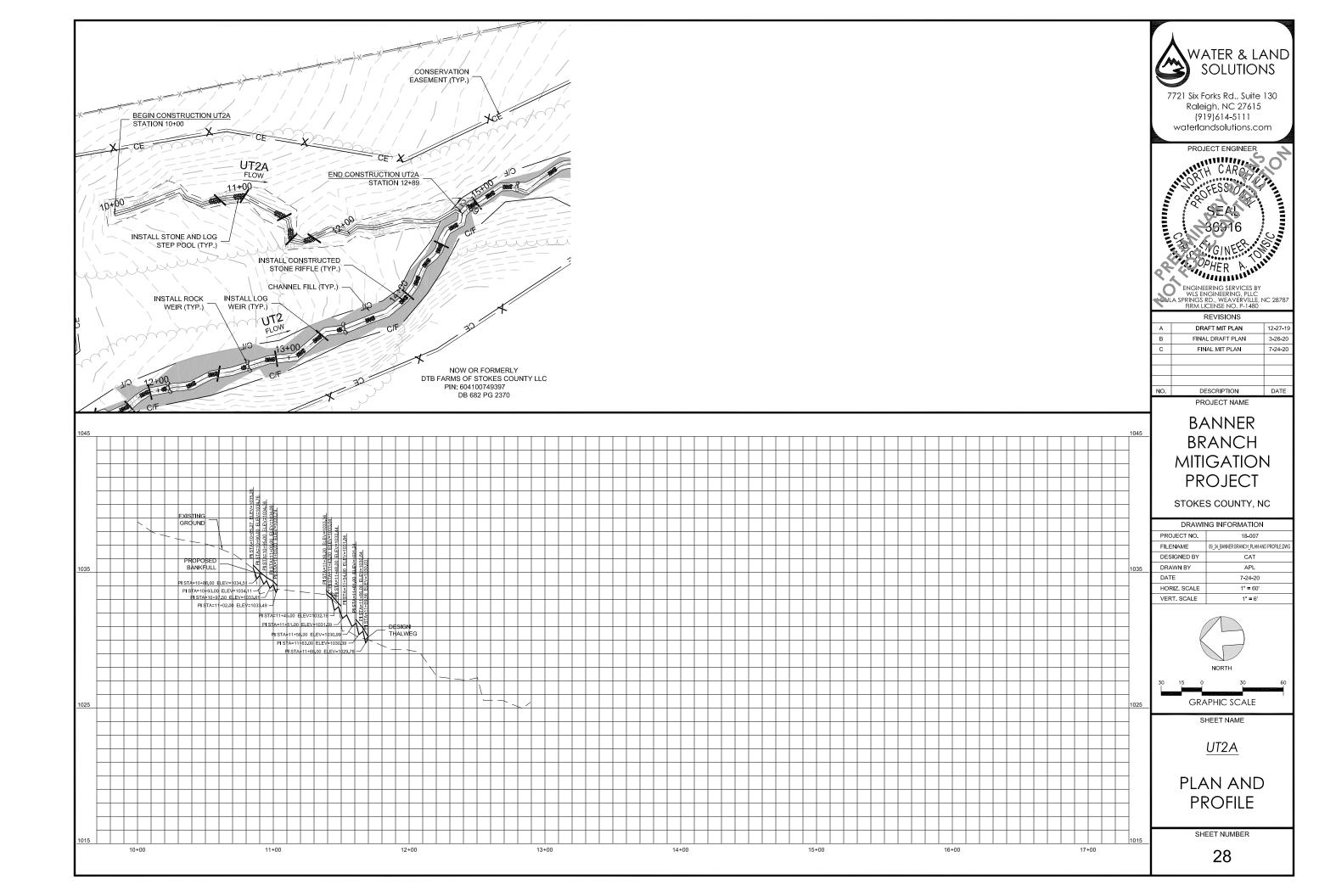


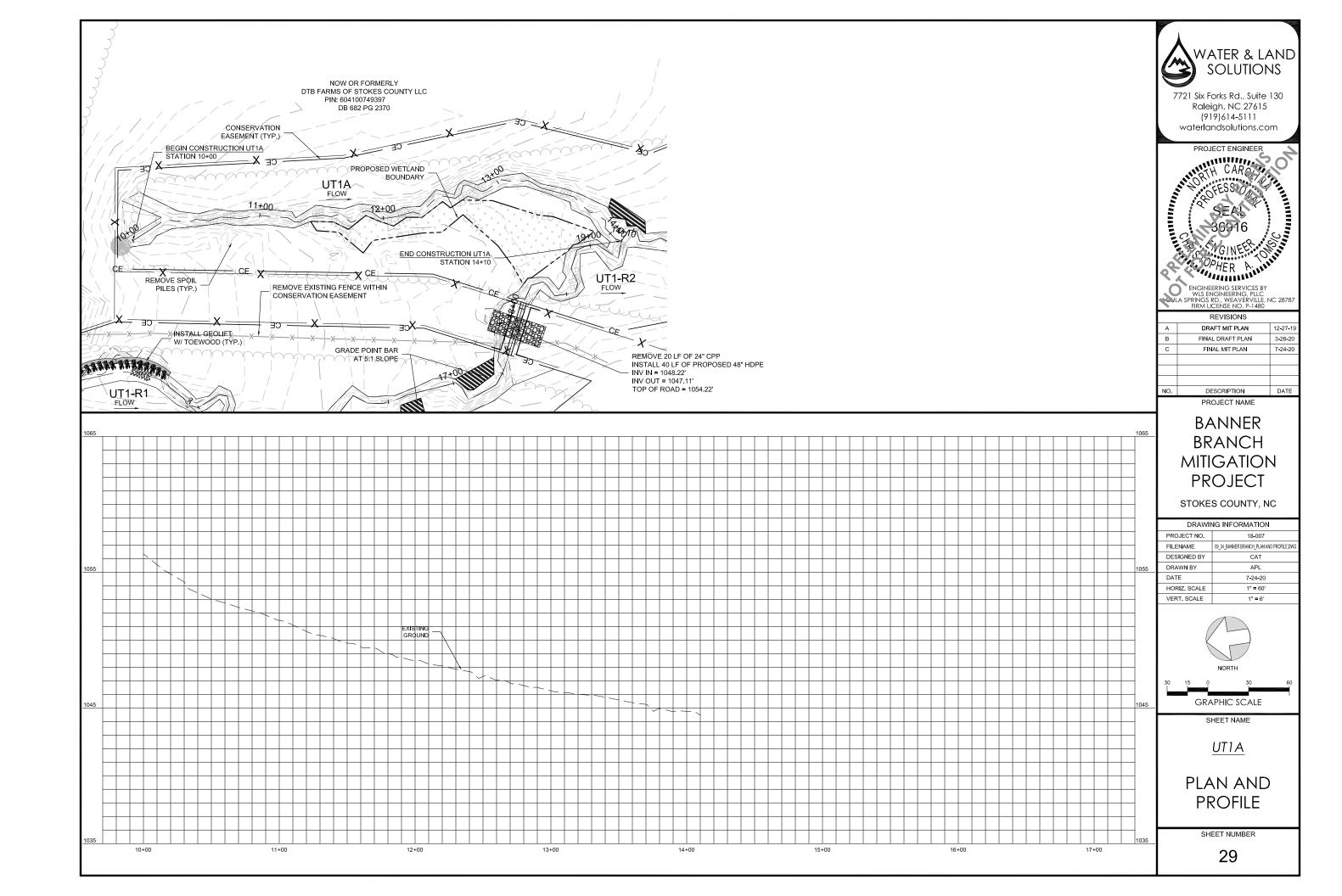


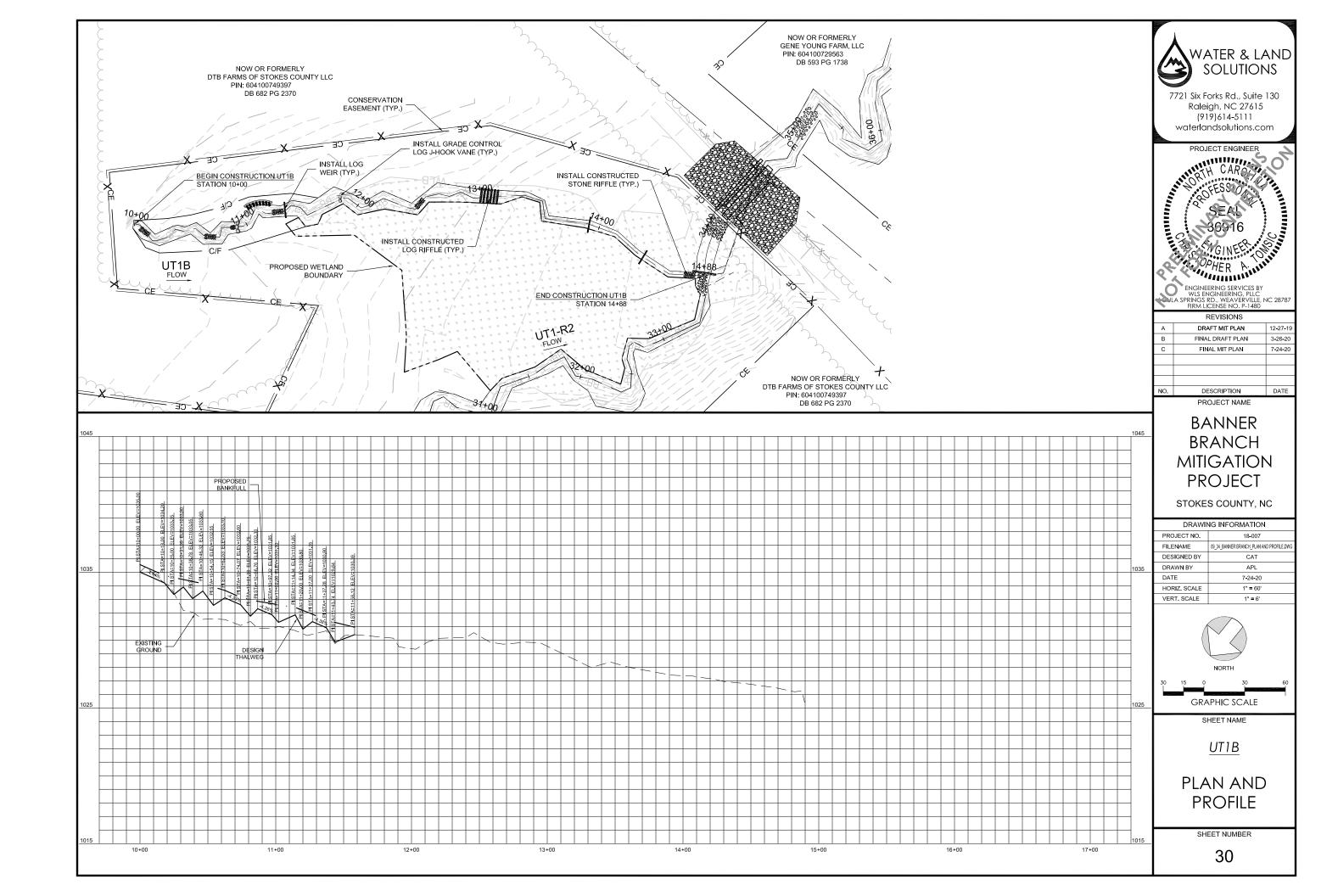


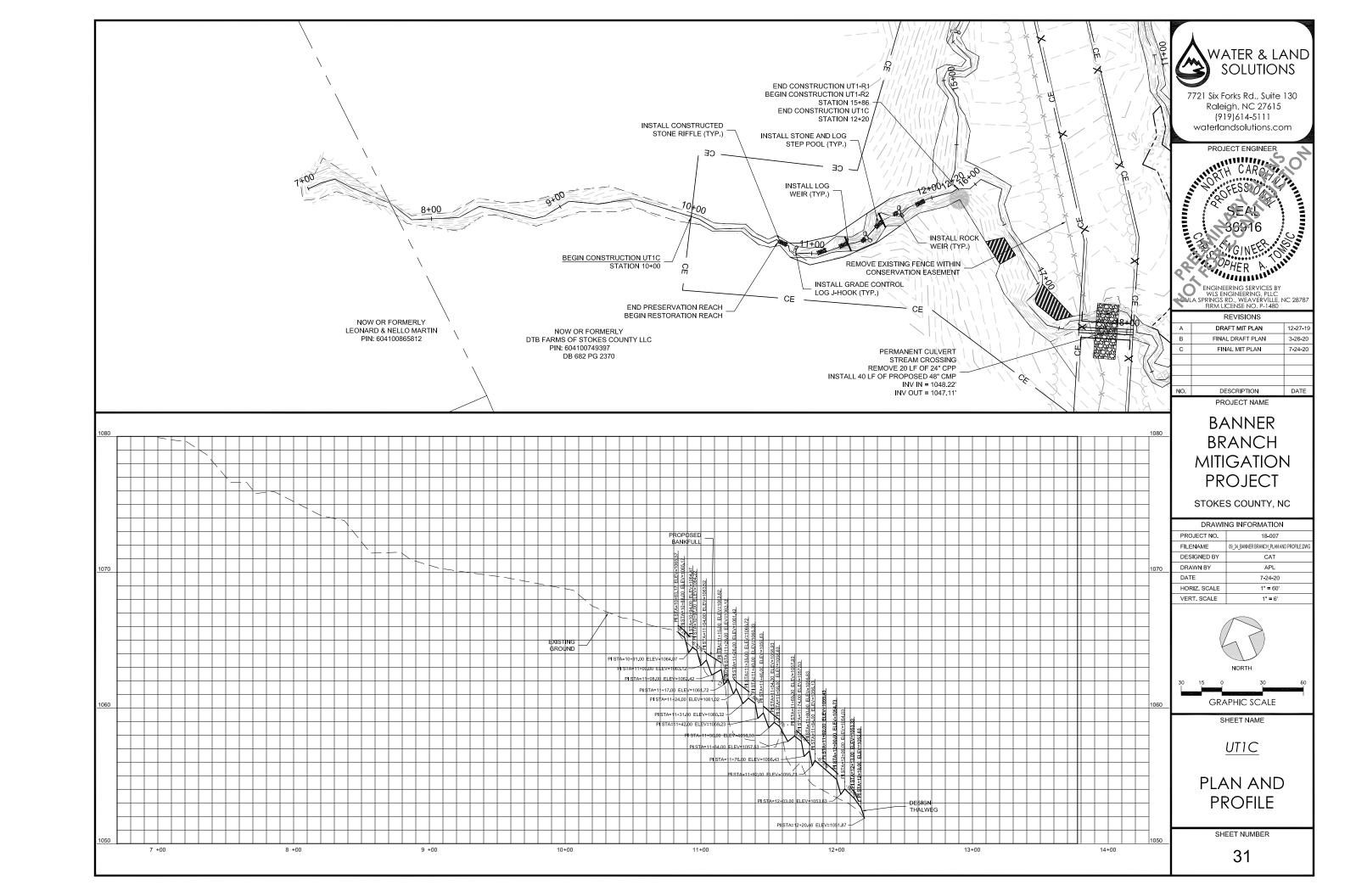


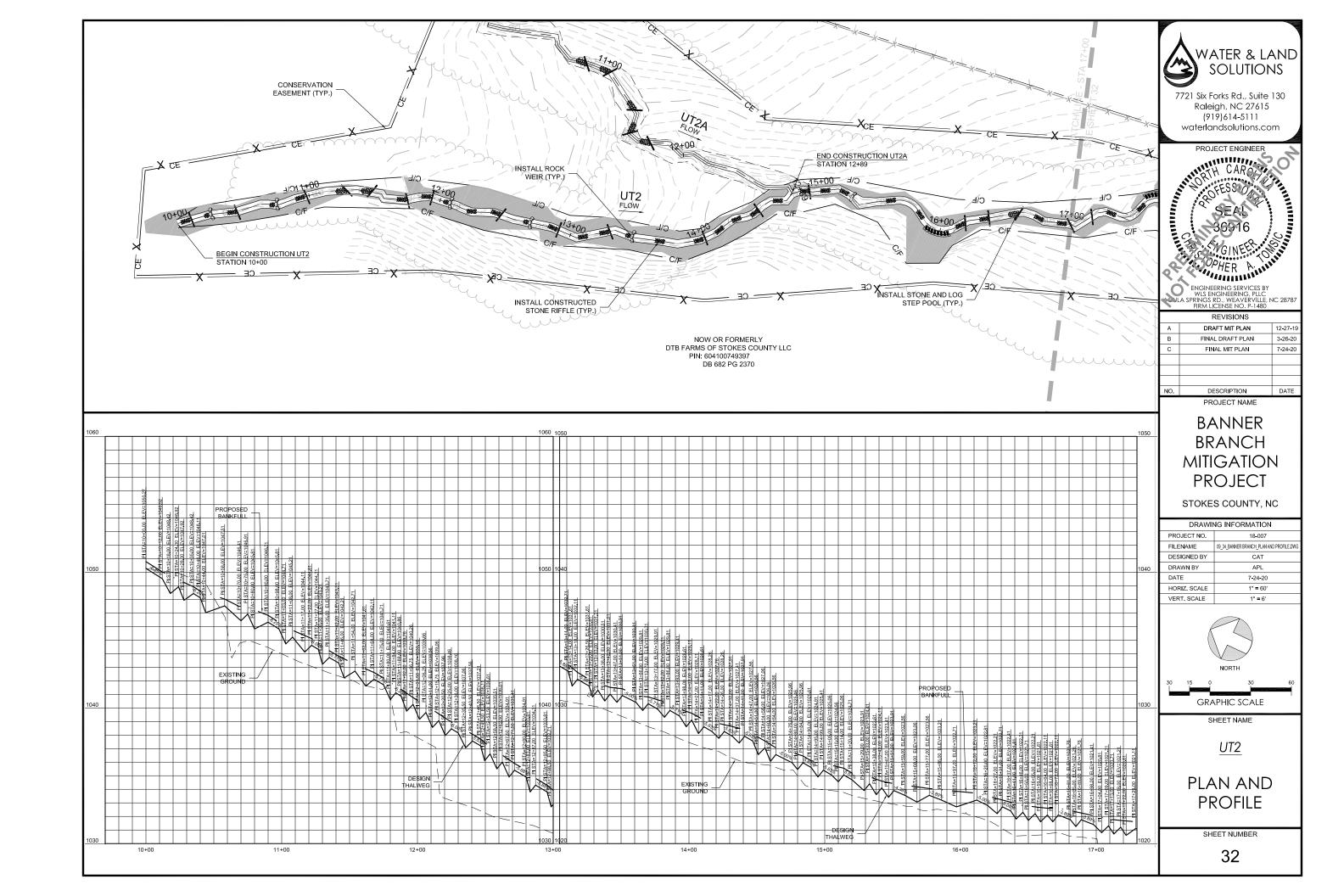


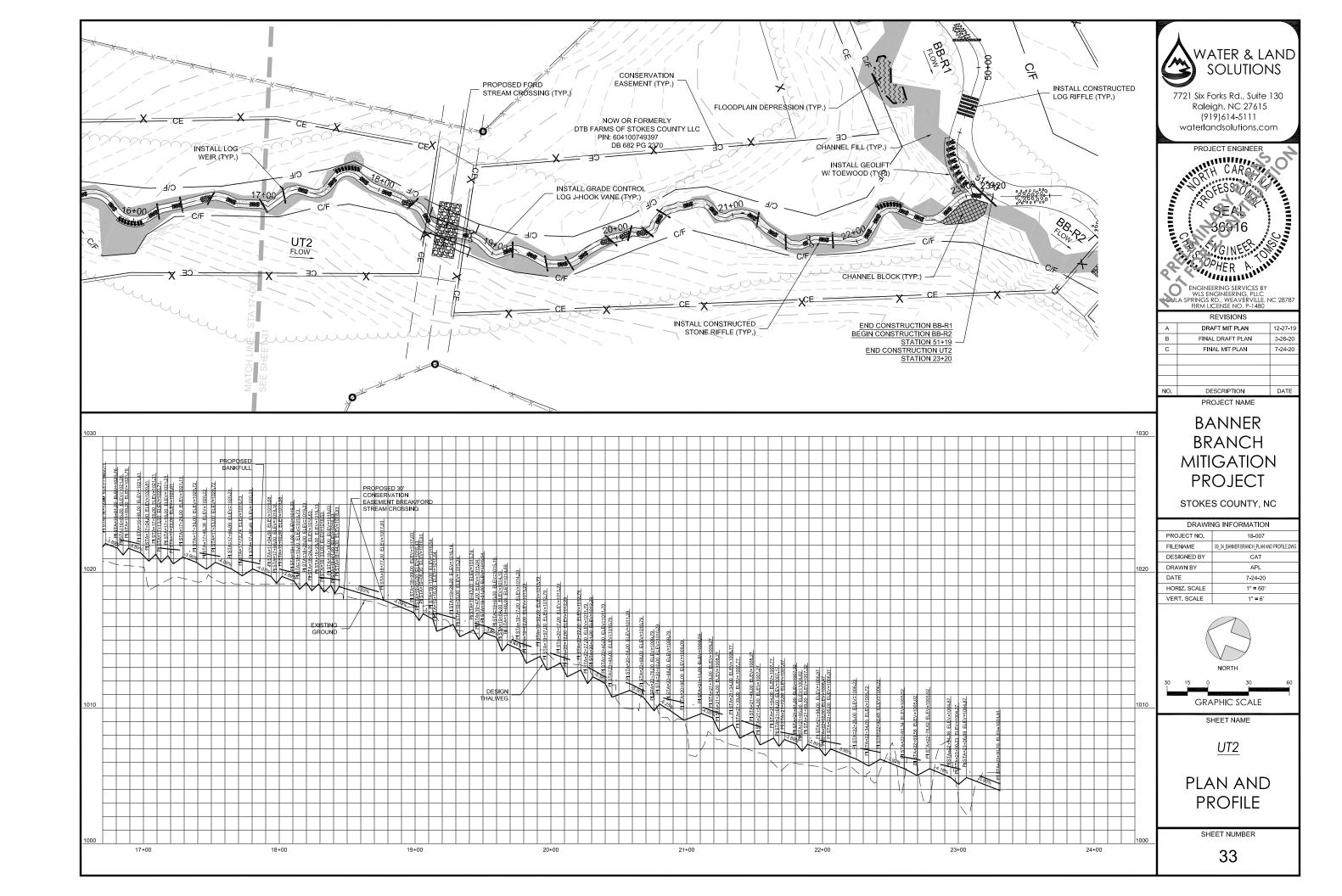


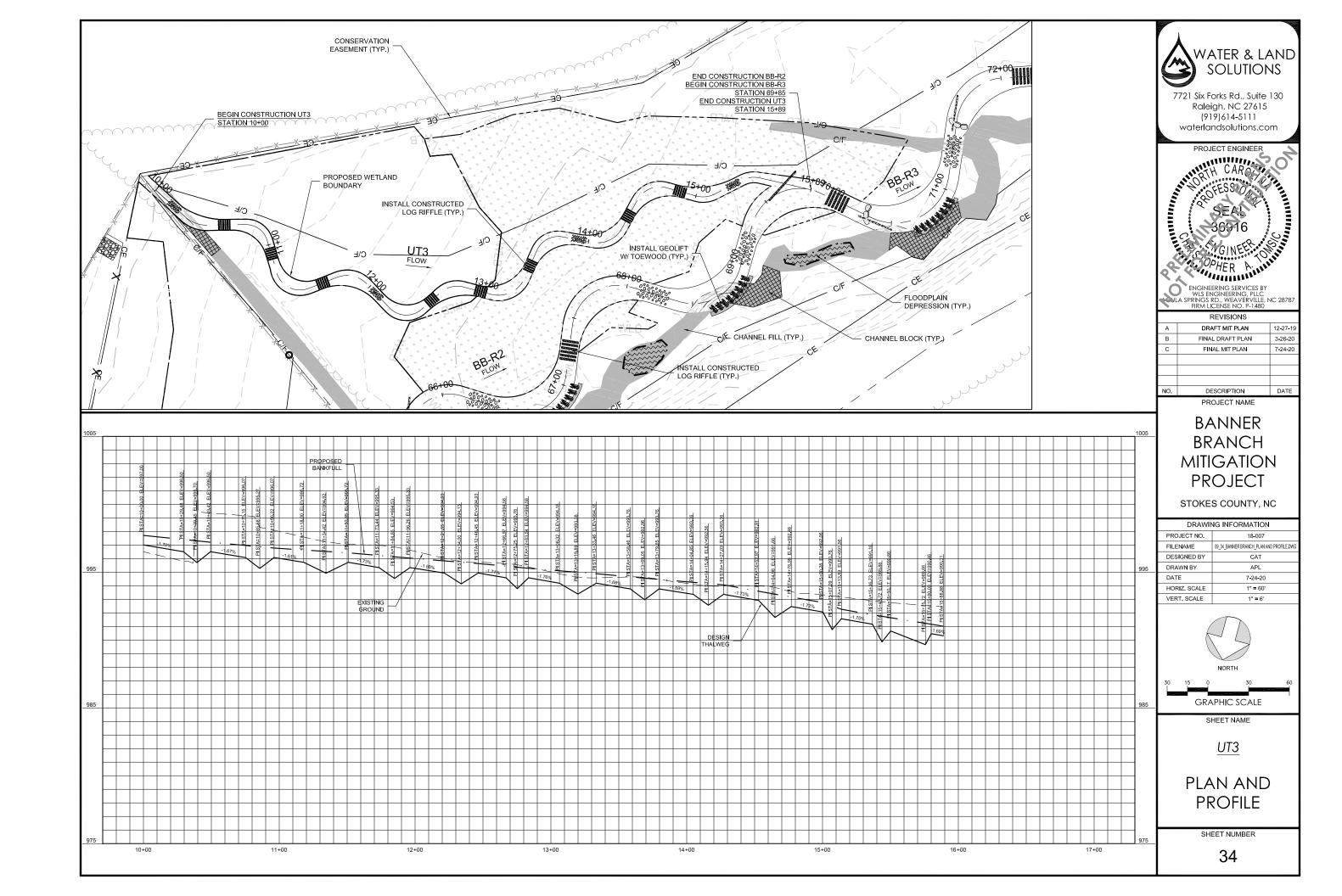












PLANTING NOTES

- THE FOLLOWING TABLES LIST THE PROPOSED VEGETATION SPECIES SELECTION FOR THE PROJECT REVEGETATION. THE TOTAL PLANTING AREA IS APPROXIMATELY 24.3 ACRES AND WILL VARY BASED ON SITE CONDITIONS AND AREAS DISTURBED DURING CONSTRUCTION.
- 2. FINAL VEGETATION SPECIES SELECTION MAY CHANGE DUE TO REFINEMENT OR SPECIES AVAILABILITY AT THE TIME OF PLANTING. SPECIES SUBSTITUTIONS WILL BE COORDINATED BETWEEN ENGINEER AND PLANTING CONTRACTOR PRIOR TO THE PROCUREMENT OF PLANT/SEED STOCK.
- 3. IN GENERAL, WOODY SPECIES SHALL BE PLANTED AT A TOTAL DENSITY OF APPROXIMATELY 680 STEMS PER ACRE AND A MINIMUM OF 30 FEET FROM THE TOP OF RESTORED STREAMBANKS AND TO THE REVEGETATION LIMITS. EXACT PLACEMENT OF THE PLANT SPECIES WILL BE DETERMINED BY THE CONTRACTOR'S VEGETATION SPECIALIST PRIOR TO SITE PLANTING AND BASED ON THE WETNESS CONDITIONS OF PLANTING LOCATIONS.
- 4. SUPPLEMENTAL PLANTING ACTIVITIES SHALL BE PERFORMED WITHIN THE CONSERVATION EASEMENT USING NATIVE SPECIES VEGETATION DESCRIBED IN RIPARIAN BUFFER PLANT MIXTURE.
- 5. ANY INVASIVE SPECIES VEGETATION, SUCH AS CHINESE PRIVET (LIGUSTRUM SINENSE) AND MULTIFLORA ROSE (ROSA MULTIFLORA) WILL BE INITIALLY TREATED AS DESCRIBED IN THE CONSTRUCTION SPECIFICATIONS PRIOR TO PLANTING ACTIVITIES TO ALLOW NATIVE PLANTS TO BECOME ESTABLISHED WITHIN THE CONSERVATION EASEMENT.
- 6. LARGER NATIVE TREE SPECIES TO BE PRESERVED WILL BE FLAGGED BY THE ENGINEER PRIOR TO CONSTRUCTION ACTIVITIES. ANY TREES HARVESTED FOR WOODY MATERIAL WILL BE UTILIZED TO PROVIDE BED AND BANK STABILIZATION, COVER AND/OR HABITAT.
- ALL DISTURBED AREAS WILL BE STABILIZED USING MULCHING AND SEEDING AS DEFINED IN THE CONSTRUCTION SPECIFICATIONS AND THE APPROVED SEDIMENTATION AND EROSION CONTROL PLANS.

PLANTING SCHEDULE

% Proposed Wetland

Botanical Name	Common Name	for Planting by Species	Wetland Tolerance
Riparian Buf	fer Bare Root Plan	ntings – Overs	tory
(Proposed 8' x 8' Planting Spacing @ 680 Stems/Acre)			
Betula nigra	River birch	7%	FACW
Tilia americana	Basswood	7%	FACU
Platanus occidentalis	American sycamore	10%	FACW
Nyssa sylvatica	Black Gum	8%	FAC
Liriodendron tulipifera	Tulip-poplar	10%	FACU
Quercus alba	White oak	7%	FACU
Quercus falcata	Southern Red Oak	7%	FACU
Fraxinus pennsylvanica	Green Ash	4%	FACW
Riparian Buff	er Bare Root Plan	tings – Unders	story
(Proposed 8' x 8	3' Planting Spacin	g @ 680 Stem	s/Acre)
Diospyros virginiana	Persimmon	3%	FAC
Amelanchier arborea	Common Serviceberry	3%	FAC
Carpinus caroliniana	inus caroliniana American hornbeam		FAC
Hamamelis virginiana Witch-hazel		3%	FACU
Asimina triloba Pawpaw		3%	FAC
Lindera benzoin	Spicebush	3%	FACW
Alnus serrulata	Hazel alder	3%	OBL
Corylus americana	Hazelnut	3%	FACU
Riparian Buffer Live Stake Plantings - Streambanks			
(Proposed 2'-3' Space	cing @ Meander B Riffle Section		Spacing @
Sambucus canadensis	Elderberry	20%	FACW-
Salix sericea	Silky Willow	30%	OBL
Salix nigra	Black Willow	10%	OBL
Cornus amomum	Silky Dogwood	40%	FACW

TEMPORARY SEEDING SCHEDULE

Planting Dates	Botanical Name	Common Name	Application Rate (lbs/acre)
September to March	Secale cereale	Rye Grain (Cool Season)	130
April to August	Urochloa ramosa	Browntop Millet (Warm Season)	40

PERMANENT SEEDING SCHEDULE

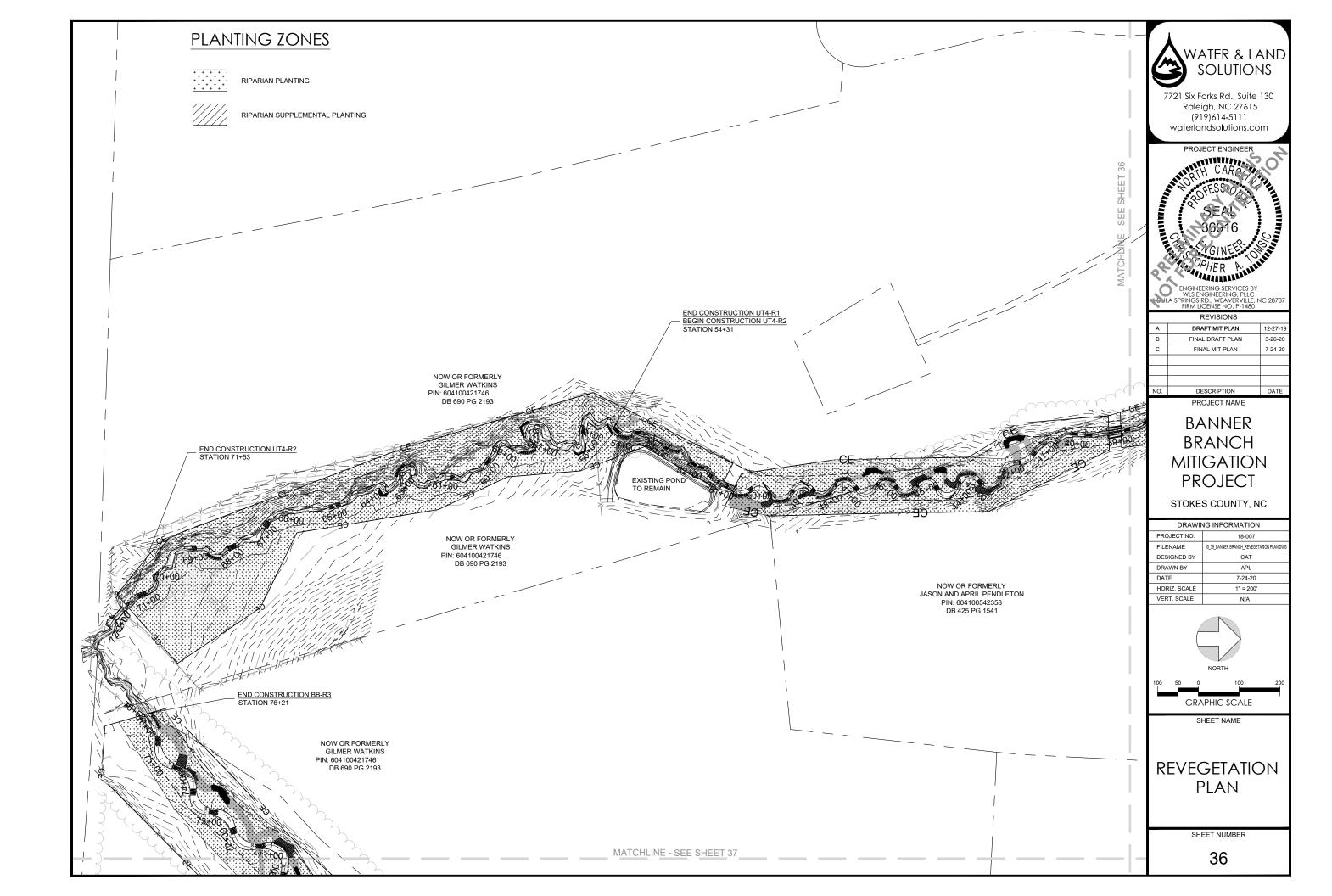
Botanical Name	Common Name	% Proposed for Planting by Species	Seeding Rate (lb/acre)	Wetland Tolerance		
- Cimanent Herbi	Permanent Herbaceous Seed Mixture – Streambank, Floodplain, Wetlands and Riparian Buffer Areas					
	(Proposed Seed F	Rate @ 15 lbs/a	icre)			
Andropogon gerardii	Big blue stem	10%	0.75	FAC		
Dichanthelium clandestinum	Deer tongue	10%	0.75	FACW		
Polygonum pennsylvanicum	Pennsylvania smartweed	5%	0.75	FACW		
Agrostis alba	Redtop	5%	0.75	FACW		
Chasmanthium latifolum	River oats	5%	0.75	FACU		
Elymus virginicus	Virginia wildrye	5%	0.75	FAC		
Juncus effusus	Soft rush	5%	0.75	FACW+		
Carex Iurida	Lurid sedge	3%	0.75	OBL		
Carex crinita	Fringed sedge	3%	0.75	OBL		
Andropogon virginicus	Broom sedge	3%	0.75	FACU		
Vernonia noveboracensis	New York Ironweed	3%	0.75	FACW		
Lobelia carinalis	Cardinal flower	3%	0.75	FACW		
Andropogon glomeratus	Bushy bluestem	5%	0.75	FACW		
Panicum virgatum	Switchgrass	10%	1.50	FACW		
Bidens frondosa	Beggars tick	5%	0.75	FACW		
Coreopsis lanceolata	Lance-leaved tick seed	5%	0.75	FACU		
Schizachyrium scoparium	Little blue stem	5%	0.75	FACU		
Tripsacum dactyloides	Eastern gammagrass	5%	0.75	FAC+		
Sorghastrum nutans	Indiangrass	5%	0.75	FACU		

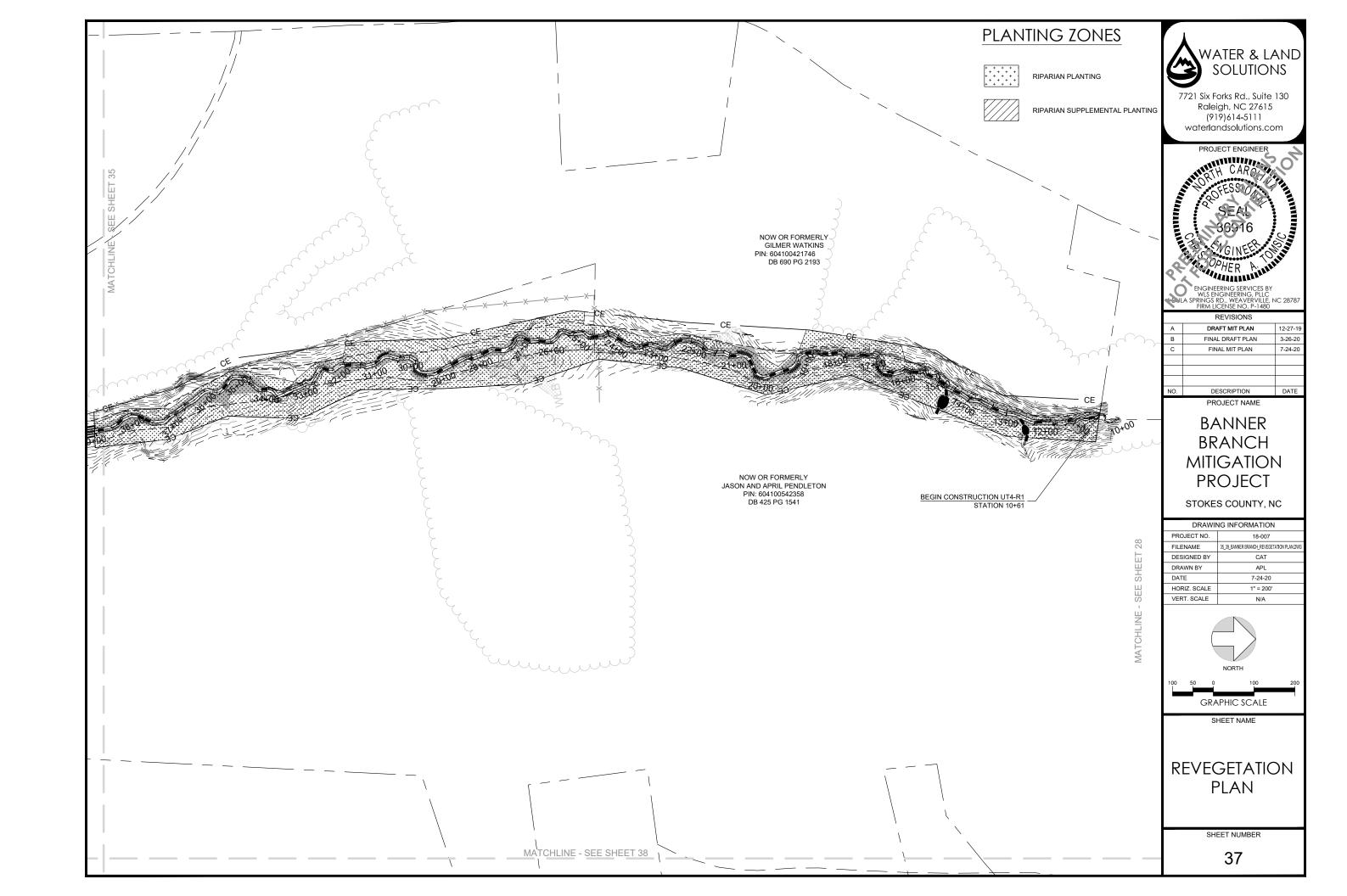
7721 Six Forks Rd., Suite 130 Raleigh, NC 27615 (919)614-5111 waterlandsolutions.com

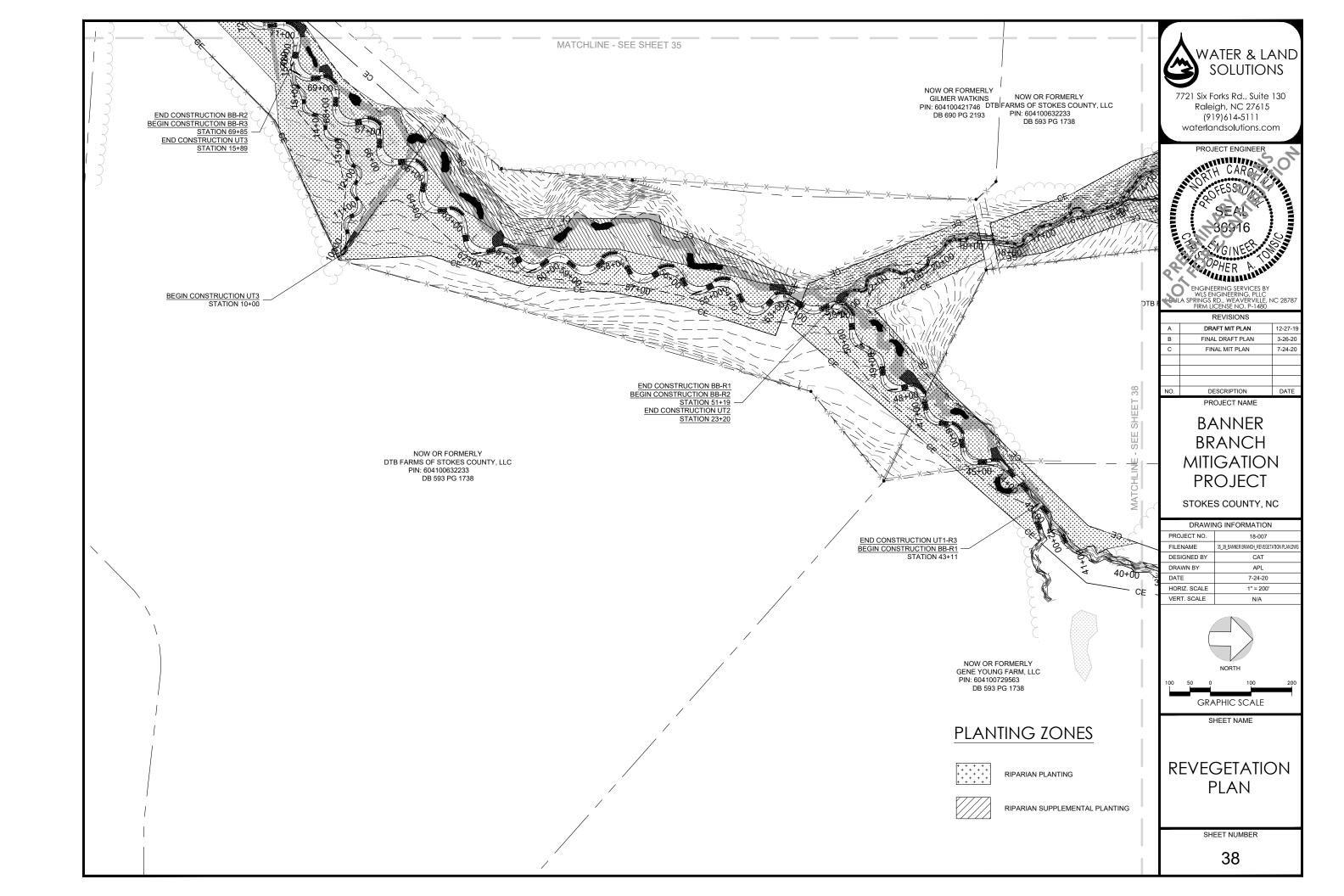
FIRM LICENSE NO. P-1480		
	REVISIONS	
Α	DRAFT MIT PLAN	12-27-19
В	FINAL DRAFT PLAN	3-26-20
О	FINAL MIT PLAN	7-24-20
NO.	DESCRIPTION	DATE

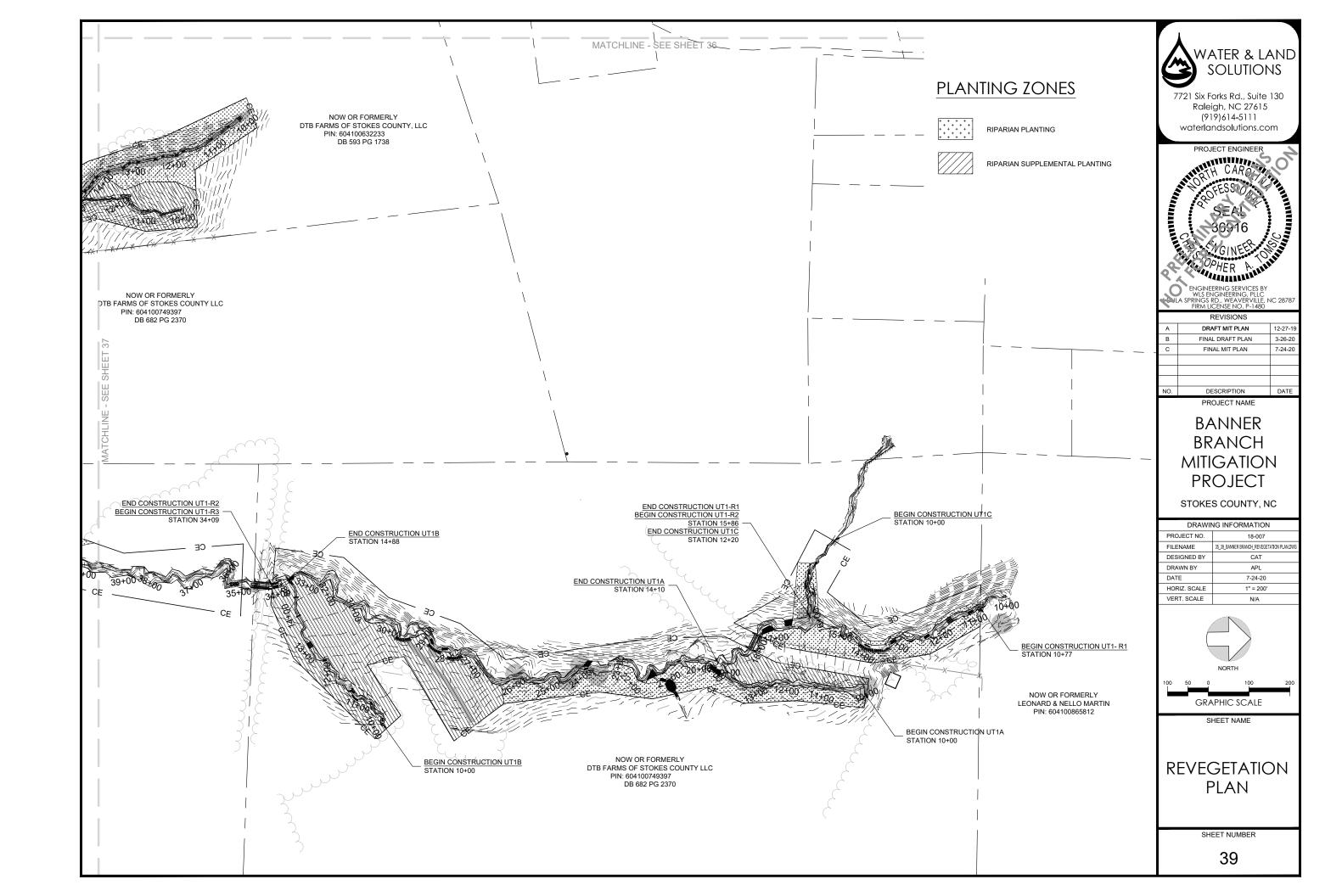
PROJECT NAME

BANNER BRANCH MITIGATION PROJECT


STOKES COUNTY, NC


DRAWING INFORMATION		
PROJECT NO.	18-007	
FILENAME	35_39_BANNER BRANCH_REVEGETATION PLAN.DV	
DESIGNED BY	CAT	
DRAWN BY	APL	
DATE	7-24-20	
HORIZ. SCALE	N/A	
VERT. SCALE	N/A	


SHEET NAME


REVEGETATION PLAN

SHEET NUMBER

Appendix 2 – Site Analysis Data/Supplementary Information

Habitat Assessment Scores and Taxa List

Pre-Construction Gauge Data

Hydric Soils Report

Existing Cross-Sections

Particle Size Distribution (Sediment Samples)

BANCS (BEHI/NBS) Method Estimates

Watershed Information and Site Runoff Volume

NC Rural Piedmont Regional Curve Comparison

USGS Regression Flow Analysis

Stream Quantification Tool Reach Summary

Design Criteria and Stream Morphology Parameters

Site Photographs

11/13 Revision 8

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams FOTAL SCORE 7-1

Biological Assessment Branch, DWR Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitat and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.	upstream direction starting perform a proper habitat sites and then circle the score. Ing the results from the differen
Stream Branch Location/road: Comptell (Road Name Opur Rd) County Stokes	
Date 10/02/2019 cc# 881 Basin Roamoke Subbasin Beleus Lake-Dan River	•
Observer(s) VD CD Type of Study: 🗆 Fish Benthos 🗆 Basinwide 🗀 Special Study (Describe)	
Latitude 36.5306月 Longitude 20.3004分 Ecoregion: ロMT 域P ロ Slate Belt ロ Triassic Basin	
Water Quality: Temperature 21.2 °C DO 6.3 mg/l Conductivity (corr.) 64.7 µS/cm pH 6.75	ř.
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.	hat you estimate driving thru
Visible Land Use: 48 %Forest 3 %Residential 40 %Active Pasture 10 % Active Crops Commercial %Industrial %Other - Describe:	%Fallow Fields %
Watershed land use : ☑Forest ☑Agriculture ☐Urban ☐ Animal operations upstream	
Width: (meters) Stream 4.5 Channel (at top of bank) 7.0 Stream Depth: (m) Avg. 45 Max.85 D Width variable Large river > 25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) 2.3	
Bank Angle: 90 or NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) Channelized Ditch	00° indicate slope is away fron
□Deeply incised-steep, straight banks \(\overline{\mathbb{A}}\) Both banks undercut at bend \(\overline{\mathbb{C}}\) Channel filled in with sediment \(\overline{\mathbb{A}}\) Bar development \(\overline{\mathbb{A}}\) Recent overbank deposits \(\overline{\mathbb{A}}\) Dar development	

37

Excessive periphyton growth ☐ Heavy filamentous algae growth ☐ Green tinge ☐ Sewage smell Manmade Stabilization: ☐N ☐ Y: ☐Rip-rap, cement, gabions ☐ Sediment/grade-control structure ☐ Berm/levee Flow conditions: ☐ High ☒ Normal ☐ Low Turbidity: ☐ Clear ☒ Slightly Turbid ☐ Turbid ☐ Tannic ☐ Milky ☐ Colored (from dyes) Good potential for Wetlands Restoration Project?? ☒ YES ☐ NO Details Stream incised heavyly.	
Channel Flow Status Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed	\$ 0000
Weather Conditions: Sunny, 40,5 Photos: ON BY Digital D35mm	
Remarks: Bornar Branch mitischen project will restone natural features and stabelize BB. It will alke remove direct cattle access upstrance of sampling focation.	Up Stream
I. Channel Modification A. channel natural, frequent bends B. channel natural, infrequent bends (channelization could be old). C. some channelization present. C. some channelization, >40% of stream disrupted. E. no bends, completely channelized or rip rapped or gabioned, etc. C. some channelization, >40% of stream disrupted. E. no bends, completely channelized or rip rapped or gabioned, etc. C. some channelization present. Subtotal 5 Subtotal 5	Score 4 4 2 0 Subtotal 5

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as Rare, Common, or Abundant.

A Rocks R Macrophytes R Sticks and leafpacks C Snags and logs R Undercut banks or root mats

AMOUNT OF REACH FAVORABLE FOR COLONIZATION OR COVER

	>20%	40-70%	20-40%	<50%	
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	00	
3 types present	61	15	=	7	
	18	14	10	9	
l type present	E	13	6	5	
No types present	0				
_	but at p	remarks habited primarily cocks	rocks	Subto	Subtotal 17

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rooke from all narie of riffle-look for "mind line" or difficulty extracting rocks

use rocks from all parts of rifile-look for "mud line" or difficulty extracting rocks.	
A. substrate with good mix of gravel, cobble and boulders	đà:
1. embeddedness <20% (very little sand, usually only behind large boulders)	ı
3. embeddedness 40-80%	
4. embeddedness >80%	
B. substrate gravel and cobble	
1. embeddedness <20%	
2. embeddedness 20-40%	
3. embeddedness 40-80%	
4. embeddedness >80%	
C. substrate mostly gravel	
1. embeddedness <50%	
2. embeddedness >50%	
D. substrate homogeneous	
1. substrate nearly all bedrock	
2. substrate nearly all sand	
3. substrate nearly all detritus	
4. substrate nearly all silt/ clay	
Remarks	

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

ige ingn gradient sur Score		10	∞ :
atways stow. Four may take the form of pocket water, small poors benind boulders of obstructions, in la	1. Pools Frequent (>30% of 200m area surveyed)	a. variety of pool sizes	b. pools about the same size (indicates pools filling in)

2. Pools Infrequent (<30% of the 200m area surveyed) a. variety of pool sizes. b. pools about the same size. R. Pools absent	(a) 4 c
Pool bottom boulder-cobble=hard □ Bottom sandy-sink as you walk 🖄 Silt bottom □ Some pools over wader depth	Subtotal 6
=	Page Total 39
s area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent	Riffles Infrequent
Score sand run, riffle as wide as stream and extends 2X width of stream (16) ream but riffle length is not 2X stream width	Score 12 7 3
D. riffles absent	Subtotal 16
A. Erosion 1. No, or very little, erosion present 2. Erosion mostly at outside of meanders 3. Less than 50% of banks croding 4. Massive erosion 7 B. Bank Vegetation 1. Mostly mature trees (>12" DBH) present 2. Mostly small trees (<12" DBH) present, large trees rare 3. No trees on bank, can have some shrubs and grasses	
4. Mostly grasses or mosses on bank	Subtotal 3
it Pe	anopy would block out sunlight when the sun is
A. Stream with good canopy with some breaks for light penetration B. Stream with full canopy - breaks for light penetration absent. C. Stream with partial canopy - sunlight and shading are essentially equal. D. Stream with minimal canopy - full sun in all but a few areas. E. No canopy and no shading	Score 10 8 7 2 0

٢	Subtotal †	

red	
3	
500	
Carre	
Remarks	

Width
le V
Zol
ative
'egets
aria
Rip
VIII.

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft. Bank	Rt. Bank	
Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc)	Score	Score	
A. Riparian zone intact (no breaks)			
1. width > 18 meters	5	5	
2. width 12-18 meters.	4	4	
3. width 6-12 meters	· CO	· ro	
4. width < 6 meters.	2	2	
B. Riparian zone not intact (breaks)		1	
1. breaks rare			
a, width > 18 meters	9	4	
b. width 12-18 meters)~	· cn	
c. width 6-12 meters.	2	6	
d. width < 6 meters.	_)–	
2. breaks common			
a. width > 18 meters	ťΩ	3	
b. width 12-18 meters.	7	2	
c. width 6-12 meters.	-	-	
d. width < 6 meters	0	0.	
Remarks	Sub	Subtotal (0	
	Page To	Page Total 3A	
☐ Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	TOTAL SCORE	UE T	

11/13 Revision 8

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitat and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.	nupstream direction starting operform a proper habitat bitats and then circle the score, ling the results from the differenting the results.
Stream UT4-R2 Location/road: Campbell (Road Name Clark 2d.) County Stokes	
Date 10/02/2019 CC# 1882 Basin Roanoke Subbasin Belews Lake-Dan River	
Observer(s) Type of Study: Fish Menthos Basinwide Special Study (Describe)	
Latitude 36.53065 Longitude -80.30771 Ecoregion: 口MT 其P 口State Belt 口Triassic Basin	
Water Quality: Temperature 21.5 °C DO 7.23 mg/l Conductivity (corr.) 72.6 µS/cm pH 6.9	
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.	/hat you estimate driving thru
Visible Land Use: 15 %Forest 2 %Residential 65 %Active Pasture 18 % Active Crops Commercial %Industrial %Other - Describe:	%Fallow Fields %
Watershed land use: ☐Forest 其Agriculture ☐Urban ☐ Animal operations upstream	
Width: (meters) Stream 3.0 Channel (at top of bank) 4.0 Stream Depth: (m) Avg. 3 Max. 4 Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) 3.0	
Bank Angle: OO or □NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) □ Channelized Ditch	90° indicate slope is away from
□Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment Recent overbank deposits □Bar development □Buried structures □Exposed bedrock	

a y			age Lt.	Score 5 4 3 2 0 0	>70% of the reach is rocks, 1 type is decay (not piles of leaves in pool areas)
D Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: □N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions: □High Mormal □Low Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes) Good potential for Wetlands Restoration Project?? ☑ YES □NO Details ∪TH - R2 has wetlend remain between left bank	Channel Flow Status Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed	Weather Conditions: Sunny, recent Youn Photos: DN BY Digital D35mm	Remarks: Area was in drought. Rain 2 weeks prior to sampling eliminated alcought. Area in spream/wetland restoration prefatle access dreet to magify of UT4-R2.	Score A. channel matural, frequent bends. A. channel natural, infrequent bends (channelization could be old). C. some channelization present. D. more extensive channelization, >40% of stream disrupted. E. no bends, completely channelized or rip rapped or gabioned, etc D. Evidence of dredging Evidence of desnagging=no large woody debris in stream Banks of uniform shape/height Subtotal	II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas).

Mark as Rare, Common, or Abundant.

C Rocks & Macrophytes & Sticks and leafpacks C Snags and logs & Undercut banks or root mats

AMOUNT OF REACH FAVORABLE FOR COLONIZATION OR COVER

Score Scor		>20%	40-70%	20-40%	<20%	
s present		Score	Score	Score	Score	
sent	4 or 5 types present	20	91	12	00	
sent	3 types present	19	15	11	7	
sent	2 types present	18	(4)	10	9	
nesent 0 Remarks Sandy (copble bed form	1 type present	17	13	6	5	
Remarks Sandy (cobble bed-form) Si	nt	0				
		ndy (cobbie	bed-form		Subto	otal 4

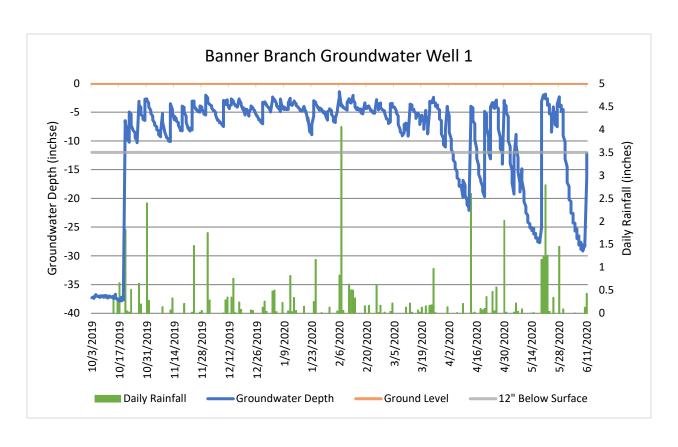
III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks

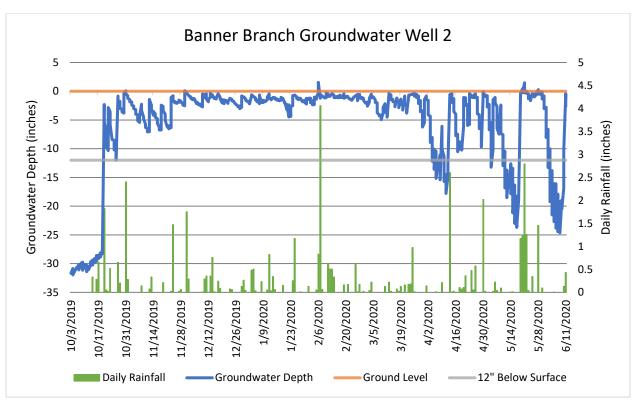
A. substrate with good mix of gravel, cobble and boulders A. substrate with good mix of gravel, cobble and boulders 1. embeddedness <20% (very little sand, usually only behind large boulders) 2. embeddedness 20-40% 3. embeddedness >80% 1. embeddedness <20% 2. embeddedness <20% 3. embeddedness <20% 4. embeddedness >80% 2. embeddedness >80% 3. embeddedness >80% 4. embeddedness >50% C. substrate mostly gravel 1. embeddedness >50% 2. embeddedness >50% 3. substrate nearly all bedrock 2. substrate nearly all detritus 3. substrate nearly all detritus 4. substrate nearly all detritus 5. substrate nearly all detritus
--

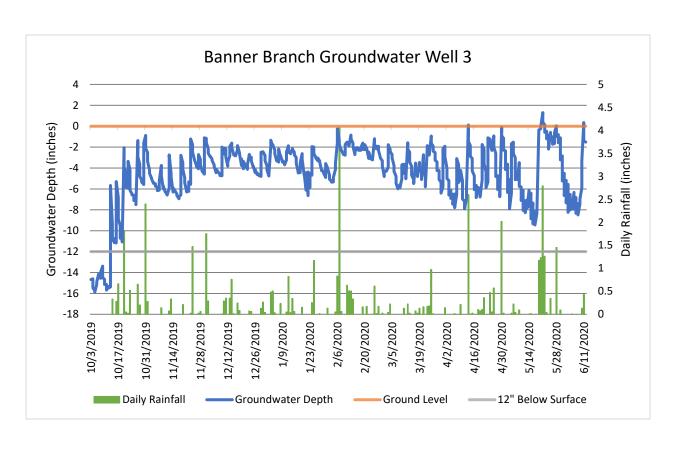
IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are gradient streams, or side eddies. Score

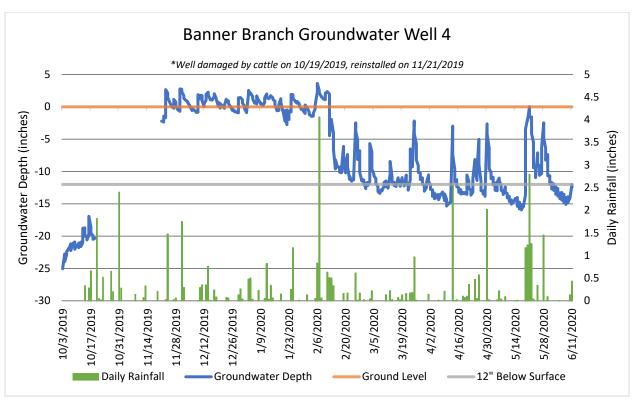
high				_
ays slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high				
Ë,				
ons			i	
ucti				
bstr				
010				
ers				
ouic				
ď þ				
ehir				
ls b				ig in
pod				
nall				olsi
, SI		Ð		Ď.
ater		veye		b. pools about the same size (indicates pools filling in)
et &		Sur		ndi
ock.		ırea		že (i
ď., J		Jm 8		e si
OH		200	izes	Sam
Į.		0 %	sol s	the
e th		>30	of pe	out
tak		11 (riety of pool sizes.	ls ab
may	ent	due	vari	bood
olsı	res	Fre	તાં	ف.
Po	ols p	Pools Frequent (>30% of 200m area surveyed)		
OW.	A. Pools presen	1. P		
ys si	A.			
· **				

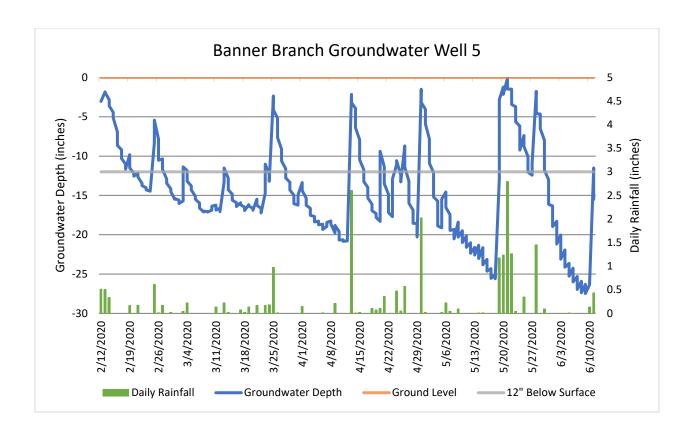
b. pools about the same size	o 4 c	
rous auseint. stom boulder-cobble=hard Bottom sandy-sink as you walk Silt bottom Some pools over wader depth	Subtotal S	
cmarks Piffic Habitote	Page Total 30	
s area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Score	Riffles Infrequent Score	
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 16 12 B. riffle as wide as stream but riffle length is not 2X stream width 17 7 C. riffle not as wide as stream and riffle length is not 2X stream width 18 10 3	ı	
D. riffles absent	Subtotal 14	
A. Erosion 1. No, or very little, erosion present 2. Erosion mostly at outside of meanders		
1. Mostly mature trees (>12" DBH) present		
ses on bank	Subtotal S	

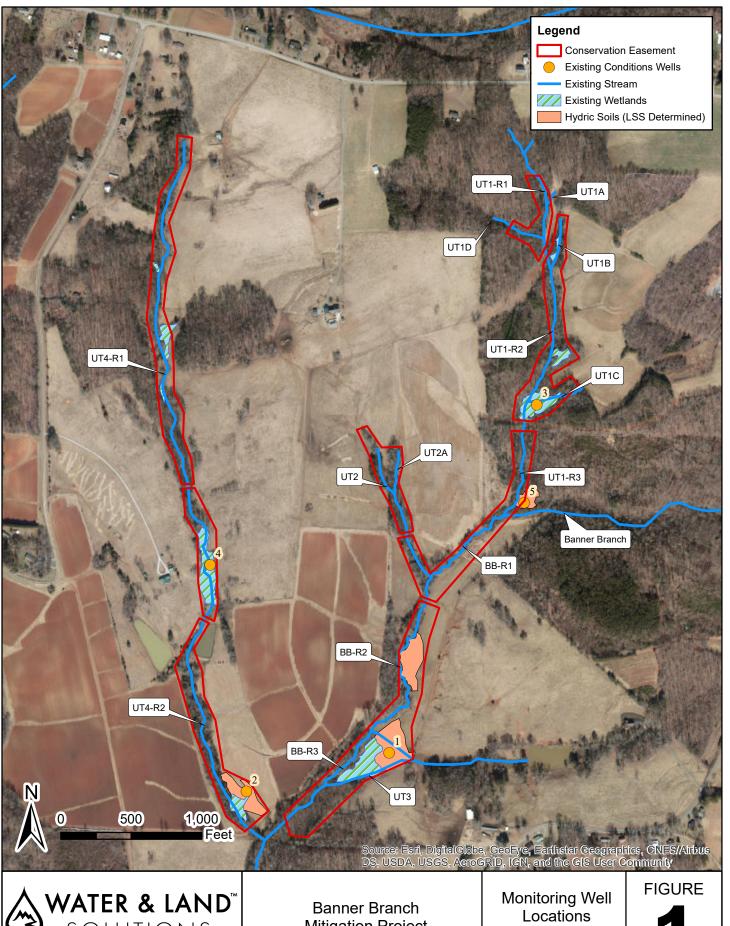

the sun is directly overhead. Note shading from mountains, but not use to score this metric.


	SCOL
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	00
C. Stream with partial canopy - sunlight and shading are essentially equal	6
D. Stream with minimal canopy - full sun in all but a few areas	7
E. No canopy and no shading.	0


VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.	yond floodplain). Definition: A break in the riparian zone is any is paths down to stream, storm drains, uprooted trees, otter
FACE UPSTREAM Dominant vegetation: \$\square\$ Trees \$\square\$ Shrubs \$\times\$ Grasses \$\square\$ Weeds/old field \$\square\$ Exotics (kudzu, etc) A. Riparian zone intact (no breaks)	Lft. Bank Rt. Bank Score Score
1. width > 18 meters.	vo s
3. width 6-12 meters. 4. width < 6 meters.	1 th C
B. Riparian zone not intact (breaks) 1. breaks rare	
a. width > 18 metersb. width 12-18 meters	3 3
c. width 6-12 meters	2 2 1 1
2. breaks common a. width > 18 meters b. width 12-18 meters c. width 6-12 meters	3 3
Remarks Area	Subtotal 4
	Page Total 34
☐ Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	TOTAL SCORE (OL


Sites	DD4 /DD D3\	DD2 (UT4 D2)
	BB1 (BB-R3)	BB2 (UT4-R2)
Taxa / Biotic Index Value		
EPHEMEROPTERA		
Family Baetidae		
Baetis pluto (3.4)		
Family Ephemeridae	_	
Ephemera spp (2.0)	R	
Family Heptageniidae		
Maccaffertium modestum (5.7)		
Stenacron carolina (1.3)		
PLECOPTERA		
Family Perlidae		
Eccoptura xanthenes (4.7)	С	
TRICHOPTERA		
Family Hydropsychidae		
Cheumatopsyche spp (6.6)	R	
Hydropsyche betteni (7.9)	R	
Family Philopotamidae		
Chimarra spp (3.3)		
MISC DIPTERA		
Family Culicidae		
Anopholes spp (8.6)		
Empididae		
Family Simuliidae		
Simulium spp (4.9)		
Family Tabanidae		
Chrysops (6.7)	R	
Family Tipulidae		
Hexatoma spp (3.5)	R	
DIPTERA; CHIRONOMIDAE		
Ablabesmyia mallochi (7.4)		
Corynoneura spp (5.7)		
Dicrotendipes neomodestus (7.9)		
Nanocladius (7.4)	R	
Rheotanytarsus spp (6.5)	R	
Tanytarsus spp (6.6)	R	
Thienemannimyia group (8.4)		
Tribelos spp (6.4)		R
ODONATA	1	
Family Aeshnidae	1	
Boyeria vinosa (5.6)	R	R
Family Calopterygidae	 	• •
Calopteryx spp (7.5)	С	С
Family Coenagrionidae	 	
Argia spp (8.3)	+	
Family Gomphidae	+	
Gomphus spp (5.9)	R	R
Gottiburg 3bh (2.3)	n	n n


Ophiogomphus spp (5.9)	R	
Stylogomphus albistylus (5.0)	R	
Family Libellulidae		
Plathymis lydia (9.8)		
OLIGOCHAETA		
Family Naidae		
Aulodrilus pleuriseta (5.6)	R	R
Nais spp (8.7)	R	
Pristina spp (7.7)		
MEGALOPTERA		
Family Corydalidae		
Nigronia serricornis (4.6)	R	
Family Sialidae		
Sialis spp (7.0)		R
Total Taxa Richness	17	6
EPT Taxa Richness	4	0
EPT Abundance	6	0
Biotic Index	5.94	6.65



WATER & LAND™ SOLUTIONS

Mitigation Project

NAD 1983 2011 State Plane North Carolina FIPS 3200 FT US

DRAFT Detailed Hydric Soils Study Banner Branch Mitigation Site Stokes County NC

Prepared for:

Mr. Kayne Van Stell Water & Land Solutions 7721 Six Forks Road, Suite 130 Raleigh, NC 27615

Prepared by:

George K Lankford Soil Scientist, LSS #1223 George K Lankford, LLC 238 Shady Grove Rd Pittsboro, NC 27312

December 2019 Soil Scientist Seal

This report describes the results of the soil evaluation performed at the Banner Branch Mitigation Site in Stokes County, NC. Any subsequent transfer of the report by the user shall be made by transferring the complete report, including figures, maps, appendices, all attachments and disclaimers.

Detailed Hydric Soils Study – Banner Branch Mitigation Site

Study Objectives and Scope

The purpose of the study was to document and delineate the extent of soils potentially suitable for hydrologic restoration and mitigation. This evaluation is a soil investigation and delineation. All boundaries shown are based on the detailed field evaluation. Hydrologic restoration potential of soils in this study is evaluated considering both historic and existing land uses, current site conditions, and the potential for creating or enhancing a hydroperiod suitable for the landscape setting and soils. In addition to the anticipated restoration of the streams to restore natural overbank flooding frequency, practical modifications suggested utilize the available natural hydrology and may include, but are not limited to surface drainage modifications such as plugging drainage ditches, removal of fill materials, removal of drain tile, and microtopographic alteration such as surface roughening or enhancing existing depressions. Recommendations for the re-establishment or rehabilitation of wetlands follow the Principles of Wetland Restoration (USEPA 2000) that promote successful establishment of a functioning wetland community by restoring ecological integrity through design and construction of a natural structure and function. This site evaluation focuses on evaluating the soils and practical technical solutions available to support restoration of these soils. Recommendations for removal extensive fill material is typically limited by cost and environmental damage. The potential for restoration assumes a successful design and an ability to construct site modifications necessary to restore adequate hydrology. Jurisdictional wetlands are located within the project boundaries and have been delineated as part of the soil delineation.

This report presents an evaluation of the subject property based upon an evaluation and detailed field investigation for the purpose of confirming the presence of and delineating the extent of hydric soil. The site is assessed for the suitability of soils for wetland mitigation. The observations and opinions stated in this report reflect conditions apparent on the subject property at the time of the site evaluation. My findings, opinions, conclusions, and recommendations are based on the soils, drainage patterns, site conditions, and boundaries of the property as evident in the field.

Project Information and Background

The site is located approximately 22 miles east of Mount Airy NC near the NC/VA state line. It is south of NC Highway 704 East, between Clark Road (SR 1600) and west of Moore Road (SR 1602) in Stokes County (Figure 1). The project is approximately 37 acres along the floodplain of Banner Branch and its tributaries. The site evaluation extended along approximately 14,000 linear feet beside stream channels. This project is along the narrow floodplain of small streams within the western portion of the Piedmont physiographic region. Uplands within the project area slope steeply to the streams and floodplains. Adjacent to the project are scattered farm buildings and single-family residences. Land use within the contributing watershed is primarily agricultural (Figure 2). Evidence of past land use indicates portions with cattle and row crops with ditching to enhance the ability to utilize the rich alluvial soils. Although livestock have had access throughout, a few areas currently attempt to exclude access. Banner Branch drains to Snow Creek, a tributary to the Dan River. Within the watershed runoff potentially contains runoff that is a source for nutrients, agricultural chemicals, sediment, and bacterial contamination that can negatively affect water quality.

The site is located within an active livestock operation with animals having free access to streams and adjacent floodplains. Stream channels within the project appear incised, having steep and unstable banks throughout the project. stream banks exhibit erosion despite narrow wooded buffers. The soil evaluation focused upon floodplains and adjacent slopes as areas having higher potential for containing hydric soil.

NRCS Soil Mapping

The NRCS Soil Survey mapping units are an area of soil dominated by one or more kind of soil, usually having similar defined soil properties and physical characteristics with similar management criteria base upon these properties. These soil map units are useful for general planning purposes, but cover larger

Detailed Hydric Soils Study - Banner Branch Mitigation Site

areas and typically include one or more smaller areas of dissimilar soils not discernable without a detailed site evaluation. Map unit properties provide a background for interpreting the range of soil properties that may be encountered across a site.

The current Web Soil Survey data differs from the published Soil Survey of Stokes County (1995) because the area was reclassified from a thermic regime to a mesic after publication. The current classification and soil series are the mesic counterparts to the published survey and are used in this discussion unless otherwise noted. This reclassification does not change the general soil information available or the interpretation of soil for this report.

The current soil survey data indicates mapping units in the project area are either composed of single series with minor inclusions or a complex of two series with minor inclusions. General characteristics of map units are listed in Table 1. The summary is for listed map units, but similar map units occur having different slopes may indicate different inclusions or percent occurrence as some wetter inclusions may not be typical in map units with a steeper slope class.

The soil survey indicates soil within the project area generally has a loamy surface within the floodplain and loam or sandy loam in the uplands. Floodplain soils formed in loamy alluvium derived from igneous and metamorphic rock eroded from the contributing upland areas. These soils are typically underlain by a sandy clay loam that formed in loamy alluvium derived from uplands of igneous and metamorphic rock (on line NRCS Web Soil Survey 2019). The upland soils are underlain by clayey soils and can be shallow to bedrock on the steeper slopes. Throughout the project, larger floodplains are mapped as either *Codorus loam* (CsA) or *Dan River and Comus soils* (Da). The *Codorus loam* is somewhat poorly drained with inclusion of poorly drained soils. The poorly drained inclusions are rated as hydric by the NRCS. The other floodplain map unit is the mostly well drained *Dan River and Comus soils* containing a complex of two similar series. Located on the toe and foot slopes along the drainages, the adjacent uplands soil units consist of well drained, moderately eroded *Clifton sandy clay loam* (CeC2) or *Fairview-Poplar Forest complex* (FpC2).

Codorus loam

The *Codorus loam* map unit is primarily a *Codorus* series with minor inclusions of *Hatboro* and *Haw River*. The *Codorus* is somewhat poorly drained and occasionally flooded with a water table expected to be between 6 and 24 inches. Inclusions of poorly drained *Hatboro* and *Haw River* soils are located within depressions and slack water areas on the floodplain. These poorly drained inclusions are expected to have a water table between 0 and 12 inches. The *Codorus* series is not considered hydric by the NRCS, but *Hatboro and Haw River* soils are rated as hydric.

Dan River and Comus soils

The *Dan River and Comus soils* map unit is an undifferentiated group consisting of two soils shown as one unit because of similar use and management recommendations. This soil ranges from well to somewhat poorly drained and occasionally floods. Found on a nearly level to slightly convex landscape the water table is between 30 and 60 inches. This map unit and expected inclusions are not considered hydric by the NRCS.

Upland Soils

The remaining map units are on surrounding upland slopes of the watershed. These upland soils have a fine sandy loam surface where not eroded to expose a sandy clay loam. These well drained soils have a water table below 80 inches. None of these soils and their expected inclusions are rated as hydric by the NRCS.

Detailed Hydric Soils Study – Banner Branch Mitigation Site

Table 1. NRCS Mapped Soil Units at the Banner Branch Site

Series	Taxonomic Class	Drainage Class	Hydric (Hydric Rating)	Landscape setting (down across)
Codorus loam, 0 to 2 per	cent slopes, occasion	ally flooded (CsA)	(Consociation) Prime far	mland if drained
Parent material - Loamy a	- '	- ·	· ·	•
Depth to water table - 6 to		Street is the meter.	io.p.i.e roen	
Flooding – occasional	Ponding - none	•		
	Fluvaquentic	somewhat	No	
Codorus (80%)	Dystrudepts	poorly	(B/D)	
Hatboro (5%)				concave-linear
22405010 (870)	Fluvaquentic	poorly	Yes	concure inicui
Haw River (2%)	Endoaquepts	1 7	(D)	
Dan River and Comus so	ils, 0 to 4 percent slo	pes, occasionally f	looded (Da) (Undifferent	iated group) Prime farmland
Parent material - Loamy a				
Depth to water table – Dan			86 to 60 inches	
Flooding – occasional	Ponding - none		NT I	
Dan River (50%)	Oxyaquic		No (C)	convex-linear
	Dystrudepts	well	(C) No	
Comus (40%)	Fluventic		(A)	linear-convex
	Dystrudepts	somewhat	No	
Codorus (4%)	Dysii aucpis	poorly	(B./D)	concave-linear
	Typic		No No	
Ronda (2%)	Udipsamments	excessively	(A)	
Pfafftown (2%)	Typic	well	No	convex -linear
Fiantown (2%)	Hapludults		(B)	
Banister (2%)	Aquic	moderately	No	linear/concave-linear
Dumster (270)	Hapludults	well	(C)	mical/concave inical
Fairview-Poplar Forest c Importance	omplex, 8 to 15 perc	ent slopes, modera	ately eroded (FpC2) (Con	mplex) Farmland of Statewid
Parent material - Saprolite	e derived from schist o	ınd/or aneiss		
Depth to water table – gre		3.10.01		
Flooding – none	Ponding - none	,		
Fairview (50%)				
Tan view (50%)			N	
Poplar Forest (40%)	T.,		No (B)	
	Typic Kanhapludults	well	(B)	convex -convex
Westfield (7%)	канаришин			
Woolwine (3%)			No (C)	
Clifford sandy clay loam	, 8 to 15 percent slop	es, moderately ero	. /	on) Farmland of Statewide
Parent material - Saprolite	e residuum weathered	from granite and g	neiss and/or saprolite res	iduum weathered from schist
Depth to water table – gre	ater than 80 inches		-	
Flooding – none	Ponding - none		1	
Clifford (85%)			No	
Westfield (8%)	Typic	well	(B)	convey convey
vvestilelu (8%)	Kanhapludults	well		convex -convex
Woolwine (7%)			No (C)	
Source-NRCS Web Soil S	urvey (2019 11-11)		(-/	

Note: Similar map units are adjacent with different slope parameters containing possibly differing inclusions.

Detailed Hydric Soils Study – Banner Branch Mitigation Site

This evaluation and report focus upon areas having a suitable landscape position and with high potential for containing hydric soil and the possibility of supporting wetland hydrology.

Project Approach

The mitigation project approach is to restore natural hydrology on the floodplain that will sustain wetland hydrology to appropriate landscapes and provide a functional uplift. An initial soil evaluation found scattered areas that exhibits the typical hydric soil indicators found in drained wetlands. Although current wetlands exist, their area is reduced from the historic extent due to land management, erosion, and drainage modifications. Farming practices on the uplands within the watershed resulted in past erosion that produced significant deposition within this floodplain. This deposition resulted in fertile topsoil that was immediately used for agricultural purposes of grazing or row crops. Current incision of the streams into the loamy alluvial material has lowered the local water table. Channelization and ditching have further increased drainage of the landscape.

The interpterion of hydric soil indicators did not assume current hydrology. Each area of hydric soil was assessed for current hydrology by evaluating existing drainage modifications (both natural and anthropogenic), the pattern and presentation of soil color and mottles, existing vegetation, and the current water table where observed.

Methodology

A detailed hydric soil investigation for Banner Branch site was completed in October of 2019. A series of nearly 200 soil borings were performed to evaluate and estimate the extent of hydric soil at the site (Figure 3). Soils and landscapes suitable for reestablishment or rehabilitation were identified. Soils were evaluated using morphologic characteristics to determine hydric indicators and evaluate current hydrology. Using criteria based on "Field Indicators of Hydric Soils in the United States" (USDA, NRCS, 2016, Version 8.1). The boring observations do not contain adequate detail to classify these soils to a series. Hydric soil indicators used are valid for the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0 within Major Land Resource Area (MLRA) 136- Southern Piedmont and Land Resource Region (LRR) P- South Atlantic and Gulf Slope Cash Crops, Forest, and Livestock Region. A hydroperiod success criteria is proposed based upon Corps mitigation guidelines (US Army Corps of Engineers 2016). Soil boring locations were approximately located using the Terrain Navigator Pro smart phone application by Trimble and figures were produced from the same software.

Hand auger soil borings were used to described current soil characteristics, investigate indicators of biological soil reduction process, and evaluate the extent of soil suitable for restoration (Appendix B). Borings typically extended below 18 inches, but often ranged to 30 inches or greater. Because of the incised stream channels, depths greater than three feet are exposed longitudinally within the floodplain to assist in verifying historic hydric soils.

General conditions and patterns representative of this floodplain were noted. This report describes these findings, conclusions, and recommendation for wetland restoration at the Banner Branch Site. The current hydrology, management, and existing modifications with relevant soil characteristics that may affect potential hydrology are discussed.

Results and Discussion

Landscape Setting

This project site is within the central Southern Piedmont physiographic region on the floodplain of Banner Branch and its tributaries. Banner Branch is a tributary to Snow Creek, which flows southward to the Dan River. The surrounding landscape of the area is dominated by the Sauratown Mountains range. It

Detailed Hydric Soils Study - Banner Branch Mitigation Site

has gently sloping to steep side slopes of the mountains and ridges with steeper slopes typically adjacent to the drainageways.

Geology of the project spans two formations of metamorphic rock. The tributaries and upper reach of Banner Branch are in banded gneiss with interlayered with calcium-bearing silicate rock, metaconglomerate, amphibolite, sillimanite-mica schist, and granitic rock. The lower reach of Banner Branch and the headwater of Banner Branch outside of the project is within a formation of mica schist containing garnet, staurolite, kyanite, or sillimanite occur locally; lenses and layers of quartz schist, micaceous quartzite, calc-silicate rock, biotite gneiss, amphibolite, and phyllite (NCGS 2009). Based on the geology, alluvial soils found within the project contain a wide variety of minerals and textures. Soils generally tend to be well drained, having a loamy surface with predominantly clayey subsoil that formed in weathered felsic and metamorphic and igneous rock (USDA-NRCS 1995). Floodplain soils formed in recent alluvium and have a loamy surface and underlain by loamy or sandy material.

Site Conditions

The site is located on an agricultural landscape within an active livestock operation where animals have access to streams and adjacent floodplains. Surrounding uplands are a mix of pasture and undeveloped forest land. Scattered farm buildings and single-family residences occupy the higher upland ridges and side slopes. The forested vegetative community is hardwoods with limited understory due to cattle grazing. Heavy grazing of pastures was observed and where present, various grasses dominate the herbaceous layer. Stream channels appear incised throughout the project typically and have wooded buffers of varying width.

The project consists of two main drainage features. Banner Branch is the main stream, entering the project from the north east and flowing south west. Three smaller unnamed tributaries, UT1, UT2, and UT3, join this reach within the project. The drainage to the west, UT4, flows south to join Banner Branch just downstream of the project. Banner Branch is a third order or larger stream. It is incised throughout with a moderately wide floodplain having multiple areas suitable for supporting a hydric soil. The downstream 900 feet currently have livestock fenced out, but still exhibits significant incision. Throughout the lower portion of this reach, shallow bedding rows are visible and where livestock are excluded, irrigation tubing is still visible. Along Banner Branch, three areas containing hydric soil were found, two associated with jurisdictional wetland areas. In addition to channel incision, other drainage features were observed. Along the narrow floodplain of UT1 three more areas of hydric soil are present, two of which appear to be jurisdictional. These areas also exhibit signs of additional drainage and the tributary has moderate incision. There was no hydric soil associated with the smaller UT2. Heavily modified, UT3 is limited within the project, but flows through and provides hydrology to a large area of hydric soil located on the floodplain of Banner Branch. To the west, the UT4 has four areas of hydric soil, all of which are jurisdictional or associated with a jurisdictional wetland. These areas have visible drainage modifications. The upper reach of this tributary is deeply incised before entering a farm pond.

This site has eight jurisdictional wetlands and five hydric soil units (Figure 2). They are located in concave and depressional landforms or at slope seepages. The wetlands appears to have adequate hydrology. The hydric soil units appear effectively drained, but are located within backwater areas of the floodplain. Three of the drained soil units are adjacent to wetlands. The hydric soil units are further described in Appendix A.

Site Soils

Within the project, alluvial soils originated from the surrounding upland slopes and reflected in the sandy and loamy nature of soil observed in the floodplain. Soils were found to typically have a loamy surface underlain by a restrictive layer containing more clay, ranging from a sandy clay loam to a denser sandy clay. In some areas, this restrictive layer is also underlain by sand. A few areas have horizons containing

Detailed Hydric Soils Study - Banner Branch Mitigation Site

small gravel. The clayey layer allows a perched water table to occur where not drained. The depressional area have potential to support limited ponding. Where the floodplain is wider, the nearly level to concave landscapes provides suitable conditions for formation of hydric soil. Where the valley is narrow, hydric soils along the toe slope at areas of seepage. Most hydric soils exhibit a brown loamy surface underlain by dark brown or gray clayey layer having limited structure and is moderately restrictive.

Portions of the evaluation were performed during dry to moderate drought conditions, making interpretations more difficult. Dry soils present a challenge to examine for smaller mottles, which become disturbed and destroyed during excavation. Additionally, much of the areas lies within the livestock operation where compaction and churning of the upper horizons destroy the morphological features. Representative soil profiles can be found in Appendix B.

Hydric Soil Indicators

The soil evaluation delineated area of hydric soil based primarily on soil indicators located within 12 inches of the soil surface. Based on the 20 representative hydric profiles and supported by additional borings, the most common hydric soil indicators are F3-Depleted Matrix, F8-Redox Depression, and F19-Floodplain Soils indicators. Additional indicators of minor occurrence include the F2-Loamy Gleyed Matrix, F6-Redox Dark Surface and A12-Thick Dark Surface. Where a soil is underlain by a depleted matrix having distinct or prominent redoximorphic concentrations the criteria for the F3 indicator is met. Where the redox concentrations exceed 5 percent and occur within a natural depressional landscape the F8 indicator is met. Additionally, because some areas contain more than 20 percent distinct or prominent redox concentration and appear in a landscape that under natural condition would potentially pond for brief periods, it also meets the criteria for the F19 indicator. The F19 indicator is still a test indicator in this MLRA, but would be considered if the floodplain is active. Many profiles exhibited multiple indicators (Appendix B). The F2, F6, and A12 indicators indicate areas of long-term saturation or ponding and were only found in areas considered jurisdictional. Soils having significant disturbance or drainage modifications may have lost one or more of these indicators. Outside of these soil units, deeper horizons that exhibited hydric indicators are not included within the delineation due to the amount of disturbance and potential construction costs. These deeper horizons do indicate historic wetlands were more extensive than the current delineated areas and provide evidence that support this project as having a suitable landscape and geomorphic position.

Current Hydrologic Alterations

The incised channels appear to have lowered groundwater across the floodplains and currently limits overbank flooding events. The past land use and impacts from livestock have resulted in the loss of a natural levee that separated the backwater from the stream, allowing a rapid loss of surface water and limited potential for ponding. In many of these hydric soil units, shallow ditches intercept upland runoff and limits surface storage, especially in depressional areas of the floodplain. Based on the landscape and soils, historic wetlands were more extensive. Outside of the wetland areas, the water table was not encountered within 18 inches of the surface, but much of the site work was performed during the late summer within moderate drought conditions.

Along the toe of slope, many of the hydric soils appear near groundwater discharge areas or at the base of prominent concave landforms on the upland slopes. The jurisdictional soils are located near this type of existing water sources. Although drainage modifications are present within the wetlands, soils still retain limited hydrology to be considered jurisdictional.

Potential Hydroperiod for Restored Soils

Based upon this detailed study of soils at this site, channel incision, erosion, ditching, and management practices have altered or removed much of the natural hydrology. Hydric indicators are present in landscape positions above the incised channels exhibiting a range of soil characteristics similar to the

Detailed Hydric Soils Study – Banner Branch Mitigation Site

expected inclusions of *Hatboro* and *Haw River* soils. The backwater areas and floodplain depressions provide suitable landscapes for wetlands and wetland restoration. Raising the streambeds and plugging and filling of ditches and old channels along with enhancing depressional area and surface roughening will restore a more natural hydrology to this landscape.

Using the mitigation guidance for Piedmont soils (US Army Corps of Engineers 2016), the *Hatboro* and *Haw River* soils (*Fluvaquentic Endoaquepts*) are suggested to have a hydroperiod of 12 to 16 percent where the water table is within 12 inches of the surface during the growing season (Table 2). Most of the drier floodplain soils (*Fluvaquentic Dystrudepts*) are suggested to have a hydro period of 7 to 9 percent, lower than typical criteria for mitigation, but above the threshold for jurisdiction. Given the landscape and occasional flooding, areas outside of the hydric soil units identified may provide wetlands functions. Because of variation found in natural systems, small depressional areas may exhibit a hydroperiod of greater than 16 percent. This longer hydroperiod would be normal considering the historic wetland landscape once present.

Tube 2. Builder Bruner Gueees, Strieffu						
Mapping Unit/Series	Taxonomic Classification	Topographic Slope Setting (down/across)	Flooding/Ponding Frequency	Hydroperiod Range*		
Codorus	Fluvaquentic Dystrudepts	concave-linear-	occasionally/none	7-9%		
Hatboro	Fluvaquentic Endoaquepts	concave-linear-	occasionally/none	12-16%		
Haw River	Fluvaquentic Endoaquepts	concave-linear-	occasionally/none	**12-16%		
Dan River	Oxyaquic Dystrudepts	convex-linear	occasionally/none	NA		
Comus	Fluventic Dystrudepts	linear- convex	occasionally/none	**7-9%		
_			·			

Table 2. Banner Branch Success Criteria

Once restoration is completed, existing wetlands should have a slightly longer hydroperiod. These suggested hydroperiods depend on the factors related to stream design, and construction, soil variability, frequency of flooding, and aspects of surface drainage after construction. Hydrologic restoration should encourage formation of hydric indicators within the disturbed surface horizon.

Functional Uplift from Hydric Soil Restoration

The site currently has mix of drained hydric soil and jurisdictional wetlands, with wetlands having degraded hydrology and limited connectivity. Ditching and channel incision limit hydrology. Livestock disturb soils and enhance channel erosion while providing direct nutrient contamination to the channels. Currently there is limited treatment of sediment and runoff of pollutants and limited vegetation allows erosion and raises water temperature.

A successful hydrologic restoration at this site will provide numerous soils related functional uplifts to address the above functional losses. As a whole, this project will increase the ability of the wetland system to adequately treat runoff and sediment. Other potential functional benefits include, flood storage, improved water quality, pollutant sequestration and transformations, nutrient cycling, and habitat improvements.

^{*}Hydroperiod follows US Army Corps of Engineers. 2016. Wilmington District Stream and Wetland Compensatory Mitigation Update. North Carolina Interagency Review Team - October 24, 2016.

^{**}No guidance on Dan River soils: most likely not be wet due to the convex nature of the landscape where typically found.

Detailed Hydric Soils Study - Banner Branch Mitigation Site

These changes may result in increases in microbial and fungal populations and diversity important for soil health. Functional uplift may include, reestablishment of natural oxidation-reduction cycling, improved nutrient and biochemical transformations, increased carbon sequestration, and better soil structure (surface primarily). Large scale benefits may include improved water quality, diverse wildlife habitat, and connectivity between natural aquatic communities. Given the observed soil characteristics indicating past wetland hydrology, favorable landscape position, and the potential source for reconnecting the floodplain to overbank event, this site appears suitable for hydrologic wetland restoration.

Summary Conclusions and Recommendations

The Banner Branch project consists of a system of incised and eroding streams within an agricultural landscape. The NRCS soil survey map units indicate the site soils contains areas having potential hydric soil. The site historically contained wetlands, some of which still remain in a degraded state. Previous drainage efforts include shallow ditches and incised streams. These changes have removed much of the natural flooding events while limiting length of saturation. The most common hydric soil indicators are F3-Depleted Matrix, F8-Redox Depression, and F19-Floodplain Soils. Additional indicators only found within current wetland areas include the F2-Loamy Gleyed Matrix, F6-Redox Dark Surface and A12-Thick Dark Surface.

Recommendations

Numerous restoration techniques can be used to restore hydrology. Many areas require successful stream restoration to raise the local groundwater elevation and allow frequent flooding of the floodplain. Other techniques include plugging of ditches, and surface roughening. Removal of limited deposition, where present, and enhancing or creating natural depressional surfaces will increase infiltration, recharge, storage, sediment capture. Due to livestock activity, the decompaction of surface horizons is highly recommended within pastures and can be accomplished by ripping 14 to 18 inches. Decompaction will help establishment a diverse soil micro habitat to allow multiple biochemical process found in natural wetlands. Benefits of decompaction include, reduced runoff velocity, higher infiltration rate, improved soil structural properties and site storage. Other benefits include enhanced surface and subsurface biogeochemical cycling and storage. Additionally, this will improve planting conditions to increase survival and enhance long-term growth. Surface roughening and creation/enhancement of shallow depressions throughout the restoration area will reestablish more natural conditions and provide an appropriate landscape for diverse habitat. All construction and decompaction activities should be avoided or limited when soils are saturated. Equipment and tillage activities in wet soils permanently damages soils by creating clods, ruts, and increases compaction.

The hydric soils found at this site are be expected to have a hydroperiod of 10 to 16 percent with some more pronounced depressional areas having greater than 16 percent. Soils within suitable landscapes adjacent to restored wetlands may experience 6 to 9 percent hydroperiods.

Conclusions

Given the observed soil characteristics, presence of current and historic hydric soils, and favorable landscape positions, this site appears suitable for wetland re-establishment or rehabilitation throughout the floodplains of Banner Branch and its tributaries. Restored streams can raise local groundwater to within 12 inches of the surface while providing overbank flooding. Flooding can also provide adequate hydrology for ponding in some depressional areas.

Successful hydrologic restoration at this site can provide numerous soils related functional uplifts. These include, storage of floodwaters, trapping of sediments and pollutants from urban runoff, nutrient cycling and a wide range of soil habitat. The wetland will increase infiltration of runoff and reestablish a natural oxidation-reduction cycle that improves nutrient and chemical transformations. Other benefits include

Detailed Hydric Soils Study - Banner Branch Mitigation Site

increased organic carbon accumulation/capture, improved soil structure (surface primarily), and increases in diversity and beneficial microbial and fungal populations important for soil health. Large scale benefits may include diverse wildlife habitat and community connectivity. Based on the historically wet nature of this site, correct landscape position, appropriate textured soils, and the potential for re-establishment of adequate hydrology, this site is suitable for wetland re-establishment or rehabilitation.

This report describes the results of the soil evaluation performed at the Banner Branch Site in Stokes County, NC. Any subsequent transfer of this report by the user shall be made by transferring the complete report, including figures, maps, appendices, all attachments and disclaimers.

References

NTCHS. 2003. Technical Note 13: Altered Hydric Soils. Deliberation of: National Technical Committee for Hydric Soils.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. *Web Soil Survey*. Available online at the following link: https://websoilsurvey.sc.egov.usda.gov/. Accessed [November/2019].

US Army Corps of Engineers. 2016. Wilmington District Stream and Wetland Compensatory Mitigation Update. North Carolina Interagency Review Team - October 24, 2016. SAW-2013-00668-PN http://www.saw.usace.army.mil/Missions/RegulatoryPermitProgram/

U.S. Army Corps of Engineers. 2012. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0*, ed. J. F. Berkowitz, J. S. Wakeley, R. W. Lichvar, C. V. Noble. ERDC/EL TR-12-9. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

USDA 1995. United States Department of Agriculture (USDA), Natural Resource Conservation Service (NRCS). *Soil Survey of Stoke County North Carolina*. October 1995)

United States Department of Agriculture, Natural Resources Conservation Service. 2018. *Field Indicators of Hydric Soils in the United States*, Version 8.2. L.M. Vasilas, G.W. Hurt, and J.F. Berkowitz (eds.). USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils

Vepraskas, M. J. 1994. *Redoximorphic Features for Identifying Aquic Conditions*. Tech. Bulletin 301. North Carolina Ag. Research Service, North Carolina State Univ., Raleigh, North Carolina.

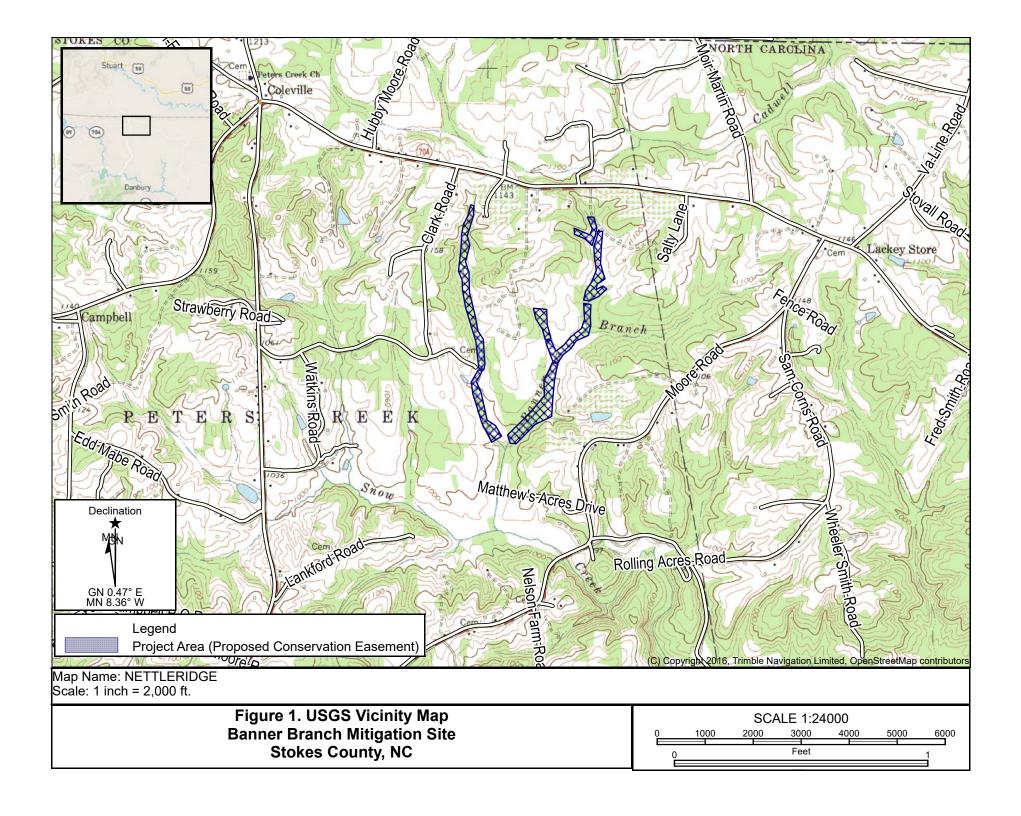
USEPA. 2000. Principles for the Ecological Restoration of Aquatic Resources. EPA841-F-00-003. Office of Water (4501F). United States Environmental Protection Agency. Washington, DC. 4 pp. (https://www.epa.gov/wetlands/principles-wetland-restoration).

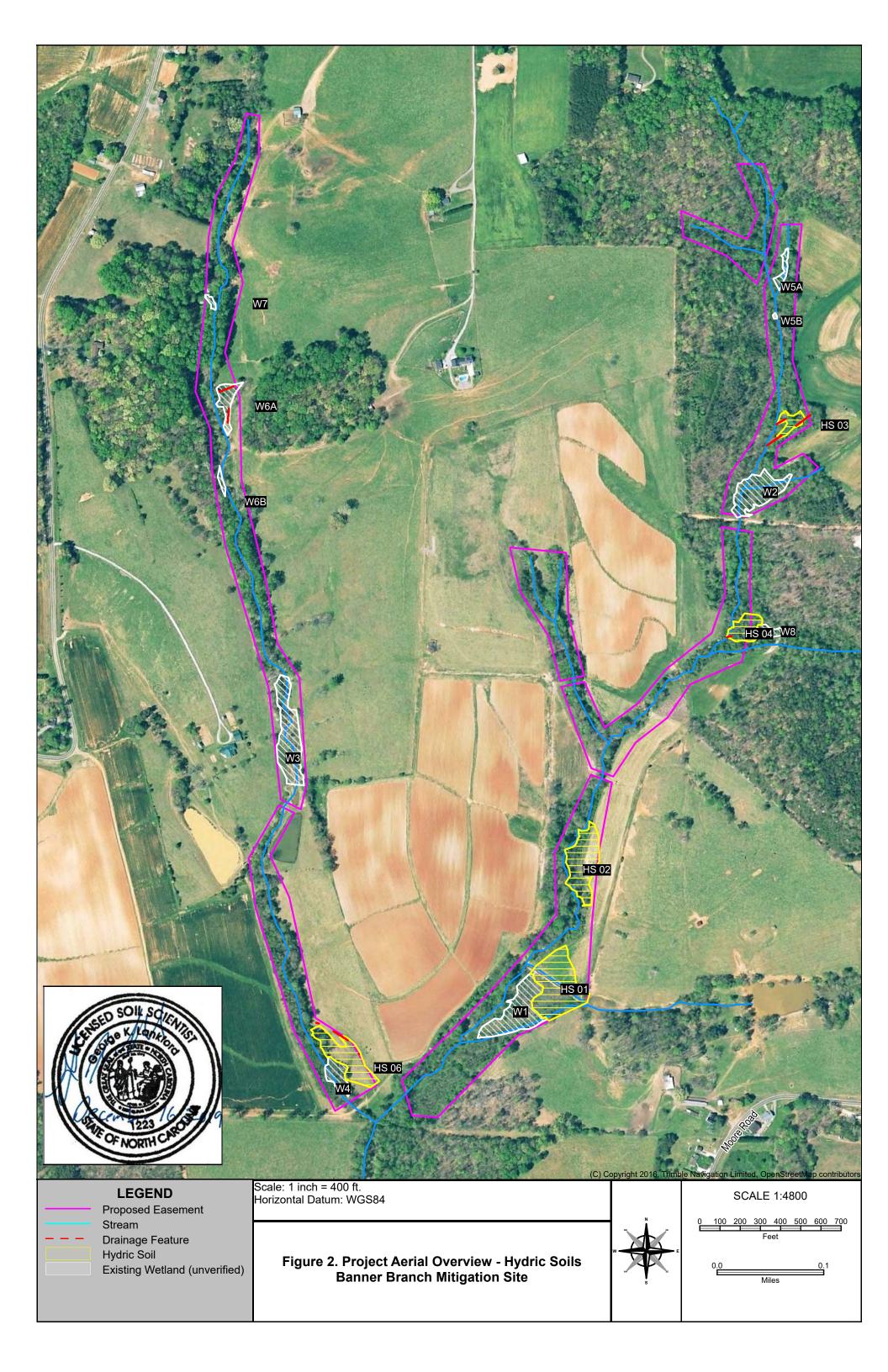
NCGS (North Carolina Geological Survey). 2009. Geology: (Geospatial_Data_Presentation_Form: vector digital data). Raleigh, North Carolina. NCGS

USDA, NRCS. 2008. *Wetland Restoration, Enhancement, or Creation*. NEH Part 650.13 Engineering Field Handbook. Washington, DC.

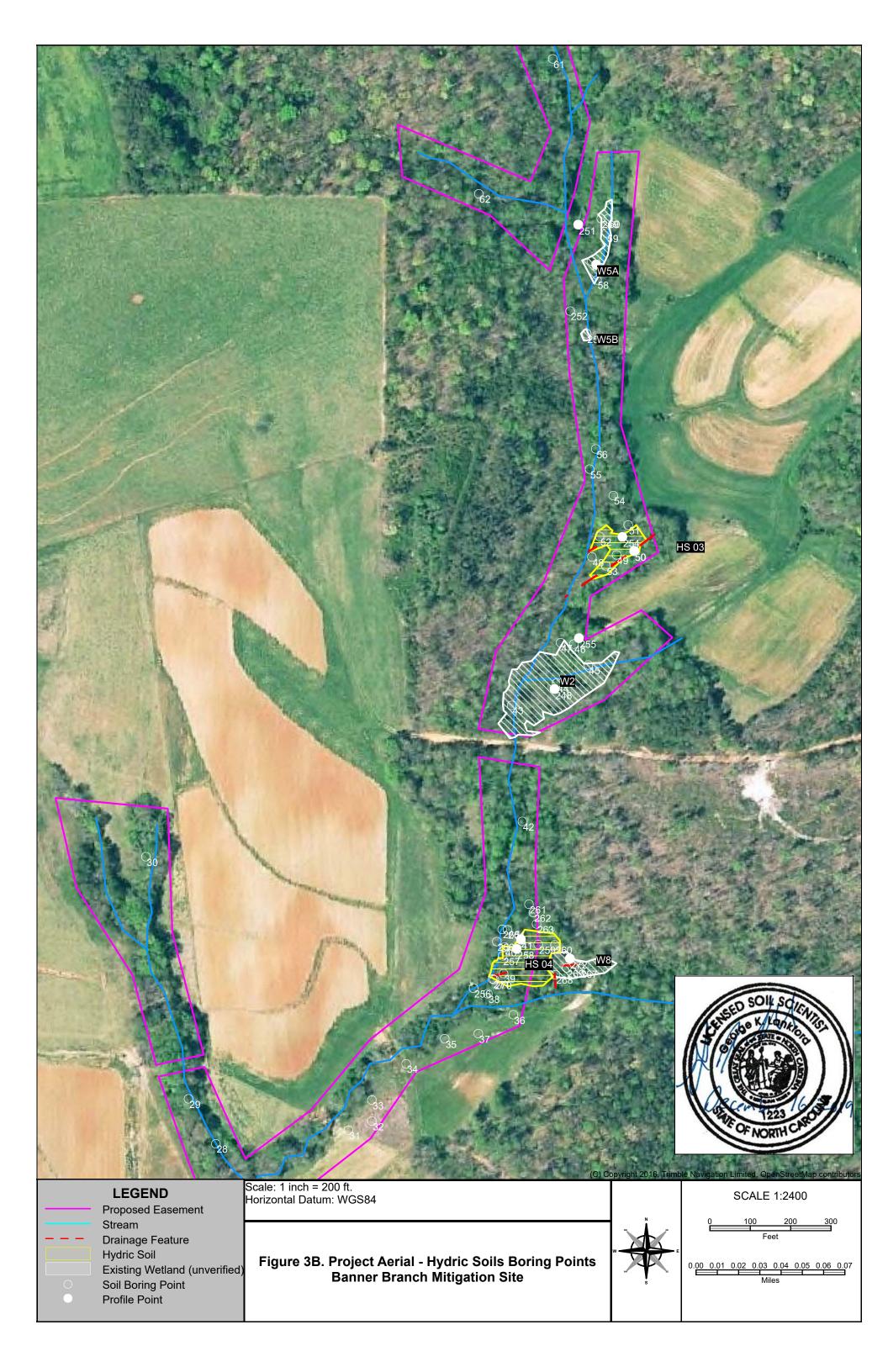
Detailed Hydric Soils Study – Banner Branch Mitigation Site

Figures


APPENDICES


Appendix A Soil and Wetland Unit Descriptions

Appendix B Soil Boring Log


Appendix C Photos

Appendix D NRCS Web Soil Survey Report

Detailed Hydric Soils Study – Banner Branch Mitigation Site APPENDIX A – SOIL AND WETLAND UNIT DESCRIPTIONS

The Banner Branch site contains multiple areas having hydric soil, with many areas potentially containing jurisdictional hydrology despite land use and drainage modifications. Some areas of hydric soil have been divided into drained and jurisdictional, but historically were one community. Five drained hydric soil and eight wetland units were delineated. Thee of the wetlands are adjacent to a drained soil unit. The individual soil units are described below.

HS1 and W1 (HS1 = 1.41 ac and W1 = 1.01 ac)

Historically, the drained HS 1 and wetland W1 soil units were a single wetland located in the backwater of Banner Branch. Hydrology was a combination of a high water table with overbank flooding from both Banner Branch and UT3. Currently, both Banner Branch and UT3 are incised and channelized, effectively lowering local groundwater and limiting flooding. The channelized UT3 is approximately 3-feet deep and 8-feet wide with spoil berm two to three feet high. This deep incision affects hydrology of H1 and portions of adjacent W1. Most of HS 1 is within fenced pasture. A shallow ditch at the slope that intercepts groundwater and runoff, channeling it to Banner Branch to provide additional drainage of the wetland. Spoil present along both channels restricts natural surface flows. Closer to Banner Branch is a shallow depression that provides a small semi-permanent pool. This ponded community was likely much larger historically. Visible throughout both soil units is evidence of past cultivation practices associated with strawberry production such as shallow raised beds and old irrigation tubing. Livestock fencing is also visible. The soils are loamy surface textures underlain by a clayey layer. Below this clayey horizon some areas exhibit a layer of sandier material that is typical of alluvial landscapes. Sandy subsoils support the effectiveness of ditches and channel incision in lowering of groundwater.

Hydrologic restoration can be accomplished through raising stream beds of Banner Branch and UT3, plugging and filling the old channels, removal of spoil, and surface roughening to remove the shallow bedding. Reconnection of the streams to their floodplain will restore natural hydrology and surface flows into this wetland.

HS2 (HS2 = 0.97 ac)

This drained hydric soil unit is located on the left floodplain along Banner Branch located upstream from HS-01/W1 and within the fenced pasture. It occurs within a small depressional feature beside the incised channel. Portions of a narrow buffer are present along the channel. No levee was visible along Banner Branch. Soils have a clay loam surface underlain by a sandy clay loam. A deeper, historic hydric layer was observed along the incised stream bank and extends intermittently upstream, but was not delineated due to depth. Deeper silt loam was found. The finer textured soil supports the depressional nature of this unit.

Hydrologic restoration requires raising the stream bed of Banner Branch to raise local groundwater. Other restoration techniques include surface roughening and reconnection to frequent flooding.

HS3 (HS3 = 0.2 ac)

This area is located within a slope crenulation beside stream UT1-R2 on a low terrace that currently does not flood. Hydrology appears to be a small spring or seep at the base of the slope. Shallow ditching is present to provide drainage. Livestock have churned the soil surface throughout and is promoting soil loss. Topography and soils are variable with surface modifications obscuring natural features. Slope seepage and runoff will provide hydrology.

Detailed Hydric Soils Study – Banner Branch Mitigation Site APPENDIX A – SOIL AND WETLAND UNIT DESCRIPTIONS

Restoration or enhancement techniques require plugging and filling of ditches. Surface roughening in more disturbed areas may be necessary to remove the erosional features. Existing mature trees are currently helping stabilize this area and may limited some work. Potential slope runoff may necessitate a BMP feature.

HS4 and W8 (HS4=0.37 ac and W8=0.17 ac)

Historically, the drained HS4 and wetland W8 soil units were a single wetland located at the confluence of UT1-R2 and Banner Branch. Hydrology appear to have been a high groundwater table and overbank flooding. Currently, both Banner Branch and UT1-R2 are incised, effectively lowering local groundwater while limiting flooding. The drained unit is along UT1-R2 and wetland W8 along Banner Branch. The full extent along Banner Branch extended farther upstream out of the project limits and was not evaluated. This wetland is within a narrow linear depression having a shallow outlet near to Banner Branch. Both soil units are within a forested buffer. Soils have a loamy surface underlain by a slightly more restrictive sandy clay loam.

Hydrologic restoration of HS4 requires raising the bed of UT1-R2 to reconnect the floodplain. Due to existing vegetation, surface roughening is limited. Additional consideration may be required to stabilize the bed elevation of Banner Branch as it enters the project.

HS5 - Not used

HS6 and W4 (HS6 = 0.82 ac and W4 = 0.3 ac)

The drained HS4 and wetland W8 soil units were historically a single wetland located on the floodplain of UT4-R2. The floodplain widens and gently slopes out to the toe of slope. Hydrology appear to have been a high groundwater table, overbank flooding, and slope seepage. Hydrologic modifications include shallow ditching to collect seepage and runoff. It is likely this area has been smoothed for cultivation at some time in the past. Current use is livestock. Upslope is cultivated row crops. Soils are loamy over a moderately restrictive sandy clay loam. Clay content increases with distance from the channel.

Hydrologic restoration can be accomplished by removal of the surface drainage features and surface roughening. It may be possible for minor stream work to increase flooding of the lower elevations. Creation of shallow depressions below the toe of slope will provide surface storage, better infiltration and locally variable water table depth for multiple biochemical process to occur.

W1 (see HS1 for description) W 2 (W2= 0.8 ac)

This wetland is within a natural feature above a farm culvert crossing at the confluence of UT1B and UT1-R2, where a temporary blockage of the culvert has been constructed by the farmer. The culvert restriction was likely an attempt to provide better water access for livestock, but has resulted in a high water table with the lower portions. This feature has limited channel incision and allows deposition of sediment upstream of the culvert. Along the left bank a small channel, UT1B, enters this tributary. The small channel has been dredged and straightened. Areas appearing to be spoil are present, especially near the culvert. Hydrology is from a high water table associated with both streams. It also appears to have groundwater discharge along portions of the slope.

Detailed Hydric Soils Study – Banner Branch Mitigation Site APPENDIX A – SOIL AND WETLAND UNIT DESCRIPTIONS

Soils are variable, but deposition is present in many places. Within the floodplain, the floodplain soils are underlain by a very gray horizon. More recent sediments are also beginning to develop hydric characteristics due to the high water table.

Because of the constructed blockage at the culvert, this stream will need to be stabilized to limit sediment loss when the blockage is removed. Enhancement of the wetland above the culvert may require limited sediment removal and construction of a stepdown to the existing culvert to permanently maintain hydrology that is currently heavily influenced by the blockage structure. Restoration of UT2b to maintain a high water table and surface roughening will be needed. There will likely be limits due to existing mature trees that are currently helping stabilize this area. At the upstream end of UT1B, a BMP structure is suggested.

W 3 (W3 = 1.05 ac)

This hydric soil unit is on the floodplain and toe of slope along UT4-R1 upstream of a farm pond. Hydrology is currently from the nearly level floodplain, high groundwater adjacent to UT3-R1, and slope seepage. There is limited channel incision within this wetland, but head cutting is present upstream. Livestock have degraded this wetland and there appears to be sediment deposition present. The downstream end is a proposed crossing above the farm pond. Soils within the floodplain are loamy with sand prominent. Hydric indicators point to the floodplain having a long hydroperiod. The slope soils have a loamy surface underlain by a restrictive clayey horizon.

This wetland can be significantly enhanced by livestock exclusion and planting of appropriate vegetation. Stabilization of the stream at the crossing will prevent head cutting into this wetland.

W4 (see HS6 for description)

W 5 (A and B) (W5A= 0.12 ac and W5B = 0.01 ac)

This hydric soil along the floodplain at the confluence of two small streams, UT1-R1 and UT1A, where both streams are moderately incised below the floodplain. The wetland consists of two slightly separated small floodplain wetlands deriving hydrology from discharge along the slopes. Wetland F5A is below an existing farm crossing with W5B just downstream within a floodplain meander. Soils are loamy over a moderately restrictive clayey layer with a deeper sandy loam horizon. The UT1B originates upstream from as spring with groundwater discharge along the slope and numerous points along the stream banks. The wetland W5B is also supported by discharge along the slope. The discharge water flows along the restrictive clayey horizon to create a perched water table within these wetlands. Both channels are stable and support a stable woody buffer.

Due to the small size and stable nature of these wetlands, no hydrologic enhancements are recommended.

W6 (A and B) (W6a= 0.29 ac and W6b = 0.05 ac)

This hydric soil consists of two areas along the floodplain adjacent to UT4-R1. The downstream wetland, W5B, is within an old oxbow. The upstream wetland, W6A, is on the left floodplain within a small crenulation draining into the tributary. It appears to contain a spring along the toe slope and evidence of ditching is visible. An existing drain tile was observed approximately 100 feet downstream potentially providing subsurface drainage. Wetland W6B is downstream of the drain tile on the right floodplain. below an existing farm crossing with W5B just downstream within a floodplain meander.

Detailed Hydric Soils Study – Banner Branch Mitigation Site APPENDIX A – SOIL AND WETLAND UNIT DESCRIPTIONS

Soils are loamy throughout with lower elevation exhibiting surface or near surface water table. There were numerous observations of drainage manipulation and surface soils are heavily disturbed by livestock. In addition to drain tile, ditching and spoil are visible. Hydrology consists of a spring, slope seepage, and concentrated runoff. Due to the small size and location, raising the stream bed through this reach may not be practical or desirable. Wetland 6A can be enhanced by removing the drain tile, plugging the ditches and removing the spoil. The surface likely experienced significant alteration, therefore it is recommended to explore potentially restoring a natural contour while removing excessive sediment or fill if found. Due to the concentrated runoff, a BMP or other structure is suggested at the upslope portion of the wetland.

W7 (W7 = 0.04 ac)

This is a small wetland within a natural linear depression just above the floodplain on the right bank of UT4-R1. It does not appear to have significant alteration outside of the adjacent incised tributary. Hydrology is discharge along the slope and base of large boulder or exposed bedrock. Soils are loamy throughout and internal drainage appears to be high. Vegetation is mostly natural for this wetland type. No enhancement for this wetland is suggested.

W8 (see HS4 for description)

Table A1. Representative Soil Profiles at Banner Branch Mitigation Site (MLRA 136, LRR P)

Depth	C	olor	Mottle Percentage (Location)	Texture	Notes
(inches)	Matrix	Mottle			
SB 273	(HS 1)		Hydric Indicators		ne observed
	ctober 10, 2019		F3-Depleted		
0-8	7.5 YR 4/4			CL	
8-11	7.5 YR 4/2	7.5 YR 4/6	15% (PL)	CL	
11-23	7.5 YR 4/1	7.5 YR 5/8	20% (PL)	SC	
SB 237	(HS 2) ptember 30, 201	Q	Hydric Indicators F3-Depleted	l Matrix	ne observed
56	ptember 50, 201	.,	F19-Piedmo	nt Floodpla	in Soils
0-7	10YR 3/3			CL	
7-13	10YR 6/2	10YR 5/8	20% (PL)	SCL	
13-26	10YR 6/1	10YR 5/8	30% (PL)	SiCL	
SB 247	(HS 2)		Hydric Indicators	WT no	ne observed
Se	ptember 30, 201	9	F3-Depleted	l Matrix	
0-9	10YR 4/3			CL	
9-26	10YR 4/2	10YR 3/6	5% (PL)	SCL	
SB 254	(HS 3)		Hydric Indicators	WT -18	3
	ctober 10, 2019		F3-Depleted Matrix		
	,		F19-Piedmo		in Soils
0-6	7.5 YR 4/2	5 YR 4/6	20% (PL)	SCL	
6-13	7.5 YR 4/1	5 YR 3/4	15% (PL)	SCL	
13-25	7.5 YR 4/1	7.5 YR 4/6	7% (PL)	SC	coarse, angular gravel-20%
SB 50	(HS 3)		Hydric Indicators	WT -19)
Ma	ay 03, 2018		F3-Depleted	l Matrix	
0-2	10 YR 3/4			SL	Recent sediment/surface churning
2-6	7.5 YR 4/1	7.5 YR 4/6	20% (PL)	SL	
6-12	7.5 YR 4/1	7.5 YR 4/6	5% (PL)	SCL	
12-20	7.5 YR 4/1			cS	
SB 41	(HS 4)		Hydric Indicators	WT -17	
Ma	ay 03, 2018		F3-Depleted		
0-5	7.5 YR 3/4			SL	
5-10	7.5 YR 4/4	7.5 YR 4/6	15% (PL)	SL	
10-17	7.5 YR 2.5/1	5 YR 4/6	15% (PL)	SCL	buried surface horizon
17-22	7.5 YR 5/2	7.5 YR 4/6	20% (PL)	SCL	
SB 258	(HS 4)		Hydric Indicators		ne observed
	tober 10, 2019		F3-Depleted		
0-10	7.5 YR 4/4	7.5 YR 4/6	10% (PL)	SL	
10-27	7.5 YR 4/1	7.5 YR 4/6	10% (PL)	SCL	

Table A1. Representative Soil Profiles at Banner Branch Mitigation Site (MLRA 136, LRR P)

Берш		olor	Mottle Percentage (Location)	Texture	Notes
(inches)	Matrix	Mottle			
SB 210 (HS 6) September 12, 2019		Hydric Indicators F3-Depleted F8-Redox D	d Matrix	one observed	
0-4	7.5 YR 3/4			SL	surface heavily disturbed
4-6	7.5 YR 4/6			SL	
6-8	7.5 YR 4/2	7.5 YR 4/6	15% (PL)	S	
8-10	7.5 YR 4/6			SL	
10-16	7.5 YR 5/2	7.5 YR 5/8 7.5 YR 4/6	20% (PL) 5% (PL)	SCL	
16-21	7.5 YR 6/1	7.5 YR 5/8	30% (PL)	SCL	
SB 211 Ser	(HS 6) ptember 12, 201	9	Hydric Indicators F3-Depleted	d Matrix	one observed
	,		F8-Redox D	1 *	
0-4	7.5 YR 3/4	7.5.YP 0/4	50/ (DI)	CL	
4-10	7.5 YR 4/2	7.5 YR 3/4	5% (PL)	CL	
10-16	7.5 YR 5/1	7.5 YR 3/4	5% (PL)	CL	
16-27	7.5 YR 6/1	7.5 YR 5/8	30% (PL)	C	
SB 14 Ma	(W1 adjace ay 03, 2018	ent to HS 1)	Hydric Indicators F3-Depleted	WT -20 d Matrix	0
0-2	10 YR 3/2			SL	
2-8	10 YR 4/4	7.5 YR 3/4	10% (PL)	SL	
8-16	10 YR 4/2	7.5 YR 4/6 7.5 YR 3/4	15% (PL) 4% (PL)	SCL	
16-22	N 2.5/-	7.5 YR 3/4	7% (PL)	SCL	a buried F2-Loamy Gleyed
22-27	N 2.5/-			SL	Matrix indicator
SB 205 Sej	(W 1) ptember 12, 201	9	Hydric Indicators WT none observed F3-Depleted Matrix F8-Redox Depression None F19-Piedmont Floodplain Soils		None
0-7	7.5 YR 4/2	7.5 YR 3/4	2% (PL)	CL	
7-12	7.5 YR 4/2	7.5 YR 4/6	20% (PL)	CL	
12-18	7.5 YR 5/1	7.5 YR 5/6 2.5 YR 5/8	15% (PL) 2% (PL)	SC	
18-25	7.5 YR 5/1	7.5 YR 4/4	10% (PL)	SC	
SB 214	(W 1 non l	nydric)	Hydric Indicators	WT -2	8
Sej	ptember 12, 201	9	None (uplar		
0-8	7.5 YR4/4			SL	
8-14	7.5 YR 4/6	7.5 YR 5/8	4% (PL)	SL	
14-22	7.5 YR 4/2	7.5 YR 4/6	15% (PL)	SL	
22-28	7.5 YR 3/1	7.5 YR 3/4	5% (PL)	SL	
28-36	7.5 YR 4/6			cS	gravel 10%

Table A1. Representative Soil Profiles at Banner Branch Mitigation Site (MLRA 136, LRR P)

Depth	Co	olor	Mottle Percentage (Location)	Texture	Notes
(inches)	Matrix	Mottle			
			Hydric Indicators		ne observed
SB 248	(W 2)		F2-Loamy (•	ix
Sej	ptember 30, 201	9	F3-Depleted		
			F19-Piedmo		in Soils
0-6	10YR 4/2	10YR 4/6	20% (PL)	SCL	
6-11	10YR 4/1	7.5 YR 4/6	20% (PL)	SCL	
11-20	N 6/-	7.5 YR 4/6	35% (PL/M)	SC	
SB 255	(W 2 non h	nydric)	Hydric Indicators		ne observed
	tober 10, 2019		None (uplan		
0-12	7.5 YR 4/6		1000 0000	CL	
12-20	7.5 YR 4/3	7.5 YR 4/6	10% (PL)	SL	
SB 218	(W 3)		Hydric Indicators	WT -8	
	September 18, 2019		F2-Loamy (_	ix
_			F3-Depleted		
0-4	10YR 3/3	10YR 4/2	10% (PL)	SL	
4-9	10YR 5/1	10YR 4/6	20% (PL)	SC	
9-12	N 5/-	10YR 4/6	15% (PL)	SC	
12-27	N 5/-	10YR 4/2	5% (PL)	SL/LS	
27-32	10YR 5/6	5 YR 4/6	2% (PL)	SL	
SB 220	(W 3)		Hydric Indicators	WT -15	5
	ptember 18, 201	9	F3-Depleted Matrix		
_	•		F8-Redox D	_	
0-4	10YR 3/3			L	surface heavily disturbed
4-11	10 YR4/2	10YR 3/4	15% (PL)	SL	
11-21	10 YR4/3			SL	
21-30	10 YR 2/1			SL	
SB 219	(W 3 non h	• /	Hydric Indicators		ne observed
	ptember 18, 201	9	None (uplan		
0-11	5 YR 4/4			SCL	
11-19	5 YR 4/6			SCL	
19-25	5 YR 5/6	5 YR 4/6	20% (PL)	SC	
1, 23	3 11(3/0	5 YR 6/4	5% (PL)		
SB 209	(W 4)		Hydric Indicators	WT nor	ne
	ptember 12, 201	9	F3-Depleted Matrix		
_	•		F8-Redox D	•	
0-12	7.5 YR 4/2	7.5 YR 3/4	10% (PL)	SiL	surface churning
12-21	7.5 YR 4/1	7.5 YR 4/6	15% (PL)	SCL	

Table A1. Representative Soil Profiles at Banner Branch Mitigation Site (MLRA 136, LRR P)

Depth	C	olor	Mottle Percentage (Location)	Texture	Notes
(inches)	Matrix	Mottle			
SB 213	SB 213 (W 4 non hydric)		Hydric Indicators	WT noi	ne observed
	ptember 12, 201	9	None (uplan	nd point)	
0-7	7.5YR 3/4			SL	
7-18	5YR 4/6			CL	
18-26	7.5YR 5/1	5 YR 4/6	15% (PL)	SCL	
			Hydric Indicators	WT -14	
SB 250	(W 5)		A12-Thick		
Oc	ctober 10, 2019		F6-Redox D		
			F19-Piedmo		in Soils
0-2	7.5 YR 2.5/2			L	
2-14	7.5 YR 3/1	5 YR 4/4	20% (PL)	SCL	
14-36	7.5 YR 3/1	7.5 YR 2.5/2	5% (PL)	SL	
SB 251			Hydric Indicators WT -33		
	ctober 10, 2019		None (uplar	nd point)	
0-11	7.5 YR 3/4			SL	may be fill/sediment to -19
11-19	7.5 YR 4/6			S	
19-35	7.5 YR 3/1			SL	
35-40	7.5 YR 3/1			SCL	
SB 221	(W 6B)		Hydric Indicators	WT nor	ne observed
	ptember 18, 201		F6-Redox D	ark Surface	
0-3	7.5 YR 3/2	7.5 YR 3/4	20% (PL)	SiL	surface heavily disturbed
3-11	7.5 YR 3/1	5 YR 4/6	15% (PL)	L	
11-22	7.5 YR 2.5/1			SL	small gravel/pebbles ~5%
			Hydric Indicators	WT -12	
SB 224 (W	(6A)		F6-Redox Dark Surface		
September 18, 2019		F8-Redox D			
			F19-Piedmo	nt Floodpla	in Soils
0-5	7.5 YR 3/2	5 YR 4/6	20% (PL)	SL	
5-12	7.5 YR 2.5/1	5 YR 4/6	10% (PL)	SL	
12-28	7.5 YR 2.5/1	5 YR 4/6	2% (PL)	SL	

Appendix B

Banner Branch Mitigation Site, Stokes County NC Soil Boring Descriptions

Table A1. Representative Soil Profiles at Banner Branch Mitigation Site (MLRA 136, LRR P)

Depth	Color		Mottle Percentage (Location)	Texture	Notes
(inches)	Matrix	Mottle			
SB 222	(W 6 non h	ydric)	Hydric Indicators	WT -25	i
Se	ptember 18, 201	9	None (uplar	nd point)	
0-3	7.5 YR 4/4			SL	
3-14	7.5 YR 4/6			SL	
14-25	7.5 YR 5/4	7.5 YR 4/6	15% (PL)	SL	rounded gravel ~5%
25-28	7.5 YR 4/3	7.5 YR 4/6	5% (PL)	SL	
SB 225	(W 7)		Hydric Indicators WT at -13		-13
Se	ptember 18, 201	9	F6-Redox D	ark Surface	
0-5	7.5 YR 2.5/2	7.5 YR 3/4	10% (PL)	SL	
5-15	7.5 YR 3/1			cSL	gravel ~10% bedrock or cobble at -15
SB 226	(W 7 non l	ydric)	Hydric Indicators	WT noi	ne observed
Se	ptember 18, 201	9	None (uplar	nd point)	
0-1	7.5YR 2.5/2			SL	
1-12	5YR 4/6			SL	
12-21	5YR 5/6	5 YR 4/4	10% (PL)	SL	
SB 272	(W 8 adjac tober 10, 2019	eent to HS 4)	Hydric Indicators F3-Depleted	l Matrix	ne observed
	· · · · · · · · · · · · · · · · · · ·		F8-Redox D	_	
0-3	7.5 YR 3/2	7.5 VD 2/4	100/ (DI)	L	
3-6	7.5 YR 4/2	7.5 YR 3/4	10% (PL)	L	
6-12	7.5 YR 5/2	7.5 YR 4/6	10% (PL)	CL	
12-19	7.5 YR 4/3	7.5 YR 4/6	30% (PL)	SCL	
19-23	7.5 YR 4/1	7.5 YR 4/6	20% (PL)	SCL	

WT = observed apparent water table

S = sand, L = loam, Si = silt, C = clay

f = fine, c = coarse (textural modifiers for sand)

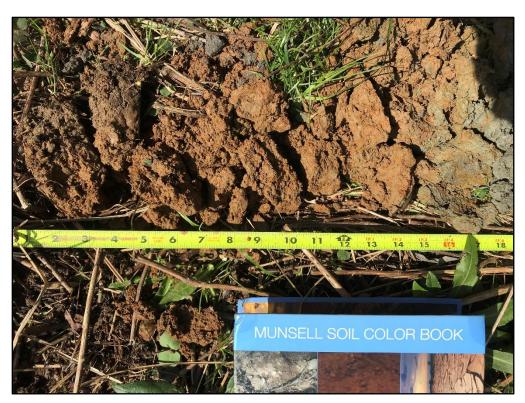
Soil Scientist Seal

^{*}PL =pore lining, M = matrix

^{**}Texture (follows USDA textural classification)

Appendix B
Banner Branch Mitigation Site – Stokes County, NC
Photo Log

November 2019


1. W4 Wetland profile. Meets the F3-Depleted Matrix and F8-Redox Depression indicators. SB#209.

2. W4 depressional landscape.

Appendix B
Banner Branch Mitigation Site – Stokes County, NC
Photo Log

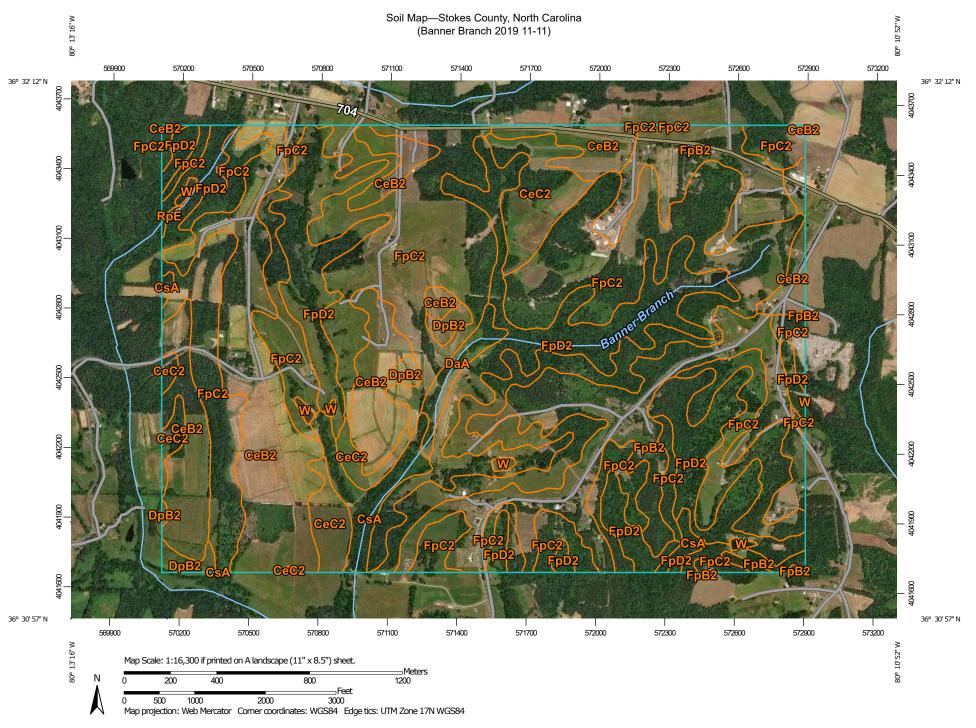
November 2019

3. W1 Wetland profile. Meets the F3-Depleted Matrix indicator. SB#14.

4. HS1 landscape with bed rows visible.

Appendix B
Banner Branch Mitigation Site – Stokes County, NC
Photo Log

November 2019



5. Spoil berm in wetland W2.

6. Drain tile below W6 wetland.

Appendix B Page 3 of 3

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

 \boxtimes Borrow Pit

36 Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

â Stony Spot

00 Very Stony Spot

Spoil Area

Wet Spot Other

Special Line Features

Water Features

Δ

Streams and Canals

Transportation

Rails ---

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Please rely on the bar scale on each map sheet for map measurements.

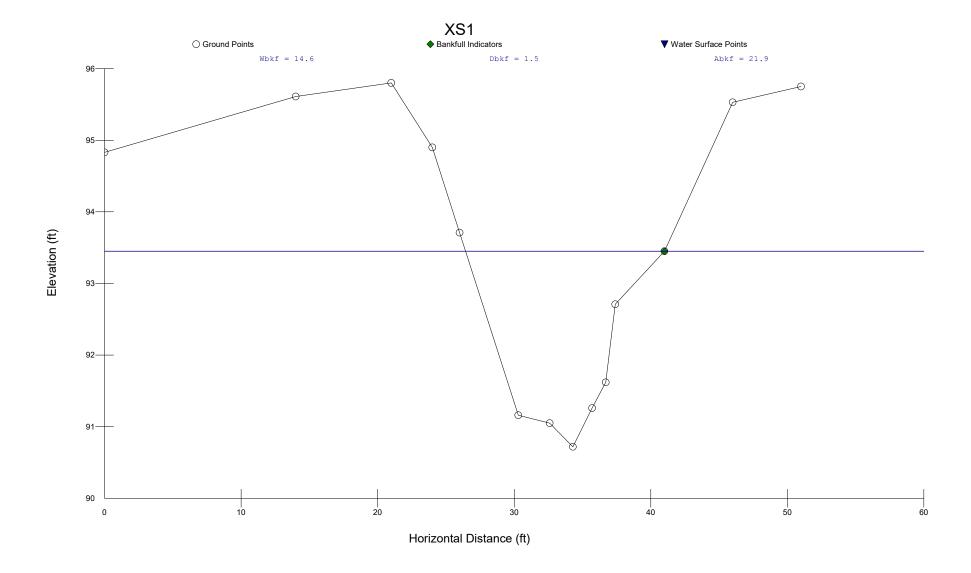
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Stokes County, North Carolina Survey Area Data: Version 19, Sep 16, 2019


Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Aug 28, 2011—Oct 2, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CeB2	Clifford sandy clay loam, 2 to 8 percent slopes, moderately eroded	234.0	17.6%
CeC2	Clifford sandy clay loam, 8 to 15 percent slopes, moderately eroded	64.3	4.8%
CsA	Codorus loam, 0 to 2 percent slopes, occasionally flooded	29.8	2.2%
DaA	Dan River and Comus soils, 0 to 4 percent slopes, occasionally flooded	13.0	1.0%
DpB2	Danripple sandy clay loam, 2 to 8 percent slopes, moderately eroded	13.6	1.0%
FpB2	Fairview-Poplar Forest complex, 2 to 8 percent slopes, moderately eroded	187.1	14.1%
FpC2	Fairview-Poplar Forest complex, 8 to 15 percent slopes, moderately eroded	533.6	40.1%
FpD2	Fairview-Poplar Forest complex, 15 to 25 percent slopes, moderately eroded	248.0	18.7%
RpE	Rhodhiss, Fairview, and Stott Knob soils, 25 to 60 percent slopes	0.8	0.1%
W	Water	5.0	0.4%
Totals for Area of Interest		1,329.1	100.0%

River Name: Banner Branch

Reach Name: BB-R3 Cross Section Name: XS1 Survey Date: 10/0

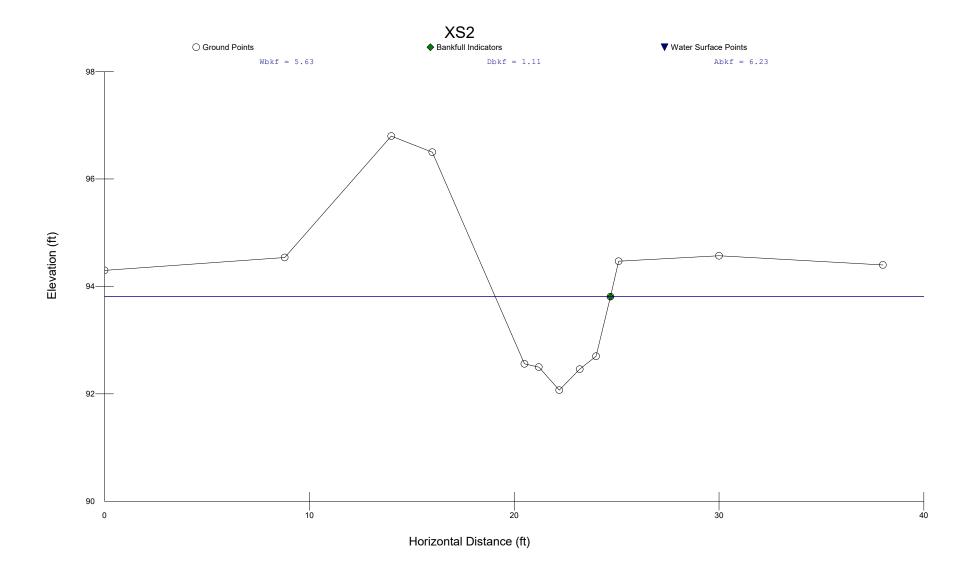
10/08/2019

Cross Section Data Entry

BM Elevation: 100 ft 1 ft Backsight Rod Reading:

TAPE	FS	ELEV	NOTE
0 14 21 24 26 30. 3 32. 6 34. 3 35. 7 36. 7 37. 4 41 46 51	6. 17 5. 39 5. 2 6. 1 7. 29 9. 84 9. 95 10. 28 9. 74 9. 38 8. 29 7. 55 5. 47 5. 25	94. 83 95. 61 95. 8 94. 9 93. 71 91. 16 91. 05 90. 72 91. 26 91. 62 92. 71 93. 45 95. 53 95. 75	LPIN G G LTB G brk LCH G TWG RCH brk brk brk brk brk

Cross Sectional Geometry


	Channel	Left	Ri ght
Floodprone Elevation (ft)	96. 18	96. 18	96. 18
Bankfull Elevation (ft)	93. 45	93. 45	93. 45
Floodprone Width (ft)	51		
Bankfull Width (ft)	14. 56	7. 28	7. 28
Entrenchment Ratio	3. 5		
Mean Depth (ft)	1. 5	1. 73	1. 27
Maximum Depth (ft)	2. 73	2. 62	2. 73
Width/Depth Ratio	9. 71	4. 2	5. 73
Bankfull Area (sq ft)	21. 86	12. 62	9. 24
Wetted Perimeter (ft)	16. 06	10. 55	10. 74
Hydraulic Radius (ft)	1. 36	1. 2	0. 86
Begin BKF Station	26. 44	26. 44	33. 72
End BKF Station	41	33. 72	41

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side

River Name: Banner Branch Reach Name: UT3

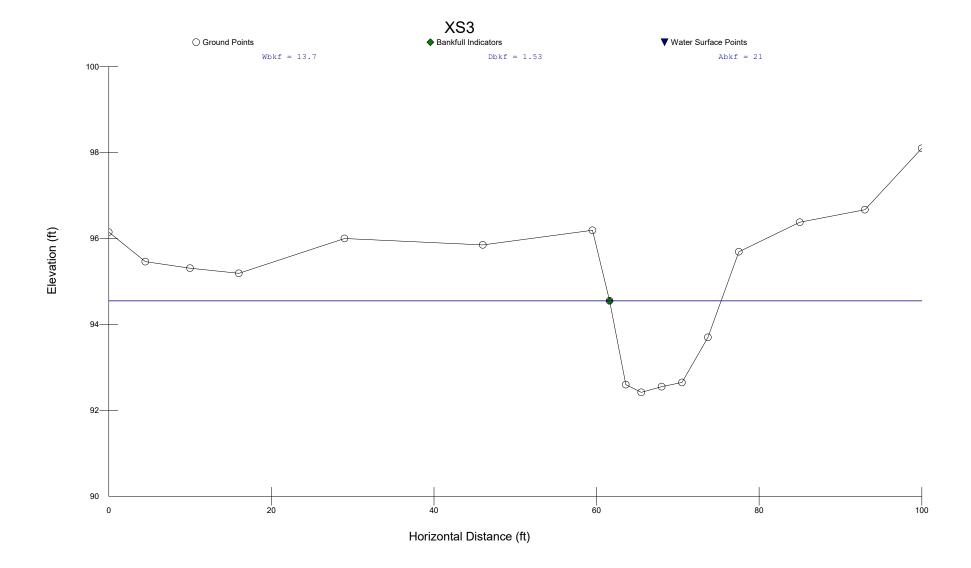
Cross Section Name: XS2

Survey Date: 12/18/2019

Cross Section Data Entry

BM Elevation: 10 ft Backsight Rod Reading: 90 ft

TAPE FS	ELEV	NOTE	
0 5.7 8.8 5.46 14 3.2 16 3.5 20.5 7.44 21.2 7.5 22.2 7.93 23.2 7.54 24 7.3 24.7 6.19 25.1 5.53 30 5.43 38 5.6	94.30 94.54 96.80 96.50 92.56 92.50 92.70 92.46 92.70 93.81 94.47 94.57	LPIN BRK SPOIL LTB LCH WSF TWG BG RCH bkf RTB G RPIN	


Cross Sectional Geometry

	Channel	Left	Right
Floodprone Elevation (ft)	95.55	95.55	95.55
Bankfull Elevation (ft)	93.81	93.81	93.81
Floodprone Width (ft)	32.04		
Bankfull Width (ft)	5.63	2.81	2.81
Entrenchment Ratio	5.69		
Mean Depth (ft)	1.11	0.99	1.22
Maximum Depth (ft)	1.74	1.61	1.74
Width/Depth Ratio	5.07	2.84	2.3
Bankfull Area (sq ft)	6.23	2.79	3.44
Wetted Perimeter (ft)	6.91	4.95	5.17
Hydraulic Radius (ft)	0.9	0.56	0.67
Begin BKF Station	19.07	19.07	21.89
End BKF Station	24.7	21.89	24.7

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side

River Name: Banner Branch Reach Name: BB-R2

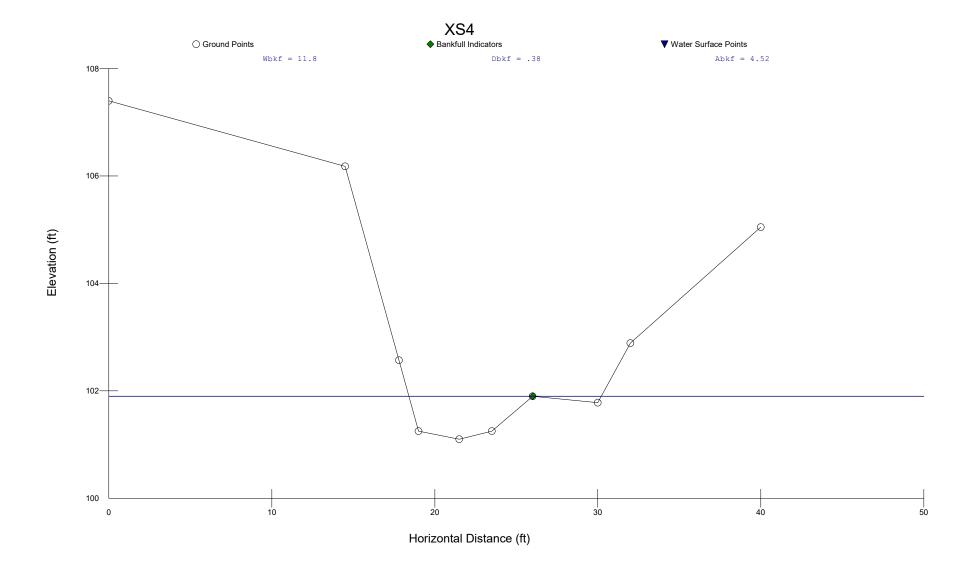
Cross Section Name: XS3

Survey Date: 10/08/2019

Cross Section Data Entry

BM Elevation: Backsight Rod Reading: 100 ft 1 ft

TAPE	FS	ELEV	NOTE
0	4.85	96.15	LPIN
4.5	5.54	95.46	BRK
10	5.69	95.31	BRK
16	5.81	95.19	BRK
29	5	96	BRK
46	5.15	95.85	BRK
59.5	4.81	96.19	LTB
61.6	6.45	94.55	BKF
63.6	8.4	92.6	LCH
65.5	8.58	92.42	TWG
68	8.45	92.55	BRK
70.5	8.35	92.65	RCH
73.7	7.3	93.7	BRK
77.5	5.31	95.69	RTB
85	4.62	96.38	G
93	4.33	96.67	BRK
100	2.9	98.1	RPIN


Cross Sectional Geometry

Bankfull Elevation (ft) Floodprone Width (ft) Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station	96.68 94.55 93.05 13.72 6.78 1.53 2.13 8.97 20.95 14.91 1.41 61.6	96.68 94.55 6.86 1.74 2.13 3.95 11.9 9.65 1.23 61.6	Right 96.68 94.55 6.86 1.32 1.98 5.2 9.05 9.22 0.98 68.46
Begin BKF Station 6	61.6	61.6	68.46
	75.32	68.46	75.32

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side

.....

River Name: Banner Branch Reach Name: UT2

Reach Name: UT2 Cross Section Name: XS4

Survey Date: 10/10/2019

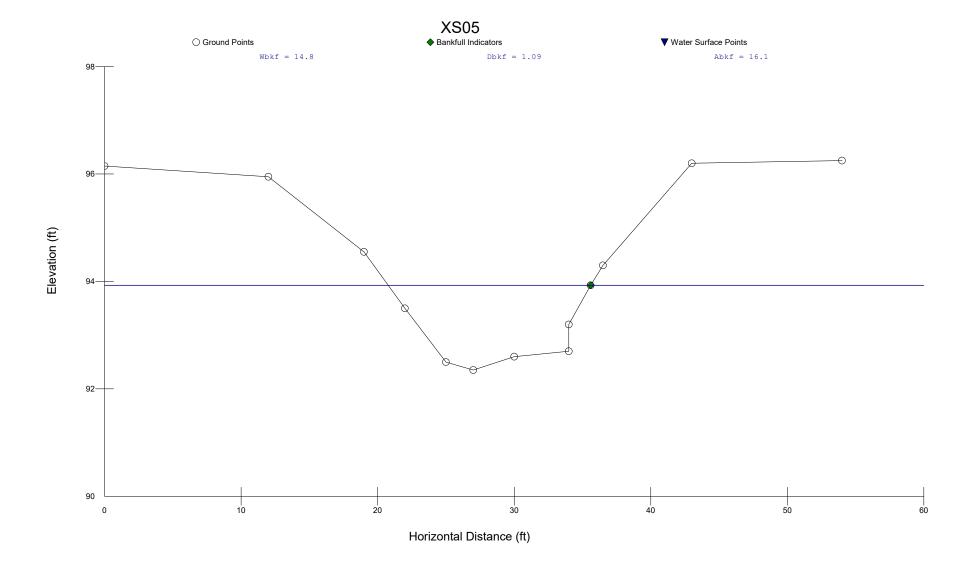
Cross Section Data Entry

BM Elevation: 100 ft Backsight Rod Reading: 10 ft

0 2.6 107.4 LPIN 14.5 3.82 106.18 LTB 17.8 7.43 102.57 BRK 19 8.75 101.25 LCH 21.5 8.9 101.1 TWG 23.5 8.75 101.25 RCH 26 8.1 101.9 BKF 30 8.22 101.78 BACK BENCH 32 7.11 102.89 BRK 40 4 95 105.05 RPIN	TAPE	FS	ELEV	NOTE
10 1133 103103 10110	14.5	3.82	106.18	LTB
	17.8	7.43	102.57	BRK
	19	8.75	101.25	LCH
	21.5	8.9	101.1	TWG
	23.5	8.75	101.25	RCH
	26	8.1	101.9	BKF
	30	8.22	101.78	BACK BENCH

Cross Sectional Geometry

	Channe I	Left	Right
Floodprone Elevation (ft)	102.7	102.7	102.7
Bankfull Elevation (ft)	101.9	101.9	101.9
Floodprone Width (ft)	13.98		
Bankfull Width (ft)	11.81	5.9	5.91
Entrenchment Ratio	1.18		
Mean Depth (ft)	0.38	0.66	0.11
Maximum Depth (ft)	0.8	0.8	0.44
Width/Depth Ratio	31.08	8.94	53.73
Bankfull Area (sq ft)	4.52	3.9	0.62
Wetted Perimeter (ft)	12.22	6.66	6.43
Hydraulic Radius (ft)	0.37	0.58	0.1
Begin BKF Station	18.41	18.41	24.31
Enď BKF Station	30.22	24.31	30.22



Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side Slope 0 0 0

River Name: Banner Branch

Reach Name: BB-R1 Cross Section Name: XS5

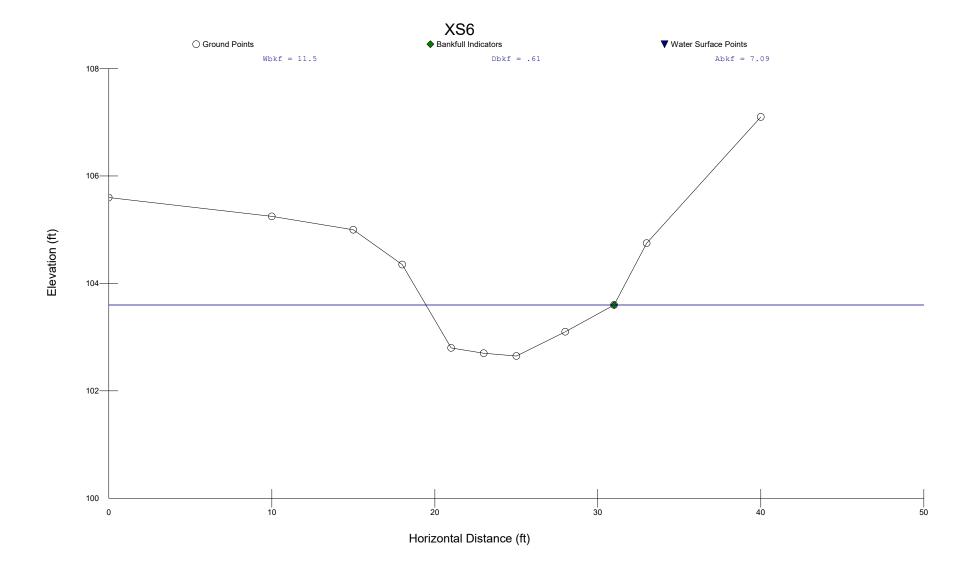
Survey Date: 10/08/2019

Cross Section Data Entry

BM Elevation: 100 ft Backsight Rod Reading: 1 ft

TAPE	FS	ELEV	NOTE
0	4.85	96.15	LPIN BRK LTB BRK LCH TWG BRK RCH BRK
12	5.05	95.95	
19	6.45	94.55	
22	7.5	93.5	
25	8.5	92.5	
27	8.65	92.35	
30	8.4	92.6	
34	8.3	92.7	
34	7.8	93.2	
35.6	7.07	93.93	
36.5	6.7	94.3	RTB
43	4.8	96.2	BRK
54	4.75	96.25	RPIN

Cross Sectional Geometry


	Channel	Left	Right
Floodprone Elevation (ft)	95.51	95.51	95.51
Bankfull Elevation (ft)	93.93	93.93	93.93
Floodprone Width (ft)	26.44		
Bankfull Width (ft)	14.83	7.68	7.15
Entrenchment Ratio	1.78		
Mean Depth (ft)	1.09	1.08	1.1
Maximum Depth (ft)	1.58	1.58	1.46
Width/Depth Ratio	13.61	7.13	6.5
Bankfull Area (sq ft)	16.13	8.27	7.87
Wetted Perimeter (ft)	15.74	9.38	9.27
Hydraulic Radius (ft)	1.02	0.88	0.85
Begin BKF Station	20.77	20.77	28.45
Fnd BKF Station	35.6	28.45	35.6

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

River Name: Banner Branch

Reach Name: UT1-R2 Cross Section Name: XS6

Survey Date: 10/10/2019

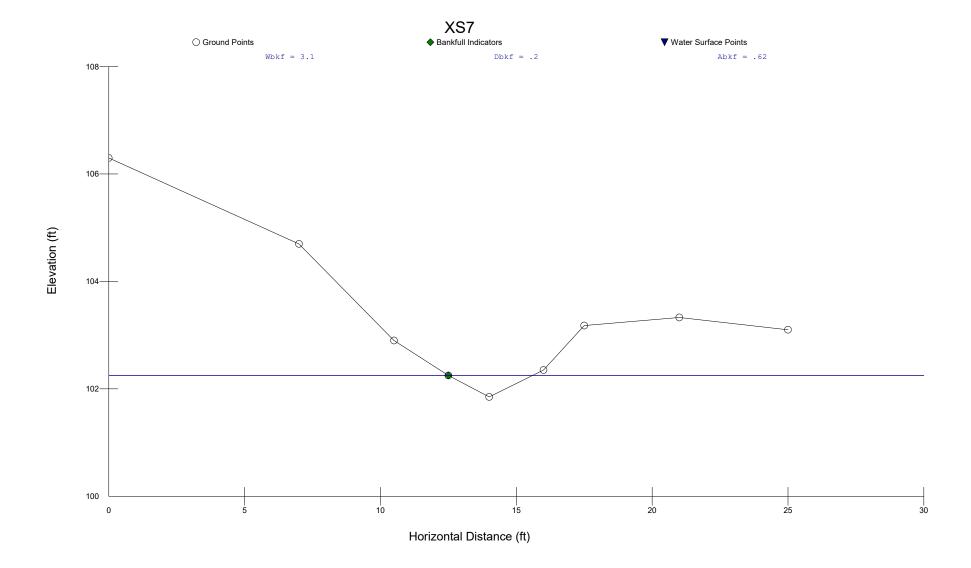
Cross Section Data Entry

BM Elevation: 100 ft Backsight Rod Reading: 10 ft

TAPE	FS	ELEV	NOTE
0 10 15 18 21 23 25 28 31 33 40	4.4 4.75 5 5.65 7.2 7.3 7.35 6.9 6.4 5.25 2.9	105.6 105.25 105 104.35 102.8 102.7 102.65 103.1 103.6 104.75 107.1	LPIN NG BRK LTB BRK LCH TWG RCH BKF RTB

Cross Sectional Geometry

=1	Channe I	Left	Right
Floodprone Elevation (ft)	104.53	104.53	104.53
Bankfull Elevation (ft)	103.59	103.59	103.59
Floodprone Width (ft)	15.45		
Bankfull Width (ft)	11.47	5.74	5.73
Entrenchment Ratio	1.35		
Mean Depth (ft)	0.61	0.75	0.47
Maximum Depth (ft)	0.94	0.94	0.91
Width/Depth Ratio	18.8	7.65	12.19
Bankfull Area (sq ft)	6.98	4.31	2.67
Wetted Perimeter (ft)	11.74	6.85	6.71
Hydraulic Radius (ft)	0.59	0.63	0.4
Begin BKF Station	19.47	19.47	25.21
Enď BKF Station	30.94	25.21	30.94



Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side lope 0 0 0

Banner Branch

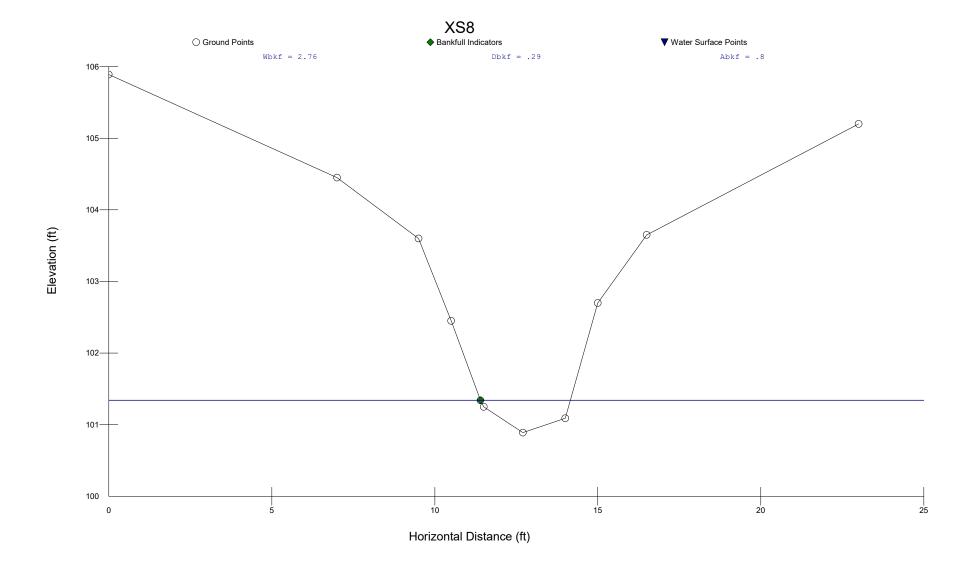
River Name: UT1B

Cross Section Name: XS7 Survey Date: 10/10/2019

Cross Section Data Entry

BM Elevation: Backsight Rod Reading: 100 ft 10 ft

TAPE	FS	ELEV	NOTE
0 7 10.5 12.5 14 16 17.5 21	3.7 5.3 7.1 7.75 8.15 7.65 6.82 6.67 6.9	106.3 104.7 102.9 102.25 101.85 102.35 103.18 103.33 103.1	LPIN BRK LTB BKF TWG RCH RTB G


Cross Sectional Geometry

Floodprone Elevation (ft) Bankfull Elevation (ft)	Channel 102.65 102.25	Left 102.65 102.25	Right 102.65 102.25
Floodprone Width (ft) Bankfull Width (ft)	5.27 3.1	1.25	1.85
Entrenchment Ratio	1.7		
Mean Depth (ft) Maximum Depth (ft)	0.2 0.4	0.17 0.33	0.22 0.4
Width/Depth Ratio	15.5	7.5	8.41
Bankfull Area (sq ft)	0.62	0.21	0.41
Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	3.2 0.19 12.5 15.6	1.63 0.13 12.5 13.75	2.24 0.18 13.75 15.6
LIIG DIN SCACTOII	±3.0	13.73	13.0

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side slope

._____

River Name: Banner Branch

Reach Name: UT1A Cross Section Name: XS8

Survey Date: 10/10/2019

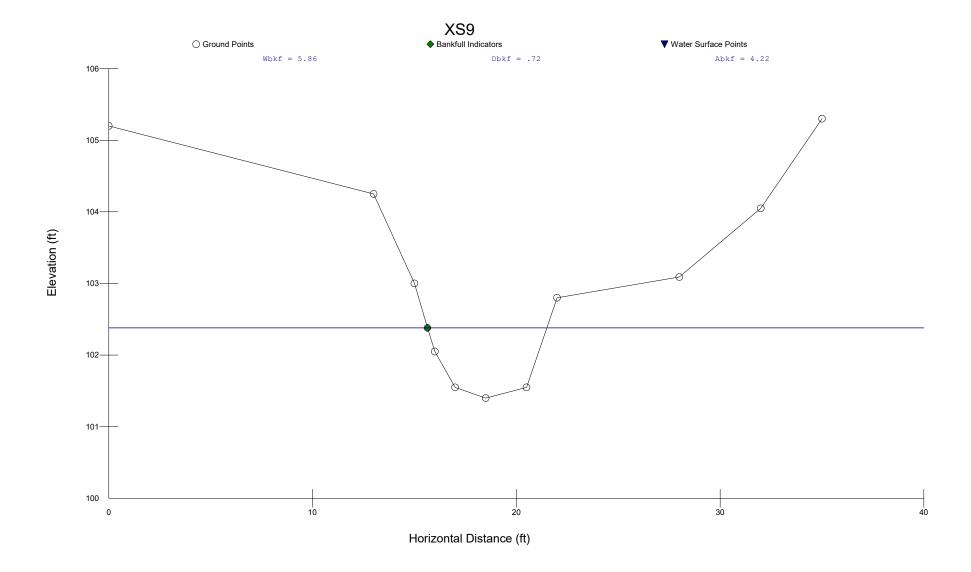
Cross Section Data Entry

BM Elevation: 100 ft Backsight Rod Reading: 10 ft

TAPE	FS	ELEV	NOTE
0 7 9.5 10.5 11.4 11.5 12.7 14 15 16.5	4.11 5.55 6.4 7.55 8.66 8.75 9.11 8.91 7.3 6.35	105.89 104.45 103.6 102.45 101.34 101.25 100.89 101.09 102.7 103.65	LPIN G G LTB BKF LCH TWG RCH RTB BRK
23	4.8	105.2	RPIN

Cross Sectional Geometry

Floodprone Elevation (ft)	Channel 101.79	Left 101.79	Right 101.79
Bankfull Elevation (ft)	101.34	101.34	101.34
<pre>Floodprone Width (ft)</pre>	3.4		
Bankfull Width (ft)	2.76	1.27	1.49
Entrenchment Ratio	1.23		
Mean Depth (ft)	0.29	0.25	0.33
Maximum Depth (ft)	0.45	0.44	0.45
Width/Depth Ratio	9.52	5.12	4.52
Bankfull Area (sq ft)	0.8	0.32	0.49
Wetted Perimeter (ft)	3	1.8	2.08
Hydraulic Radius (ft)	0.27	0.18	0.23
Begin BKF Station	11.4	11.4	12.67
End BKF Station	14.16	12.67	14.16



Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side lope 0 0 0

River Name: Banner Branch Reach Name: UT1-R1

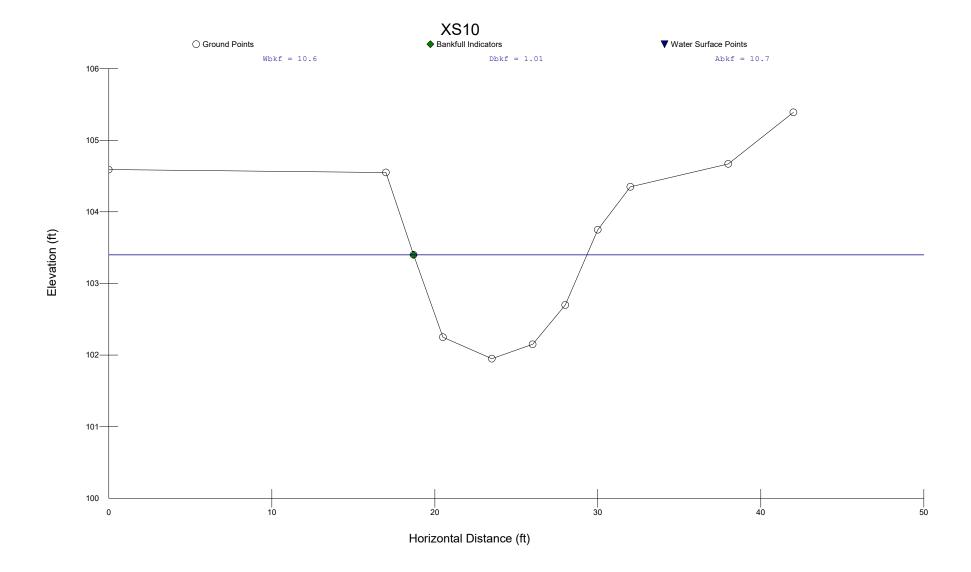
Cross Section Name: XS9

10/10/2019 Survey Date:

Cross Section Data Entry

BM Elevation: Backsight Rod Reading: 100 ft 10 ft

TAPE	FS	ELEV	NOTE
0	4.8	105.2	LPIN
13	5.75	104.25	BRK
15	7	103	BRK
15.64	7.62	102.38	BKF
16	7.95	102.05	BRK
17	8.45	101.55	LCH
18.5	8.6	101.4	TWG
20.5	8.45	101.55	RCH
22	7.2	102.8	RTB
28	6.91	103.09	BRK
32	5.95	104.05	BRK
35	4.7	105.3	RPIN


Cross Sectional Geometry

Channe I	Left	Right
103.36	103.36	103.36
102.38	102.38	102.38
14.7		
5.86	2.93	2.93
2.51		
0.72	0.7	0.74
0.98	0.98	0.97
8.14	4.16	3.96
4.22	2.07	2.15
6.42	4.16	4.21
0.66	0.5	0.51
15.64	15.64	18.57
21.5	18.57	21.5
	103.36 102.38 14.7 5.86 2.51 0.72 0.98 8.14 4.22 6.42 0.66 15.64	103.36 103.36 102.38 102.38 14.7 5.86 2.93 2.51 0.72 0.7 0.98 0.98 8.14 4.16 4.22 2.07 6.42 4.16 0.66 0.5 15.64 15.64

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side slope

._____

River Name: Banner Branch

Reach Name: UT4-R2 Cross Section Name: XS10

Survey Date: 10/10/2019

Cross Section Data Entry

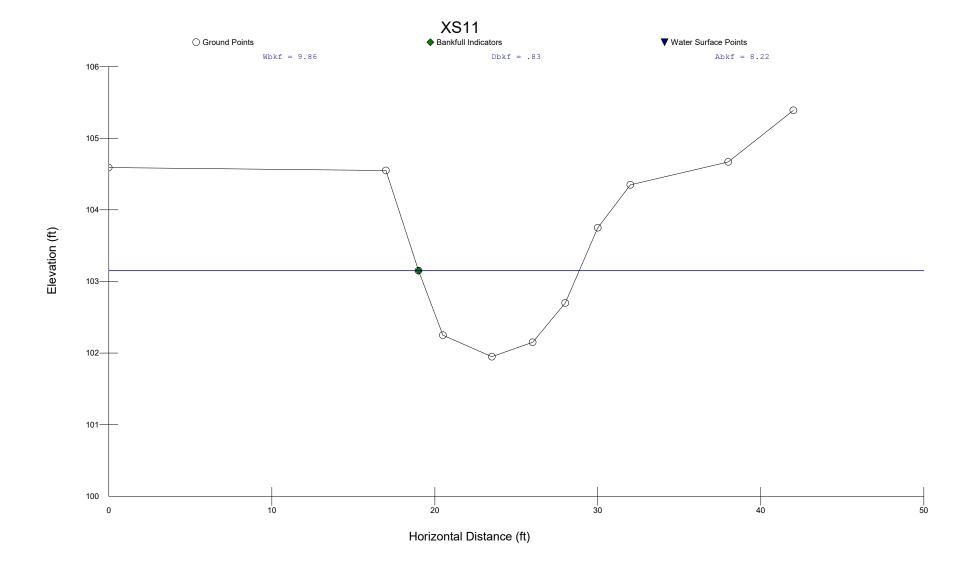
BM Elevation: 100 ft Backsight Rod Reading: 10 ft

TAPE	FS	ELEV	NOTE
0 17 18.7 20.5 23.5 26 28 30 32	5.41 5.45 6.6 7.75 8.05 7.85 7.3 6.25 5.65 5.33	104.59 104.55 103.4 102.25 101.95 102.15 102.7 103.75 104.35 104.67	LPIN LTB BKF LCH TWG RCH BRK RTB BRK BRK
42	4.61	105.39	RPIN

Cross Sectional Geometry

5

Floodprone Elevation (ft) Bankfull Elevation (ft) Floodprone Width (ft) Bankfull Width (ft)	Channe I 104.85 103.4 39 10.63 3.67	104.85 103.4 5.32	104.85 103.4 5.31
Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	1.01	1.07	0.95
	1.45	1.45	1.41
	10.52	4.98	5.59
	10.73	5.68	5.05
	11.24	7.08	6.97
	0.95	0.8	0.72
	18.7	18.7	24.02
	29.33	24.02	29.33



Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side
e 0 0 0

._____.

River Name: Banner Branch

Reach Name: UT4-R1 Cross Section Name: XS11

Survey Date: 10/10/2019

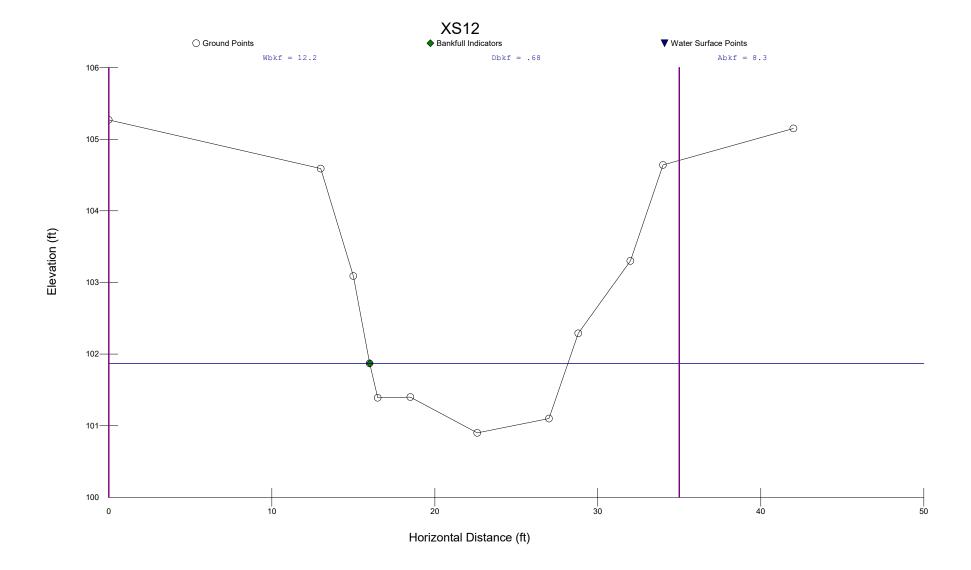
Cross Section Data Entry

BM Elevation: 100 ft Backsight Rod Reading: 10 ft

TAPE	FS	ELEV	NOTE
0 17 19 20.5 23.5 26 28 30 32 38 42	5.41 5.45 6.85 7.75 8.05 7.85 7.3 6.25 5.65 5.33 4.61	104.59 104.55 103.15 102.25 101.95 102.15 102.7 103.75 104.35	LPIN LTB BKF LCH TWG RCH BRK RTB BRK
74	4.01	105.39	RPIN

Cross Sectional Geometry

Floodprone Elevation (ft) Bankfull Elevation (ft) Floodprone Width (ft) Bankfull Width (ft)	Channel	Left	Right
	104.35	104.35	104.35
	103.15	103.15	103.15
	14.71		
	9.86	4.91	4.95
Entrenchment Ratio Mean Depth (ft)	1.49 0.83	0.88	0.79
Maximum Depth (ft)	1.2	1.2	1.17
Width/Depth Ratio	11.88	5.59	6.27
Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	8.22	4.31	3.91
	10.31	6.34	6.31
	0.8	0.68	0.62
	19	19	23.91
	28.86	23.91	28.86



Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side lope 0 0 0

RIVERMORPH CROSS SECTION SUMMARY

River Name: Banner Branch Reach Name: UT4-R1

Cross Section Name: XS12

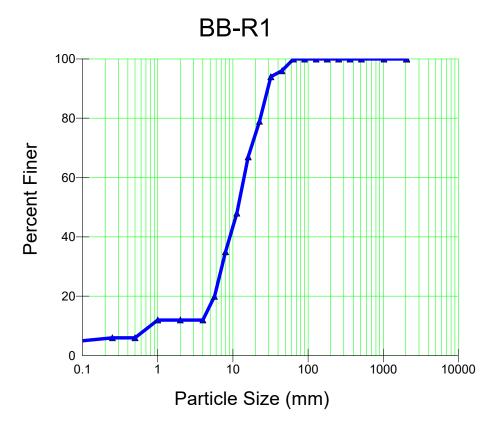
10/10/2019 Survey Date:

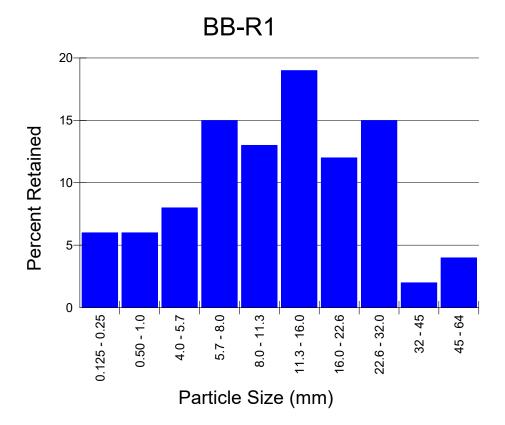
Cross Section Data Entry

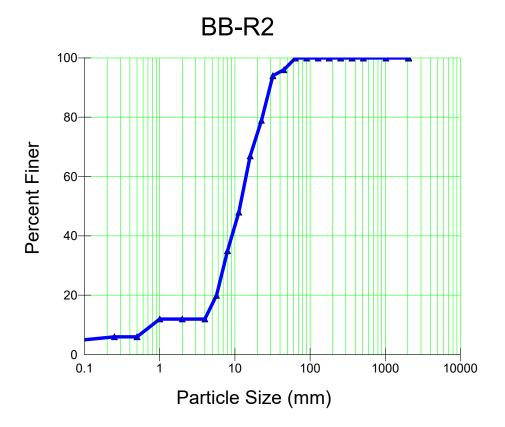
BM Elevation: Backsight Rod Reading: 100 ft 10 ft

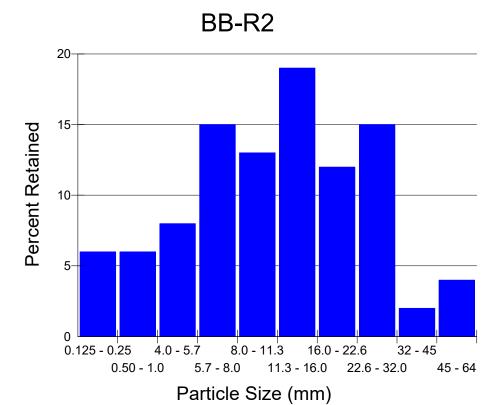
TAPE	FS	ELEV	NOTE
0	4.73	105.27	LPIN
13	5.41	104.59	BRK
15	6.91	103.09	LTB
16	8.13	101.87	BKF
16.5	8.61	101.39	BRK
18.5	8.6	101.4	LCH
22.6	9.1	100.9	TWG
27	8.9	101.1	RCH
28.8	7.71	102.29	BRK
32	6.7	103.3	RTB
34	5.36	104.64	BRK
42	4.85	105.15	RPIN

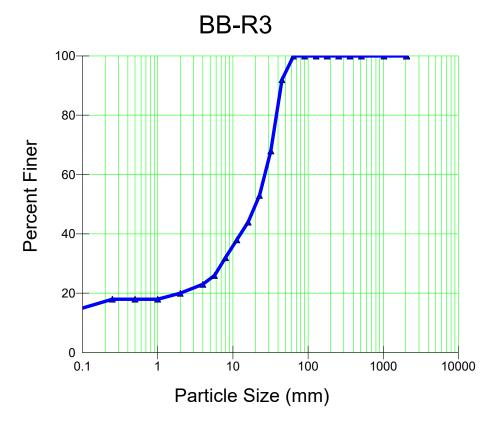
Cross Sectional Geometry

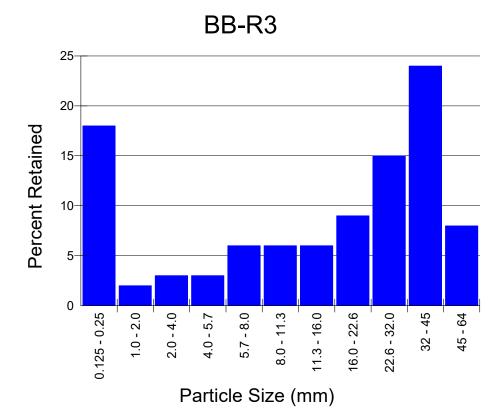

	Channe I	Left	Right
Floodprone Elevation (ft)	102.84	102.84	10Ž.84
Bankfull Elevation (ft)	101.87	101.87	101.87
Floodprone Width (ft)	15.34		
Bankfull Width (ft)	12.16	6.08	6.08
Entrenchment Ratio	1.26		
Mean Depth (ft)	0.68	0.58	0.78
Maximum Depth (ft)	0.97	0.91	0.97
Width/Depth Ratio	17.88	10.46	7.79
Bankfull Area (sq ft)	8.3	3.53	4.76
Wetted Perimeter (ft)	12.62	7.21	7.23
Hydraulic Radius (ft)	0.66	0.49	0.66
Begin BKF Station	16	16	22.08
End BKF Station	28.16	22.08	28.16


Entrainment Calculations

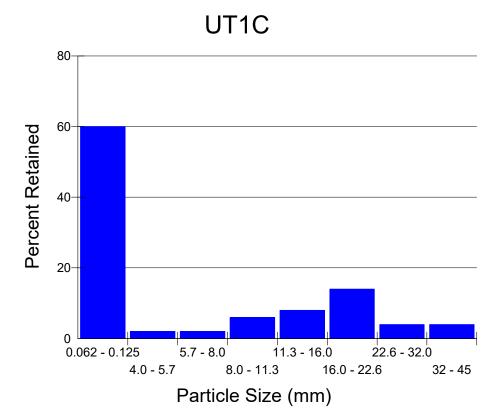

Entrainment Formula: Rosgen Modified Shields Curve


Channel Left Side Right Side slope

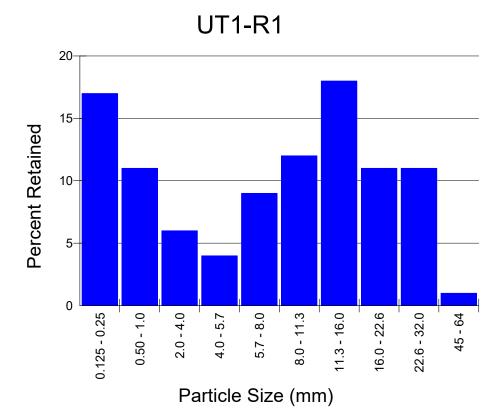

Shear Stress (lb/sq ft)
Movable Particle (mm)

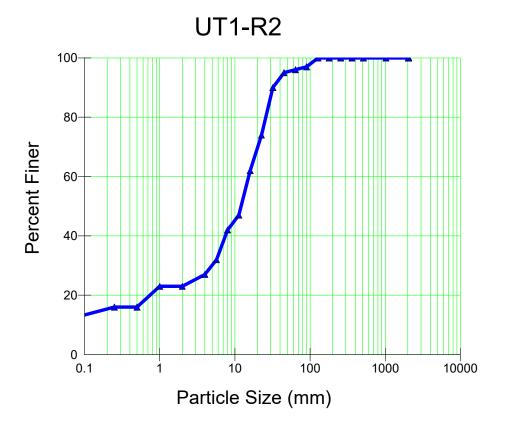


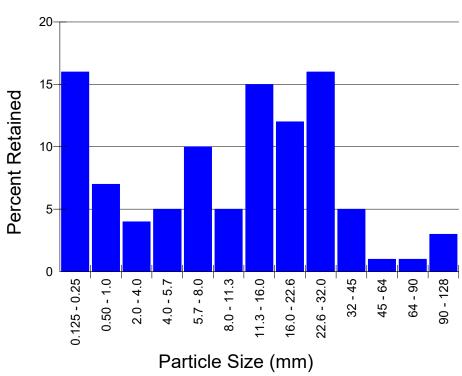


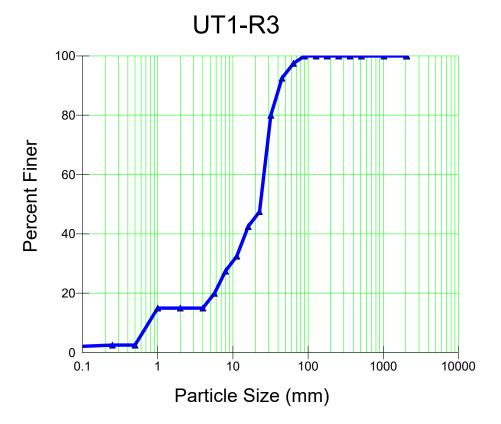


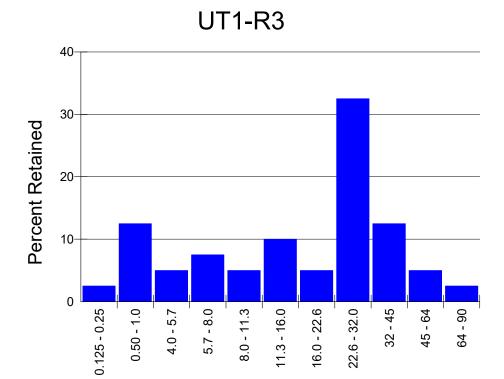


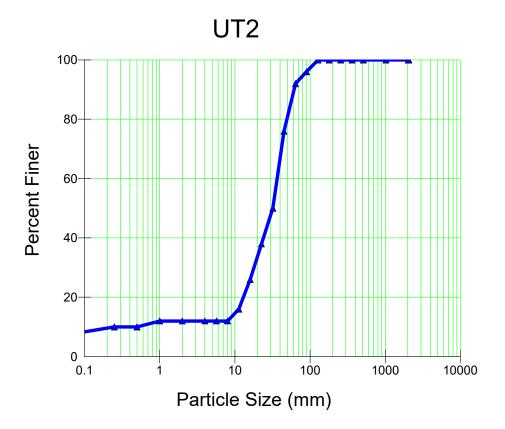


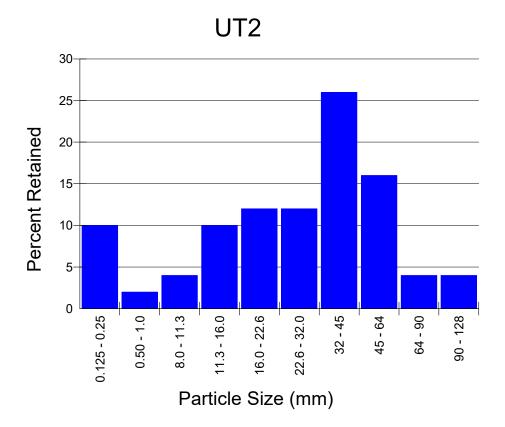


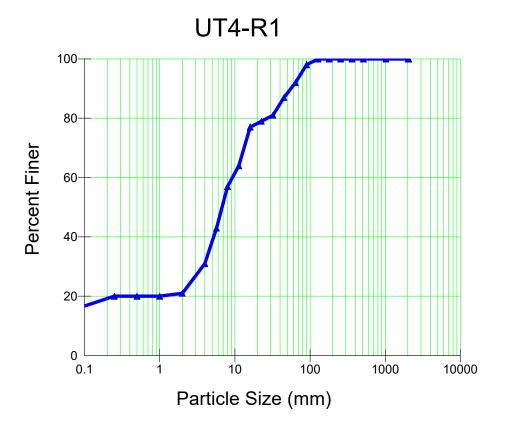


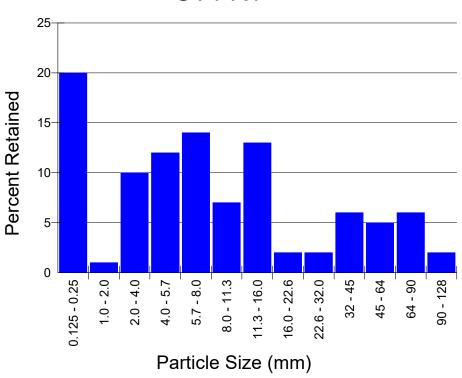


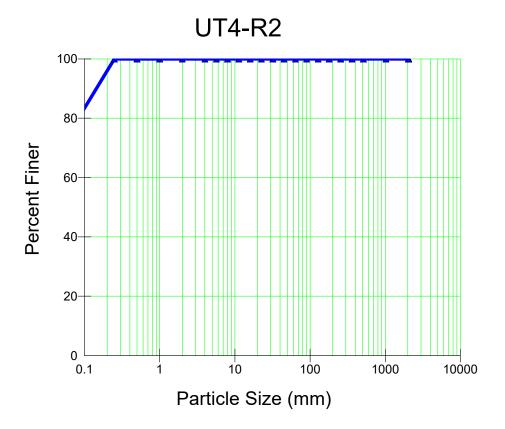


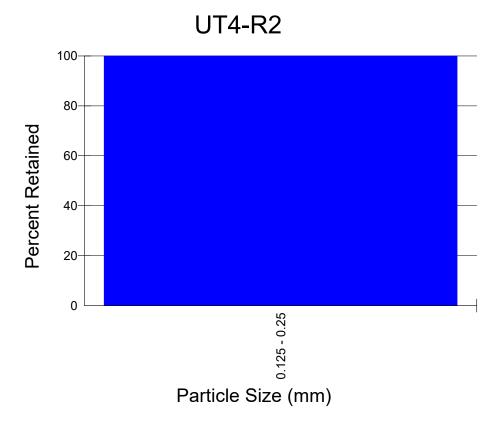







Particle Size (mm)





UT4-R1

STA

1167

1183

1382

1393

Location: Banner Branch Mitigation Project - UT1A Field Crew: K. VanStell/ C. Tomsic Date: 9/17/2019 SEDIMENT LOADING ASSESSMENT SHEET LEFT BANK DISTANCE (note station for detailed design needs) DISTANCE (note station for detailed STUDY BANK FEET/YR TOTAL FT³/yr =(C×D×E) STUDY BANK FEET/YR TOTAL FT³/yr =(C×D×E) BEHI HEIGHT STA BEHI design needs) 1119 1126 V. Low V. Low 0.008 128 1254 V. Low 0.008 199 V. Low 1278 0.008 0.02 V. Low V. Low Low 1.0 24 V. Low 1.8 11 V. Low 1.3 0.008 131 1409 V. Low TOTAL FT³/YR TOTAL FT³/YR 6.9 Divide FT³/yr by 27 TOTAL YD3/YR 0.3 TOTAL YD3/YR 0.3 TOTAL TONS/YR TOTAL TONS/YR Multiply YD3/yr by 1.3 Total Length 409 Total ft assessed 802 EHI Total TONS per year 0.7 Tons per ft per year 0.0008 Tons per 1000ft

North Carolina	unpublished cun	ve (Alan Walker, N	RCS)						
	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	

NBS

STA

1048

1087

1131

1167

1258

1387

Location: Banner Branch Mitigation Project - UT1B Field Crew: K. VanStell/ C. Tomsic Date: 9/17/2019 SEDIMENT LOADING ASSESSMENT SHEET LEFT BANK В DISTANCE (note station for detailed design needs) DISTANCE (note station for detailed STUDY BANK FEET/YR TOTAL FT³/yr =(C×D×E) STUDY BANK FEET/YR TOTAL FT³/yr =(C×D×E) BEHI HEIGHT STA BEHI design needs) Low-Mod 1052 Mod-High 1106 Low-Mod 0.135 2.0 0.09 1126 Low-Mod 0.055 Mod Low Low Mod 16.9 1178 Mod-High 0.25 V. Low 0.008 1.3 52 V. Low 1.8 36 1.6 1202 0.9 Low 0.02 0.055 91 V. Low 24 0.8 Low-Mod Low V. Low V. Low 0.5 0.008 33 1235 V. Low 1.2 0.008 129 0.1 V. Low V. Low 1259 V. Low 0.6 0.008 24 0.1 V. Low V. Low 0.3 0.008 123 0.3 1382 TOTAL FT³/YR TOTAL FT³/YR 65.4 Divide FT³/yr by 27 TOTAL YD3/YR TOTAL YD3/YR TOTAL TONS/YR TOTAL TONS/YR Multiply YD3/yr by 1.3 Total Length 382 Total ft assessed Total TONS per year 5.6 Tons per ft per year 0.0072 Tons per 1000ft

Notur Carollia	uripublished curv	re (Alan Walker, IN	KC3)						
	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	
NBS									

Location: Banner Branch Mitigation Project - UT1C Field Crew: K. VanStell/ E. Dunnigan

SEDIMENT LOADING ASSESSMENT SHEET

			LEFT BANK		OLDIMENT LOA		JOINENT ONE			RIGHT BANK		
Α	В	С	D	E	F		A	В	С	D	E	F
ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)	STA	ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)
V. Low	V. Low	0.8	0.008	78	0.5	1078	V. Low	V. Low	0.7	0.008	65	0.4
V. Low	V. Low	1.1	0.008	33	0.3	1111	Low	V. Low	1.9	0.02	28	1.1
Low	V. Low	0.7	0.02	22	0.3	1133	V. Low	V. Low	1.7	0.008	47	0.6
V. Low	V. Low	1.8	0.008	19	0.3	1152	V. Low	V. Low	1.9	0.008	42	0.6
Low	V. Low	2.1	0.02	15	0.6	1167	V. Low	V. Low	1.7	0.008	48	0.7
Low	Low	1.1	0.034	14	0.0	1181	V. Low	V. Low	0.9	0.008	77	0.6
Low-Mod	Low	1.7	0.055	26	2.4	1207	V. Low	V. Low	0.5	0.008	85	0.3
V. Low	V. Low	1.4	0.008	12	0.1	1219	Mod-High	Low	2.2	0.15	38	12.5
Low-Mod	Low	1.9	0.055	30	3.1	1249	Mod	Mod	2.1	0.18	43	16.3
V. Low	V. Low	1.5	0.008	25	0.3	1274	V. Low	V. Low	1.4	0.008	20	0.2
Low	V. Low	1.9	0.02	38	1.4	1312	V. Low	V. Low	1.1	0.008	14	0.1
V. Low	V. Low	2.1	0.008	33	0.6	1345	V. Low	V. Low	0.9	0.008	9	0.1
Low	V. Low	1.6	0.02	35	1.1	1380						
Low	V. Low	1.1	0.02	21	0.5	1401						
Mod	Low	1.7	0.09	14	2.1	1415						
Mod-High	Low	0.6	0.15	55	5.0	1470						
Mod	Low-Mod	1.5	0.135	23	4.7	1493						
Low	Low	1.7	0.034	12	0.7	1505						
V. Low	V. Low	1.4	0.008	16	0.2	1521						
								1				
								1				
								1				
								1				
	ļ							1	ļ			
								1				
								1				
	ļ							1	ļ			
									l			
				TOTAL FT³/YR	24.2						TOTAL FT ³ /YR	33.5
Divide FT³/yr b				TOTAL YD3/YR	0.9						TOTAL YD3/YR	1.2
Multiply YD3/yr	by 1.3		ļ	TOTAL TONS/YR	1.2						TOTAL TONS/YR	1.6
Total Length				521							516	

 Total Length
 521
 516

	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	

Total ft assessed	1037
Total TONS per year	2.8
Tons per ft per year	0.0027
Tops per 1000ft	27

Location: Banner Branch Mitigation Project - UT2 Field Crew: K. VanStell/ C. Tomsic Date: 9/17/2019

					SEDIMENT LOA	DING ASSE	SSMENT SHE	ΕT				
А	В	С	LEFT BANK D	E	F		A	В	С	RIGHT BANK D	E	F
BEHI	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)	STA	ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)
Low	V. Low	0.5	0.02	219	2.2	1219	Low	V. Low	1.2	0.02	198	4.8
V. Low	V. Low	0.7	0.008	38	0.2	1257	Mod	V. Low	0.9	0.035	107	3.4
V. Low	Low	1.4	0.02	282	7.9	1539	Low	Low	1.2	0.034	209	8.5
Low-Mod	Mod	1.9	0.1	72	13.7	1611	Mod	High	1.5	0.38	19	10.8
Mod	Mod	1.6	0.18	41	11.8	1652	Low	V. Low	2.3	0.02	94	4.3
Mod	Mod-High	1.8	0.27	71	0.0	1723	Mod	V. Low	1.0	0.035	85	3.0
V. Low	Low	0.5	0.02		1.8	1901	Low	V. Low	0.9	0.02	41	0.7
Low	Mod	1.1	0.068	37	2.8	1938	Low	High	1.5	0.14	143	30.0
Mod	Mod	1.7	0.18		20.8	2006	Mod	Low	2.1	0.09	33	6.2
Low	Low-Mod	1.3	0.051	128	8.5	2134	Mod	Mod-High	1.8	0.27	42	20.4
Mod .	Mod .	1.9	0.18	45	15.4	2179	Low	Low	0.8	0.034	145	3.9
Low	Low Mod	1.5 3.1	0.034	39	2.0 27.3	2218	Low-Mod	Mod	1.3	0.1	55 78	7.2 19.0
Mod Mod	Low-Mod	3.1	0.18 0.135	49 53	27.3	2267 2320	Mod Low-Mod	Low-Mod Mod	1.8 2.4	0.135	160	38.4
WIOG	LOW-WOO	3.3	0.133	55	23.0	2320	LOW-WOO	WIOG	2.4	0.1	100	36.4
		İ							1			
		 					—	 	 			
		-					-	 	+			
							-		 			
							—	 	 			
		 					—	 	 			
		†					—	1	-			
		t.		TOTAL FT³/YR	138.0		-				TOTAL FT³/YR	160.6
Divide FT³/yr b	v 27			TOTAL YD3/YR	5.1						TOTAL YD3/YR	5.9
Multiply YD³/yr				TOTAL TONS/YR	6.6						TOTAL TONS/YR	7.7
										Į.		
Total Length				1320							1409	

Total Length 1320	1409
-------------------	------

North Carolina	unpublished curv	ve (Alan Walker, N	RCS)						
	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	
NBS									

Total ft assessed	2729
Total TONS per year	14.4
Tons per ft per year	0.0053
Tons per 1000ft	5.3

Date: 9/17/2019

STA 1148

1166

1212

1277

Location: Banner Branch Mitigation Project - UT2A Field Crew: K. VanStell/ C. Tomsic

SEDIMENT LOADING ASSESSMENT SHEET LEFT BANK DISTANCE (note station for detailed design needs) DISTANCE (note station for detailed STUDY BANK HEIGHT FEET/YR TOTAL FT³/yr =(C×D×E) STUDY BANK FEET/YR TOTAL FT³/yr =(C×D×E) BEHI NBS STA BEHI design needs) 1155 0.7 1176 V. Low 1.0 Low-Mod Low-Mod 135 11.6 1311 0.09 Mod Low 0.034 1.7 Low 65 TOTAL FT³/YR 40.7 TOTAL FT³/YR 13.4 Divide FT³/yr by 27 TOTAL YD3/YR TOTAL YD3/YR 0.5 TOTAL TONS/YR TOTAL TONS/YR 0.6 Multiply YD3/yr by 1.3 Total Length 311 Total ft assessed 588 Total TONS per year 2.6 Tons per ft per year

Tons per 1000ft 0.0044

North Carolina	unpublished cur	ve (Alan Walker, N	RCS)						
	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	

NBS

STA

1340

Location: Banner Branch Mitigation Project - UT3 Field Crew: K. VanStell/ C. Tomsic Date: 9/17/2019 SEDIMENT LOADING ASSESSMENT SHEET LEFT BANK DISTANCE (note station for detailed design needs) DISTANCE (note station for detailed design needs) STUDY BANK HEIGHT FEET/YR TOTAL FT³/yr =(C×D×E) STUDY BANK HEIGHT FEET/YR TOTAL FT³/yr =(C×D×E) BEHI NBS STA BEHI 1319 319 TOTAL FT³/YR 40.2 TOTAL FT³/YR 28.6 Divide FT³/yr by 27 TOTAL YD3/YR TOTAL YD3/YR TOTAL TONS/YR TOTAL TONS/YR Multiply YD3/yr by 1.3 Total Length North Carolina unpublished curve (Alan Walker, NRCS) Total ft assessed 659 Total TONS per year 3.3 Tons per ft per year

Tons per 1000ft 0.0050

	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	ВІ
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	
NBS				•					-

Location: Banner Branch Mitigation Project - UT4-R1 Headcut Field Crew; E. Dunnigan/ K. VanStell Date: 9/17/2019

					SEDIMENT LOA	DING ASSE	SOMENT SHE	El				
Α	В	С	LEFT BANK D	E	F		A	В	С	RIGHT BANK D	E	F
ВЕНІ	NBS		FEET/YR (from curve)	DISTANCE (note	TOTAL FT³/yr =(C×D×E)	STA	ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)
/. High	Low	4.1	0.18	60	44.3	1060	V. High	Low	5.0	0.18	60	54.0
ligh	Low	3.7	0.18	30	20.0	1090	High	Low	4.2	0.18	30	22.
_ow	V. Low	3.9	0.02	60	4.7	1150	Low	V. Low	3.7	0.02	60	4.4
Low	V. Low	2.4	0.02	90	4.3	1240	Low	V. Low	3.4	0.02	90	6.
		<u> </u>						\vdash				
•												
				TOTAL FT³/YR	73.3				•		TOTAL FT³/YR	87.2
Divide FT3/yr t Multiply YD3/y				TOTAL YD3/YR TOTAL TONS/YR	2.7 3.5						TOTAL YD3/YR TOTAL TONS/YR	3.: 4.:

Total Length 240 240

	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	

Total ft assessed	480
Total TONS per year	7.7
Tons per ft per year	0.0161
Tons per 1000ft	16.1

Location: Banner Branch Mitigation Project - UT4-R1 Field Crew: C. Tomsic/ K. VanStell Date: 9/17/2019

					SEDIMENT LOA	DING ASSE	SSMENT SHE	ET				
А	В	С	LEFT BANK D	E	F		А	В	С	RIGHT BANK D	E	F
BEHI	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)	STA	BEHI	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)
Low	V. Low	2.5	0.02	280	14.0	1280	Mod-High	Low	0.8	0.15	620	74.4
V. Low	V. Low	2.8	0.008	220	4.9	1500	High	Mod	0.9	0.3	460	124.2
Mod	Low-Mod	2.7	0.135	180	65.6	1680	High	Mod	3.1	0.3	130	120.9
Mod-High	Mod	5.5	0.25	230	316.3	1910	Mod	Mod	1.8	0.18	230	74.5
Low	Low	2.1	0.034	170	12.1	2080	V. Low	V. Low	2.5	0.008	100	2.0
Low	V. Low	2.6	0.02	200	10.4	2280	High	Low	1.8	0.18	230	74.5
Mod	Low	3.5	0.09	180	56.7	2460	V. Low	V. Low	3.6	0.008	270	7.8
V. Low	V. Low	0.9	0.008	210	1.5	2670	Mod-High	Mod	3.4	0.25	260	221.0
Low	V. Low	0.8	0.02	310	5.0	2980	Mod	Low	1.7	0.09	100	15.3
Mod	Low	2.3	0.09	220	45.5	3200	Low	Mod	2.2	0.068	150	22.4
Low-Mod	Low	2.6	0.055	280	40.0	3480	Mod-High	Mod	1.6	0.25	250	100.0
V. Low	V. Low	2.8	0.008	110	2.5	3590	High	Low	2.1	0.18	260	98.3
Low-Mod	Low	1.9	0.055	305	31.9	3895	V. Low	Low	1.9	0.02	120	4.6
Low	Low	2.1	0.034	290	20.7	4185	Mod	Low	1.8	0.09	280	45.4
Low-Mod	Low	2.7	0.055	300	44.6	4485	Low	Low	1.7	0.034	100	5.8
V. Low	V. Low	1.8	0.008	210	3.0	4695	Low	V. Low	2.1	0.02		14.7
Mod	Mod	2.3	0.18	200	82.8	4895	High	High	4.9	0.5	80	196.0
High	High	2.7	0.5	245	330.8	5140	V. Low	V. Low	1.9	0.008	690	10.5
Mod	Mod	2.9	0.18	60	31.3	5200						
Mod	Mod-High	1.7	0.27	250	114.8	5450						
Mod	Low	1.9	0.09	250	42.8	5700						
Low	Low	2.4	0.034	300	24.5	6000						
		1					-					
							-					
							-					
							-					
							-					
							-					
							-					
							-					
							-					
		1										
								1	 			
								1	 			
		<u> </u>						1	†			
<u> </u>	1	1		TOTAL FT³/YR	1301.5			1	1		TOTAL FT ³ /YR	1212.2
Divide FT³/yr b	w 27			TOTAL YD3/YR	48.2						TOTAL YD3/YR	44.9
Multiply YD3/yr				TOTAL TONS/YR	62.7						TOTAL TONS/YR	58.4
	-,			.01/12 10:10/11	02.1	li .					TOTAL TOTAL	30.4
Total Length				5000							4680	

Total Length 5000	4680
-------------------	------

North Carolina	unpublished cun	e (Alan Walker, N	RCS)						
	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	8.0	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	
NDC									

Total ft assessed	9680
Total TONS per year	121.0
Tons per ft per year	0.0125
Tons per 1000ft	12.5

Location: Banner Branch Mitigation Project - UT4-R2 Field Crew: C. Tomsic/ K. VanStell Date: 9/17/2019

					SEDIMENT LOA	DING ASSI	ESSMENT SHE	ET				
А	В	С	LEFT BANK D	E	F		Α	В	С	RIGHT BANK D	E	F
ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)	STA	BEHI	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)
High	V. High	2.6	0.8	80	166.4	1080	Mod	Low	2.5	0.09	140	31.5
Mod	Low-Mod	1.5	0.135	60	12.2	1140	Mod	High	1.8	0.38	150	102.6
Mod	Mod-High	3.1	0.27	220	184.1	1360	Mod	Low	2.4	0.09	260	56.2
Mod	Low	2.6	0.09	220	51.5	1580	Low	Low	1.9	0.034	100	6.5
Low	Low	2.0	0.034	350	23.8	1930	Low	V. Low	2.1	0.02	345	14.5
Low	V. Low	1.4	0.02	370	10.4	2300	V. High	V. High	4.9	0.8	80	313.6
V. Low	V. Low	1.5	0.008	400	4.8	2700	V. Low	V. Low	1.9	0.008	410	6.2
							Low	Low	1.6	0.034	230	12.5
									1			
									1			
							-		1			
				TOTAL FT³/YR	453.1						TOTAL FT³/YR	543.6
Divide FT³/yr I	ov 27			TOTAL YD3/YR	453.1 16.8						TOTAL YD3/YR	20.1
Multiply YD3/y				TOTAL TONS/YR	21.8						TOTAL TONS/YR	26.2
Total Length				1700							1715	

North Carolina	unpublished cun	ve (Alan Walker, N	RCS)						
	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	
NBS									

Total ft assessed	3415
Total TONS per year	48.0
Tons per ft per year	0.0141
Tons per 1000ft	14.1

Location: Banner Branch Mitigation Project - UT1-R1 Field Crew: E. Dunnigan/ K. Obermiller Date: 9/17/2019

-					SEDIMENT LOA	DING ASSE	SSMENT SHEE	ET				
Α	В	С	LEFT BANK D	Е	F		A	В	С	RIGHT BANK D	E	F
ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)	STA	ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)
V. Low	V. Low	2.2	0.008	39	0.7	1039	Low	V. Low	2.3	0.02	85	3.9
Low-Mod	V. Low	2.9	0.03	167	14.5	1206	V. Low	Low	1.6	0.02	8	0.3
V. Low	V. Low	1.5	0.008	142	1.7	1348	V. Low	V. Low	2.1	0.008	54	0.9
Low	Mod	1.6	0.068	17	1.8	1365	Low	Low	2.0	0.034	29	2.0
Low	Low	1.7	0.034	19	1.1	1384	Low	Low-Mod	1.9	0.051	31	3.0
Low-Mod	Mod	2.8	0.1	86	24.1	1470	Low-Mod	Low	1.6	0.055	35	3.1
V. Low	Low	2.4	0.02	155	7.4	1625	Low-Mod	Mod	1.9	0.1	37	7.0
Low	Low	1.5	0.034	150	7.7	1775	V. Low	V. Low	0.5	0.008	10	0.0
V. Low	V. Low	1.6	0.008	56	0.7	1831	Low	Low	1.7	0.034	155	9.0
Low	Low	1.2	0.034	21	0.9	1852	V. Low	V. Low	1.3	0.008	122	1.3
V. Low	V. Low	1.6	0.008	19	0.2	1871	Low	Low	1.2	0.034	27	1.1
Low	Low	2.5	0.034	22	1.9	1893	V. Low	V. Low	1.6	0.008	33	0.4
V. Low	V. Low	1.5	0.008	27	0.3	1920	Low	Low	1.4	0.034	35	1.7
Low	Low	1.6	0.034	36	2.0	1956	V. Low	Low	1.6	0.02		1.2
		1					Low	V. Low	1.4	0.02	29 37	0.8
							V. Low	V. Low	1.6	0.008	34	1.3
							Low	Low		0.034		1.3
							V. Low V. Low	Low V. Low	1.2	0.008	49 57	0.7
							Low	V. Low	1.3	0.008		1.0
							LOW	V. LOW	1.3	0.02	30	1.0
	ļ								ļ			
								ļ				
									l			
				TOTAL FT³/YR	65.0						TOTAL FT³/YR	40.3
Divide FT³/yr b				TOTAL YD3/YR	2.4						TOTAL YD3/YR	1.5
Multiply YD3/yr	by 1.3			TOTAL TONS/YR	3.1						TOTAL TONS/YR	1.9
Total Length				956							944	

Total Length 9	956	4
----------------	-----	---

	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	

Total ft assessed	1900
Total TONS per year	5.1
Tons per ft per year	0.0027
Tons per 1000ft	2.7

Location: Banner Branch Mitigation Project - UT1-R2 Field Crew: E. Dunnigan/ K. Obermiller Date: 9/17/2019

					SEDIMENT LOA	DING ASSE	SSMENT SHE	ET				
А	В	С	LEFT BANK D	E	F		Α	В	С	RIGHT BANK D	E	F
BEHI	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)	STA	BEHI	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)
Low-Mod	Low-Mod	2.3	0.078	17	3.0	1017	V. Low	V. Low	1.6	0.008	41	0.5
Low	V. Low	2.0	0.02	73	2.9	1090	V. Low	V. Low	1.3	0.008	30	0.3
Low-Mod	V. Low	1.9	0.03	41	2.3	1131	Low-Mod	Mod	2.1	0.1	26	5.5
Low	V. Low	2.0	0.02	166	6.6	1297	Low	Low	1.7	0.034	45	2.6
V. Low	Low	2.2	0.02	85	3.7	1382	V. Low	V. Low	1.3	0.008	29	0.3
Low	Low	1.8	0.034	44	2.7	1426	Low	Low	1.2	0.034	87	3.5
Low-Mod	Low	2.3	0.055	29	3.7	1455	Low	V. Low	1.4	0.02	80	2.2
Mod-High	High	3.2	0.4	41	52.5	1496	Low	Low	1.3	0.034	29	1.3
Low-Mod	Low-Mod	3.5	0.078	22	6.0	1518	V. Low	V. Low	1.9	0.008	33	0.5
Mod	High	2.4	0.38	31	28.3	1549	Low	Low	1.7	0.034	95	5.5
Low-Mod	Low	1.9	0.055	10	1.0	1559	Low	Low-Mod	2.1	0.051	55	5.9
Low	Low	1.8	0.034	55	3.4	1614	Mod	High	2.3	0.38	23	20.1
Low-Mod	Low-Mod	1.5	0.078	19	2.2	1633	Low	Low	5.0	0.034	14	2.4
Low	V. Low	1.7	0.02	21	0.7	1654	Low	Low	3.0	0.034	50	5.1
Low	Low-Mod	1.5	0.051	12	0.9	1666	Low	Low-Mod	1.3	0.051	19	1.3
Low	Low	1.9	0.034	17	1.1	1683	Low	Low	1.5	0.034	13	0.7
Low	Low-Mod	1.5	0.051	12	0.9	1695	Low	Low-Mod	2.5	0.051	22	2.8
Low-Mod	Low-Mod	1.6	0.078	13	1.6	1708	Low	Low	1.4	0.034	25	1.2
Low	Low	1.7	0.034	31	1.8	1739	Low	Low-Mod	1.3	0.051	25	1.7
Low-Mod	Mod	1.5	0.1	14	2.1	1753	Low	Low	2.0	0.034	70	4.8
Low	Low	1.3	0.034	53	2.3	1806	Low-Mod	Low-Mod	1.1	0.078	15	1.3
Low-Mod	Low	1.4	0.055	17	1.3	1823	V. Low	Low	1.2	0.02	25	0.6
Low	Low	1.6	0.034	48	2.6	1871	Low	Low	1.8	0.034	17	1.0
Low	V. Low	1.5	0.02		0.3	1882	V. Low	V. Low	2.2	0.008	15	0.3
Low	Low-Mod	1.5	0.051	22	1.7	1904	Low	Low	1.8	0.034	45	2.8
Low	Low	1.6	0.034	23	1.3	1927	V. Low	V. Low	1.3	0.008	23	0.2
Low	Low-Mod	1.4	0.051	66	4.7	1993	Low	Low	1.4	0.034	85	4.0
Low	Low	1.6	0.034	45	2.4	2038	Low	Low-Mod	1.5	0.051	19	1.5
Low	Low-Mod	1.3	0.051	17	1.1	2055	V. Low	Low-Mod	1.3	0.03	21	0.8
Low	Low	1.0	0.034	21	0.7	2076	Low	Low	1.2	0.034	42	1.7
Low	Mod	1.1	0.068	9	0.7	2085	Low-Mod	Mod	1.4	0.1	16	2.2
V. Low	Low	0.8	0.02		1.1	2153	V. Low	Low	1.9	0.02	62	2.4
Low	Low	0.6	0.034	19	0.4	2172	V. Low	Low	1.8	0.02	17	0.6
V. Low	V. Low	0.4	0.008	283	0.9	2455	V. Low	Low	0.8	0.02	81	1.3
							V. Low	V. Low	0.7	0.008	215	1.2
-		 					-					
		†					——					
-	 	 					—	 	 			
	ı	1		TOTAL ETTACE	440.0			1	<u> </u>		TOTAL ETTAC	60.0
Didde ET34 - 5	07			TOTAL YDIVE	149.2						TOTAL YD3A/D	90.0
Divide FT³/yr b				TOTAL YD3/YR TOTAL TONS/YR	5.5 7.2						TOTAL YD3/YR TOTAL TONS/YR	3.3 4.3
Multiply YD3/yr	uy I.S			TOTAL TONS/YR	7.2					Į.	TOTAL TUNS/YR	4.3

Total Length 1455 1509

	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	

Total ft assessed	2964
Total TONS per year	11.5
Tons per ft per year	0.0039
Tons per 1000ft	3.9

STA

1055

1122

1167

1207

1273

Location: Banner Branch Mitigation Project - BB Field Crew: K. VanStell/ C. Tomsic Date: 9/17/2019 SEDIMENT LOADING ASSESSMENT SHEET LEFT BANK DISTANCE (note station for detailed design needs) DISTANCE (note station for detailed STUDY BANK FEET/YR TOTAL FT³/yr =(C×D×E) STUDY BANK FEET/YR TOTAL FT³/yr =(C×D×E) BEHI HEIGHT STA BEHI design needs) w-Mod 1185 ow-Mod 3.8 91 1276 ow-Mod 3.0 67 Low-Mod Mod 0.055 Low-Mod Low 2.5 40 2.7 V. Low 0.02 66 TOTAL FT³/YR TOTAL FT³/YR 55.1 Divide FT³/yr by 27 TOTAL YD3/YR TOTAL YD3/YR TOTAL TONS/YR Multiply YD3/yr by 1.3 TOTAL TONS/YR Total Length North Carolina unpublished curve (Alan Walker, NRCS) Total ft assessed 549 Mod V. High BEHI Total TONS per year 4.2 Low-Mod Mod-High High Extreme V. Low Low V. Low 0.03 0.0077 0.008 0.2 0.8 Tons per ft per year 0.055 0.034 0.09 0.15 Low 0.02 0.18 0.18 0.44 Tons per 1000ft Low-Mod 0.03 0.051 0.078 0.135 0.2 0.24 0.24 0.77 Mod 0.035 0.068 0.1 0.18 0.25 0.3 0.3

Mod-High

High

V. High

Extreme

NBS

0.1

0.14

0.28

0.52

0.07

0.1

0.2

0.8

0.15

0.25

0.4

0.6

0.27

0.38

0.78

1.6

0.3

0.4

0.8

1.5

0.4

0.5

0.8

1.5

0.4

0.5

0.8

1.5

1.8

2.7

6

Location: Banner Branch Mitigation Project - BB-R1 Field Crew: E. Dunnigan/ K. Obermiller Date: 9/17/2019

_		,		, and the second	SEDIMENT LOA	DING ASSE	SSMENT SHE	ET				
	D.	С	LEFT BANK	E	F			В	С	RIGHT BANK	E	F
A BEHI	B NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)	STA	A BEHI	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)
Low	Low	2.1	0.034	80	5.7	1080	Low	V. Low	4.9	0.02	110	10.8
Mod-High	Low-Mod	1.9	0.2	30	11.4	1110	V. Low	Low	3.5	0.02	35	2.5
High	High	3.3	0.5	40	66.0	1150	Low-Mod	Mod	3.6	0.1	25	9.0
Mod-High	Low-Mod	3.5	0.2	70	49.0	1220	Mod	Mod-High	2.3	0.27	60	37.3
Mod-High	Mod-High	3.1	0.3	160	148.8	1380	Mod	Low-Mod	2.1	0.135	65	18.4
High	Mod	3.4	0.3	90	91.8	1470	Mod	Mod-High	3.3	0.27	25	22.3
High	Mod-High	3.7	0.4	35	51.8	1505	Mod	Low-Mod	3.8	0.135	130	66.7
Mod-High	Mod-High	3.0	0.3	55	49.5	1560	Mod	Mod-High	3.5	0.27	65	61.4
High	High	3.4	0.5	50	85.0	1610	Mod	Low-Mod	4.0	0.135	60	32.4
Mod	Low-Mod	3.1	0.135	60	25.1	1670	Mod	Mod-High	3.4	0.27	45	41.3
High	High	3.0	0.5	90	135.0	1760	Mod	Low-Mod	3.7	0.135	55	27.5
High	Low	3.3	0.18	50	29.7	1810	Low-Mod	Low	2.6	0.055	55	7.9
High	Low-Mod	3.6	0.24	40	34.6	1850	Low	Low	2.4	0.034	55	4.5
Low	Low	3.0	0.034	70	7.1	1920	Mod-High	High	2.7	0.4	55	59.4
							V. Low	Low	3.4	0.02	65	4.4
								1				
		1					—	+				
	1	1						+	1			
		 										
		1					—	+				
		 					——	-				
	1	}					——	1	1			
		 						1				
		ļ						1				
		<u> </u>						1				
				TOTAL FT³/YR	790.5						TOTAL FT³/YR	405.7
Divide FT³/yr b				TOTAL YD3/YR	29.3						TOTAL YD3/YR	15.0
Multiply YD3/yr	by 1.3			TOTAL TONS/YR	38.1						TOTAL TONS/YR	19.5
Total Length				920							905	

	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	

Total ft assessed	1825
Total TONS per year	57.6
Tons per ft per year	0.0316
Tons per 1000ft	31.6

Location: Banner Branch Mitigation Project - BB-R2 Field Crew: E. Dunnigan/ K. Obermiller Date: 9/17/2019

Α	В	С	LEFT BANK D	F	F		Α	В	С
ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT ³ /yr =(C×D×E)	STA	BEHI	NBS	STUDY BAN
/lod-High	Mod	3.1	0.25	20	15.5	1020	Low	Low	3.3
/lod-High	Low	2.4	0.15	230	82.8	1250	Low-Mod	Low-Mod	3.6
flod-High	Mod-High	2.6	0.3	20	15.6	1270	Low	Low	3.8
/lod-High	Low	2.5	0.15	100	37.5	1370	Low-Mod	Mod	3.9
Mod-High	Mod-High	3.0	0.3	120	108.0	1490	Mod	Mod	3.7
Mod	Low	3.1	0.09	40	11.2	1530	High	Mod-High	3.1
ligh	Mod-High	2.9	0.4	70	81.2	1600	Mod	Low	2.9
ligh	Low	2.8	0.18	30	15.1	1630	Low-Mod	Low	3.5
Mod	Mod-High	3.5	0.27	90	85.1	1720	Mod-High	Mod	2.7
Mod	Low	3.3	0.09	20	5.9	1740	Low	Low	3.2
ligh	Mod-High	4.0	0.4	30	48.0	1770	Mod	Low	3.8
Mod	Low	3.7	0.09	40	13.3	1810	Low	Low	3.1
ligh	Mod-High	3.2	0.4	80	102.4	1890	Mod-High	High	3.9
ligh	Low	3.6	0.18	50	32.4	1940	Low	Low	2.2
ligh	Mod-High	3.8	0.4	65	98.8	2005	Mod-High	Mod	2.8
ligh	Low	3.5	0.18	40	25.2	2045	Mod	Mod	3.0
ligh	Mod-High	3.3	0.4	45	59.4	2090	Mod	Low	2.5
Mod	Low	3.4	0.09	120	36.7	2210	Mod	Mod-High	2.2
High	Mod-High	3.6	0.4	100	144.0	2310	Mod	Low	2.9
Mod	Low	3.7	0.09	90	30.0	2400	High	High	3.0
							Low	Low	3.2
							Mod	Mod	3.0
							Low-Mod	Low	3.4
							Low-Mod	Mod	4.2
							Low	Low	3.7
							High	Mod-High	4.0
	+	1							
		1					1	1	
	-	-					-	-	
	-	-					-	-	
		1							
				TOTAL FT ³ /YR	1048.1				
Divide FT³/yr I	by 27			TOTAL YD3/YR	38.8				
Aultiply YD3/y	r by 1.3			TOTAL TONS/YR	50.5				

Α	В	С	RIGHT BANK D	E	F
ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)
Low	Low	3.3	0.034	120	13
Low-Mod	Low-Mod	3.6	0.078	75	21
Low	Low	3.8	0.034	35	4
Low-Mod	Mod	3.9	0.1	20	7
Mod	Mod	3.7	0.18	45	30
High	Mod-High	3.1	0.4	30	37
Mod	Low	2.9	0.09	40	10
Low-Mod	Low	3.5	0.055	55	10
Mod-High	Mod	2.7	0.25	35	23
Low	Low	3.2	0.034	55	6
Mod	Low	3.8	0.09	80	27
Low	Low	3.1	0.034	110	11
Mod-High	High	3.9	0.4	35	54
Low	Low	2.2	0.034	30	2
Mod-High	Mod	2.8	0.25	45	31
Mod	Mod	3.0	0.18	25	13
Mod	Low	2.5	0.09	60	13
Mod	Mod-High	2.2	0.27	40	23
Mod	Low	2.9	0.09	60	15
High	High	3.0	0.5	30	45
Low	Low	3.2	0.034	100	10
Mod	Mod	3.0	0.18	30	16
Low-Mod	Low	3.4	0.055	130	24
Low-Mod	Mod	4.2	0.1	55	23
Low	Low	3.7	0.034	45	
High	Mod-High	4.0	0.4	30	48
ng.	inod riigii		0.1		
				TOTAL FT³/YR	53
				TOTAL YD3/YR	19
				TOTAL TONS/YR	25

Total Length 1400 1415

North Carolina	unpublished curv	e (Alan Walker, N	RCS)						
	V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
V. Low	0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
Low	0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
Low-Mod	0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
Mod	0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
Mod-High	0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
High	0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
V. High	0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
Extreme	0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	
NBS									

Total ft assessed	2815
Total TONS per year	76.1
Tons per ft per year	0.0270
Tons per 1000ft	27.0

BANCS Method Calcs Appendix 2

Location: Banner Branch Mitigation Project - BB-R3 Field Crew: E. Dunnigan/ K. Obermiller

SEDIMENT LOADING ASSESSMENT SHEET

			LEFT BANK		OLDIMEITI EOA		OOMEN ONE			RIGHT BANK		1
Α	В	С	D	E	F		Α	В	С	D	E	F
ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)	STA	ВЕНІ	NBS	STUDY BANK HEIGHT	FEET/YR (from curve)	DISTANCE (note station for detailed design needs)	TOTAL FT³/yr =(C×D×E)
Mod-High	Mod	4.1	0.25	10	10.3	1010	Mod	Mod	2.9	0.18	40	20.9
Low-Mod	Low	3.9	0.055	20	4.3	1030	Mod	Low	3.3	0.09	55	16.3
Mod-High	Mod	4.0	0.25	90	90.0	1120	Mod-High	High	3.0	0.4	65	78.0
Mod-High	Low	3.2	0.15	50	24.0	1170	Mod	High	3.8	0.38	35	50.5
Mod-High	High	3.3	0.4	40	52.8	1210	Low	Low	4.0	0.034	50	6.8
Mod-High	Low	3.8	0.15	40	22.8	1250	Mod	Mod	4.1	0.18	45	33.2
Mod-High	Low	4.0	0.15	20	12.0	1270	High	Low	4.0	0.18	75	54.0
Mod-High	Low	4.3	0.15	90	58.1	1360	Mod	Low-Mod	4.2	0.135	25	14.2
Mod-High	High	4.0	0.4	30	48.0	1390	Mod	High	4.1	0.38	20	31.2
Mod-High	Low	4.2	0.15	50	31.5	1440	Low-Mod	Low	4.3	0.055	35	8.3
Mod-High	Mod	3.2	0.25	40	32.0	1480	Mod-High	Low	4.4	0.15	30	19.8
Mod-High	Mod	2.5	0.25	25	15.6	1505	Mod	Low	4.0	0.09	40	14.4
Mod-High	High	3.0	0.4	100	120.0	1605	Mod-High	High	3.6	0.4	35	50.4
Mod-High	Low	3.1	0.15	20	9.3	1625	Mod	Low	3.5	0.09	55	17.3
Mod-High	High	3.6	0.4	30	43.2	1655	High	High	4.0	0.5	40	80.0
Mod-High	Low	3.7	0.15	50	27.8	1705	Mod	Low	3.8	0.09	55	18.8
Mod-High	High	4.0	0.4	40	64.0	1745	High	Low	4.1	0.18	135	99.6
Mod-High	Low	3.1	0.15		18.6	1785	Mod	Low	4.0	0.09	95	34.2
Mod-High	Low	3.9	0.15	50	29.3	1835	High	Mod	4.1	0.3	45	55.4
Mod-High	High	4.2	0.4	20	33.6	1855	Mod	Low	4.0	0.09	65	23.4
Mod-High	Low	3.7	0.15	40	22.2	1895	Mod-High	High	3.8	0.4	40	60.8
Mod-High	High	3.5	0.4	60	84.0	1955	Mod	Low	3.6	0.09	25	8.1
Mod-High	Low	4.2	0.15	40	25.2	1995	Low	Low	4.1	0.034	45	6.3
Mod-High	High	4.4	0.4	20	35.2	2015	Mod	Mod	4.0	0.18	20	14.4
Mod	Low	4.5	0.09	40	16.2	2055	Low	Low-Mod	3.9	0.051	30	6.0
Mod-High	High	4.2	0.4	50	84.0	2105						
Mod-High	Low	4.0	0.15		18.0	2135						
Mod-High	High	4.1	0.4	20	32.8	2155						
Mod-High	Low	4.4	0.15	70	46.2	2225						
		-										
		-										
									1			
									1			
									1			
									1			
		-							+			
-							-		1			
		 							 			
							<u> </u>	-	+			
							<u> </u>	-	+			
							—	-	+			
L		l					L	1	l			
				TOTAL FT³/YR	1110.8						TOTAL FT³/YR	822.2
Divide FT³/yr b				TOTAL YD³/YR	41.1						TOTAL YD3/YR	30.5
Multiply YD3/yr	by 1.3			TOTAL TONS/YR	53.5						TOTAL TONS/YR	39.6
Total Lagath												

Total Length 1225 1200

V. Low	Low	Low-Mod	Mod	Mod-High	High	V. High	Extreme	BEHI
0.008	0.02	0.03	0.035	0.07	0.1	0.2	0.8	
0.02	0.034	0.055	0.09	0.15	0.18	0.18	0.44	
0.03	0.051	0.078	0.135	0.2	0.24	0.24	0.77	
0.035	0.068	0.1	0.18	0.25	0.3	0.3	1.1	
0.07	0.1	0.15	0.27	0.3	0.4	0.4	1.8	
0.1	0.14	0.25	0.38	0.4	0.5	0.5	2.7	
0.2	0.28	0.4	0.78	0.8	0.8	0.8	6	
0.8	0.52	0.6	1.6	1.5	1.5	1.5	10	
	V. Low 0.008 0.02 0.03 0.035 0.07 0.1 0.2	V. Low Low 0.008 0.02 0.02 0.034 0.03 0.051 0.035 0.068 0.07 0.1 0.1 0.14 0.2 0.28	V. Low Low Low-Mod 0.008 0.02 0.03 0.02 0.034 0.055 0.03 0.051 0.078 0.035 0.068 0.1 0.07 0.1 0.15 0.1 0.14 0.25 0.2 0.28 0.4	0.008 0.02 0.03 0.035 0.02 0.034 0.055 0.09 0.03 0.051 0.078 0.135 0.035 0.068 0.1 0.18 0.07 0.1 0.15 0.27 0.1 0.14 0.25 0.38 0.2 0.28 0.4 0.78	V. Low Low Low-Mod Mod Mod-High 0.008 0.02 0.03 0.035 0.07 0.02 0.034 0.055 0.09 0.15 0.03 0.051 0.078 0.135 0.2 0.035 0.068 0.1 0.18 0.25 0.07 0.1 0.15 0.27 0.3 0.1 0.14 0.25 0.38 0.4 0.2 0.28 0.4 0.78 0.8	V. Low Low Low-Mod Mod Mod-High High 0.008 0.02 0.03 0.035 0.07 0.1 0.02 0.034 0.055 0.09 0.15 0.18 0.03 0.051 0.078 0.135 0.2 0.24 0.035 0.068 0.1 0.18 0.25 0.3 0.07 0.1 0.15 0.27 0.3 0.4 0.1 0.14 0.25 0.38 0.4 0.5 0.2 0.28 0.4 0.78 0.8 0.8	V. Low Low Low-Mod Mod Mod-High High V. High 0.008 0.02 0.03 0.035 0.07 0.1 0.2 0.02 0.034 0.055 0.09 0.15 0.18 0.18 0.03 0.051 0.078 0.135 0.2 0.24 0.24 0.035 0.068 0.1 0.18 0.25 0.3 0.3 0.07 0.1 0.15 0.27 0.3 0.4 0.4 0.1 0.14 0.25 0.38 0.4 0.5 0.5 0.2 0.28 0.4 0.78 0.8 0.8 0.8	V. Low Low Low-Mod Mod Mod-High High V. High Extreme 0.008 0.02 0.03 0.035 0.07 0.1 0.2 0.8 0.02 0.034 0.055 0.09 0.15 0.18 0.18 0.44 0.03 0.051 0.078 0.135 0.2 0.24 0.24 0.77 0.035 0.068 0.1 0.18 0.25 0.3 0.3 1.1 0.07 0.1 0.15 0.27 0.3 0.4 0.4 1.8 0.1 0.14 0.25 0.38 0.4 0.5 0.5 2.7 0.2 0.28 0.4 0.78 0.8 0.8 0.8 6

Total ft assessed	2425
Total TONS per year	93.1
Tons per ft per year	0.0384
Tons per 1000ft	38.4

Catchment Area	6.500 BMP UT4R1 Upper
Pervious Area	6.500
Impervious Area	0.000

The Simple Method		
RV = 0.05 + 0.9 * IA	Step 1 Simple Method	
RV =	0.05	Runoff coefficient (unitless)
IA =	0	Impervious fraction [impervious portion of drainage area (ac)/drainage area (ac)], (unitless
V = 3630 * RD * RV * A	Step 2 in the Simple Method	
V	1180	Volume of runoff that must be controlled for the design storm (cubic feet)
V	0.33	Volume of runoff that must be controlled for the design storm (acre-in)
RD	1.0	Design storm rainfall depth (in) (Typically 1.0" or 1.5")
A	6.5	Watershed area (ac)

The equations may be modified if using multiple CNs or use a composite pervious CN

***CN Method in this spreadsneet is for 2 CN areas only. The equations may be modified it using multiple CNs of use a composite pervious CN					
SCS Curve Number Method					
$Q^* = (P - 0.2S)^2 / (P + 0.8S)$					
S = 1000/CN - 10					
Q* =	0.021	Runoff depth (in)			
CN (Composite)	74	Related to hydrologic soil group and ground cover. (Refer to DWQ Design Manual for CN Tables)			
P =	1.0	Rainfall depth (in) (Typically 1.0" or 1.5")			
S =	3.57	Potential maximum retention after rainfall begins (in)			
Soil Type	Fairview, Clifford	http://websoilsurvey.nrcs.usda.gov/app/			
Hydrologic Soil Group SCS (1986)	A, B, C, and D	Refer to DWQ Design Manual after the soil series in the area of interest is identified			

BMP Sizing Reqs		
$V = A(Q^*)$	0.14	SCS Method Volume of Runoff (ac-in) Required Storage Volume
V		SCS Method Volume of Runoff (cubic feet) Required Storage Volume
V	3731	SCS Method Volume of Runoff (gallons) Required Storage Volume
V	0.33	Simple Method Volume of Runoff (ac-in) Required Storage Volume
V		Simple Method Volume of Runoff (cubic feet) Required Storage Volume
Required Ponding Depth	12	Depends on desired vegetation type and inundation time. Usually 6-12" (in
Required BMP Surface Area	0.011	(ac) SCS Method
Required BMP Surface Area		(ft^2) SCS Method
Required BMP Surface Area	0.027	(ac) Simple Method
Required BMP Surface Area	1180	(ft^2) Simple Method
Actual BMP Surface Area	0.016	(ac) Measured in Cadd, GIS or by hand.
Actual BMP Surface Area	700	(ft^2)
Actual BMP Surface Volume	700	(ft^3)

^{**}Per DWQ BMP design manual, the BMP must be designed to treat a volume at least as large as the volume calculated using the simple method**

DWQ recommends 9" but requires ponding depth to be less then 12"

Catchment Area	21.46 BMP UT4 R2 Lowe
Pervious Area	21.46
Impervious Area	0.00

The Simple Method		
RV = 0.05 + 0.9 * IA	Step 1 Simple Method	
RV =	0.05	Runoff coefficient (unitless)
IA =	0	Impervious fraction [impervious portion of drainage area (ac)/drainage area (ac)], (unitless
V = 3630 * RD * RV * A	Step 2 in the Simple Method	
V	3895	Volume of runoff that must be controlled for the design storm (cubic feet)
V	1.07	Volume of runoff that must be controlled for the design storm (acre-in)
RD	1.0	Design storm rainfall depth (in) (Typically 1.0" or 1.5")
A	21.46	Watershed area (ac)

***CN Method in this spreadsheet is for 2 CN areas only	The equations may be modified if using multiple	e CNe or use a composite pervious CN

er medica in and optedament is for 2 er aleas only. The equations may be incurred if asing manipe er is or ase a composite per roas er.					
SCS Curve Number Method					
$Q^* = (P - 0.2S)^2 / (P + 0.8S)$					
S = 1000/CN - 10					
Q* =	0.014	Runoff depth (in)			
CN (Composite)	72	Related to hydrologic soil group and ground cover. (Refer to DWQ Design Manual for CN Tables)			
P =	1.0	Rainfall depth (in) (Typically 1.0" or 1.5")			
S =	3.81	Potential maximum retention after rainfall begins (in)			
Soil Type	Fairview, Clifford	http://websoilsurvey.nrcs.usda.gov/app/			
Hydrologic Soil Group SCS (1986)	A, B, C, and D	Refer to DWQ Design Manual after the soil series in the area of interest is identified			

BMP Sizing Reqs		
$V = A(Q^*)$	0.30	SCS Method Volume of Runoff (ac-in) Required Storage Volume
V		SCS Method Volume of Runoff (cubic feet) Required Storage Volume
V	8176	SCS Method Volume of Runoff (gallons) Required Storage Volume
V		Simple Method Volume of Runoff (ac-in) Required Storage Volume
V		Simple Method Volume of Runoff (cubic feet) Required Storage Volume
Required Ponding Depth	12	Depends on desired vegetation type and inundation time. Usually 6-12" (in
Required BMP Surface Area		(ac) SCS Method
Required BMP Surface Area		(ft^2) SCS Method
Required BMP Surface Area	0.089	(ac) Simple Method
Required BMP Surface Area	3895	(ft^2) Simple Method
Actual BMP Surface Area	0.025	(ac) Measured in Cadd, GIS or by hand.
Actual BMP Surface Area	1088	(ft^2)
Actual BMP Surface Volume	1088	(ft^3)

^{**}Per DWQ BMP design manual, the BMP must be designed to treat a volume at least as large as the volume calculated using the simple method**

DWQ recommends 9" but requires ponding depth to be less then 12"

Catchment Area	21.46 BMP UT4 R2 Lowe
Pervious Area	21.46
Impervious Area	0.00

The Simple Method		
RV = 0.05 + 0.9 * IA	Step 1 Simple Method	
RV =	0.05	Runoff coefficient (unitless)
IA =	0	Impervious fraction [impervious portion of drainage area (ac)/drainage area (ac)], (unitless
V = 3630 * RD * RV * A	Step 2 in the Simple Method	
V	3895	Volume of runoff that must be controlled for the design storm (cubic feet)
V	1.07	Volume of runoff that must be controlled for the design storm (acre-in)
RD	1.0	Design storm rainfall depth (in) (Typically 1.0" or 1.5")
A	21.46	Watershed area (ac)

or medica in this spreadsheet is for 2 or thread only. The eq		
SCS Curve Number Method		
$Q^* = (P - 0.2S)^2 / (P + 0.8S)$		
S = 1000/CN - 10		
Q* =	0.001	Runoff depth (in)
CN (Composite)	65	Related to hydrologic soil group and ground cover. (Refer to DWQ Design Manual for CN Tables)
P =	1.0	Rainfall depth (in) (Typically 1.0" or 1.5")
S =	5.45	Potential maximum retention after rainfall begins (in)
Soil Type	Clifford	http://websoilsurvey.nrcs.usda.gov/app/
Hydrologic Soil Group SCS (1986)	A, B, C, and D	Refer to DWQ Design Manual after the soil series in the area of interest is identified

BMP Sizing Reqs		
$V = A(Q^*)$	0.03	SCS Method Volume of Runoff (ac-in) Required Storage Volume
V		SCS Method Volume of Runoff (cubic feet) Required Storage Volume
V	862	SCS Method Volume of Runoff (gallons) Required Storage Volume
V		Simple Method Volume of Runoff (ac-in) Required Storage Volume
V		Simple Method Volume of Runoff (cubic feet) Required Storage Volume
Required Ponding Depth		Depends on desired vegetation type and inundation time. Usually 6-12" (in
Required BMP Surface Area		(ac) SCS Method
Required BMP Surface Area		(ft^2) SCS Method
Required BMP Surface Area	0.089	(ac) Simple Method
Required BMP Surface Area	3895	(ft^2) Simple Method
Actual BMP Surface Area	0.035	(ac) Measured in Cadd, GIS or by hand.
Actual BMP Surface Area		(ft^2)
Actual BMP Surface Volume	1522	(ft^3)

^{**}Per DWQ BMP design manual, the BMP must be designed to treat a volume at least as large as the volume calculated using the simple method**

DWQ recommends 9" but requires ponding depth to be less then 12"

Gully and Streamb	pank Pollutant Load Reduction	
This sheet contains	two input tables: the first table is for inputing the gully dimensions, and the second is for	inputing the eroding streambank dimensions.
Gully:	Step 1. Specify the gully dimensions and assign each gully to a watershed	
	Step 2 . Specify the time (number of years) that the gully has taken to form the curre Step 3 . Specify the gully stabilization (BMP) efficiency (0-1) and the gully soil textura	
Streambank:	Step 1. Specify the stream bank dimensions and assign each bank to a watershed. Step 2. Specify the lateral recession rate (ft/yr) of the eroding streambank. Step 3. Specify the streambank stabilization (BMP) efficiency (0-1) and the streambank.	Click to see "Streambank Lateral Recession Rate" table ank soil textural class

Close this sheet

1. Gully dimensions in the different watersheds													
Watershed	Gully	Тор	Bottom	Depth (ft)	Length	Years	BMP	Soil Textural Class	Soil Dry	Nutrient	Annual	Load	
		Width	Width		(ft)	to Form	Efficiency		Weight	Correction	Load	Reduction	
		(ft)	(ft)				(0-1)		(ton/ft3)	Factor	(ton)	(ton)	

2. Impaired streamba	ank dimens	sions in tl	he differe	ent watersheds										
Watershed	Strm	Length	Height	Lateral Reces	sion	Rate	Rate	BMP	Soil Textural Class		Soil Dry	Nutrient	Annual	Load
	Bank	(ft)	(ft)			Range	(ft/yr)	Efficiency			Weight	Correction	Load	Reduction
						(ft/yr)		(0-1)			(ton/ft3)	Factor	(ton)	(ton)
W1	UT1-R1	612.5	1.2	1. Slight	-	0.01 - 0.05	0.01	0.95	Loams, sandy clay loams	± T	0.045	0.85	0.3308	0.3142
W1	UT1-R2	1915.4	1.3	1. Slight		0.01 - 0.05	0.01	0.95	Loams, sandy clay loams	*	0.045	0.85	1.1205	1.0645
○ W1	UT1A	410.3	1.2	1. Slight		0.01 - 0.05	0.01	0.95	Loams, sandy clay loams		0.045	0.85	0.2216	0.2105
W1	UT1B	391.3	1.1	1. Slight	-	0.01 - 0.05	0.01	0.95	Loams, sandy clay loams	-	0.045	0.85	0.1937	0.1840
W1	UT1C	527.6	0.7	1. Slight	-	0.01 - 0.05	0.01	0.95	Loams, sandy clay loams	*	0.045	0.85	0.1662	0.1579
W1	BB-R1	696	2.1	2. Moderate	-	0.06 - 0.2	0.06	0.95	Loams, sandy clay loams		0.045	0.85	3.9463	3.7490
W1	BB-R2	1759		3. Severe		0.3 - 0.5	0.02	0.95	Loams, sandy clay loams	*	0.045	0.85	4.2744	4.0607
○ W1	BB-R3	1137	3.8	2. Moderate	-	0.06 - 0.2	0.06	0.95	Loams, sandy clay loams	-	0.045	0.85	11.6656	11.0823
■ W1	UT2	1346.7	0.4	1. Slight	-	0.01 - 0.05	0.01	0.95	Loams, sandy clay loams	*	0.045	0.85	0.2424	0.2303
W1	UT2A	289.2	0.5	1. Slight		0.01 - 0.05	0.01	0.95	Loams, sandy clay loams	*	0.045	0.85	0.0651	0.0618
○ W1	UT3	138.8		1. Slight		0.01 - 0.05	0.01	0.95	Loams, sandy clay loams		0.045	0.85	0.0312	0.0297
W1	UT4-R1	5077.33	2.1	2. Moderate	-	0.06 - 0.2	0.06	0.95	Loams, sandy clay loams		0.045	0.85	28.7885	27.3490
○ W1	UT4-R2	1889	1.8	1. Slight	± T	0.01 - 0.05	0.01	0.95	Loams, sandy clay loams	-	0.045	0.85	1.5301	1.4536

Total Load This is the summary of annual nutrient and sediment load for each subwatershed. This sheet is initially protected.

	by subwatersl																			
Watershed	N Load (no	P Load (no	BOD Load	Sediment	E. coli Load	N Reduction	P Reduction	BOD	Sediment	E. coli	N Load (with	P Load (with	BOD (with	Sediment	E. coli Load	%N	%P	%BOD	%Sed	%E. coli
	BMP)	BMP)	(no BMP)	Load (no	(no BMP)			Reduction	Reduction	Reduction	BMP)	BMP)	BMP)	Load (with	(with BMP)	Reduction	Reduction	Reduction	Reduction	Reduction
				BMP)										BMP)						
	lb/year	lb/year	lb/year	t/year	Billion MPN/ye	lb/year	lb/year	lb/year	t/year	Billion MPN/y	lb/year	lb/year	lb/year	t/year	Billion MPN/ye	·%	%			
W1	27458.8	5831.8	44790.9	838.3	0.0	5644.1	1296.5	3217.9	531.5	0.0	21814.7	4535.3	41573.0	306.7	0.0	20.6	22.2	7.2	63.4	0.0
Total	27458.8	5831.8	44790.9	838.3	0.0	5644.1	1296.5	3217.9	531.5	0.0	21814.7	4535.3	41573.0	306.7	0.0	20.6	22.2	7.2	63.4	0.0

2. Total load	by land uses (with BMP)			
Sources	N Load (lb/yr)	P Load (lb/yr)	BOD Load (lb/yr)	Sediment Load (t/yr)	E. coli Load (Billion MPN/yr)
Urban	265.49	46.40	1122.62	6.20	0.00
Cropland	2246.64	639.75	7401.69	223.40	0.00
Pastureland	890.22	125.40	8303.66	59.10	0.00
Forest	142.40	65.53	331.34	15.42	0.00
Feedlots	18247.75	3649.55	24330.33	0.00	0.00
User Defined	0.00	0.00	0.00	0.00	0.00
Septic	18.65	7.31	76.17	0.00	0.00
Gully	0.00	0.00	0.00	0.00	0.00
Streambank	3.58	1.38	7.15	2.63	0.00
Groundwater	0.00	0.00	0.00	0.00	0.00
Total	21814.74	4535.30	41572.96	306.75	0.00

Project: 18-007 Banner Branch Mitigation Project Date:

10/7/2019

Reach: BB-R1

	6 Impervious)	Urban (> 15%	0%	Coastal	0%		Piedmont	100%	Valley & Ridge	0%			
ft	. =	ved Bankfull C.S.A .	Field Obser	Average									
ft	h =	ved Bankfull Width	Field Obser	Average	ac	409.60	sq mi	0.64	Drainage Area:				
ft	h =	ved Bankfull Depth	Field Obser	Average			-		_				
ft	Q =	nings Calculated Q	Mann										

				_
Rural Coastal	Plains	Banktull	Regional	Curves

North Carolina Coastal FWS - MD (CBFO-S03-02) USGS -VA, MD (2007-5162) CSA = 10.82 7.57 sf 9.02 sf W = 8.69 ft 9.34 ft 8.87 ft D = 1.13 ft 0.88 ft 1.01 ft 21.67 cfs **Q** = 12.01 cfs 22.63 cfs (WCP) 10.44 cfs (ECP) 16.53 cfs (Average)

Rural Piedmont Bankfull Regional Curves

	-					
North Caroli	na Piedm	ont	FWS - MD (CBFO-S02-01)	USGS -VA, MD (200:	North Carolina Walker Curves	NCSU NC Piedmont ('99)
CSA =	16.31	sf	12.58 sf	8.15 sf	11.40 sf	15.82 sf
W =	12.36	ft	12.42 ft	10.70 ft	10.83 ft	9.81 ft
D =	1.44	ft	1.01 ft	0.75 ft	0.99 ft	1.30 ft
Q =	66.74	cfs	60.24 cfs	28.76 cfs	39.21 cfs	64.57 cfs

Weighted w/ Urban Regional Curve Values

Rural Valley & Ridge Bankfull Regional Curves

North Care	olina V&R	FWS - MD (CBFO-S03-01)	USGS -VA, MD (2005-5076)
CSA =	15.95 sf	9.42 sf	9.13 sf
W =	16.15 ft	11.40 ft	10.24 ft
D =	0.97 ft	0.83 ft	0.88 ft
Q =	71.69 cfs	22.36 cfs	30.35 cfs

Weighted Average Rural Regional Curve Values
--

CSA =	12.85	sf	0.00 ft (Observed Value)	12.85	sf
W =	12.03	ft	0.00 ft (Observed Value)	12.03	ft
D =	1.10	ft	0.00 ft (Observed Value)	1.10	ft
Q =	51.90	cfs	0.00 ft (Observed Value)	51.90	cfs

Project: Reach: 18-007 Banner Branch Mitigation Project BB-R2 Date:

_					racteristics	ISIICU	vater			
		ervious)	Urban (> 15% Impe	0%	Coastal	0	Piedmont	100%	Ridge	Valley 8
	ft	21.0	ved Bankfull C.S.A. =		0				_	
	ft	13.7	ved Bankfull Width =		0	0 ac	sq mi 480.00	0.75	ge Area:	Draina
	ft	1.5	ved Bankfull Depth =		Average					
	ft	60.0	nings Calculated Q =	Mann						
-							/es	gional Cur	ankfull R	astal Plains I
				5162)	VA, MD (2007-	US	S - MD (CBFO-S03-02)			North Carol
				•	98 sf		8.45 sf	sf	12.01	CSA =
					10 ft		9.23 ft	ft	9.89	W =
					06 ft		0.92 ft	ft	1.18	D =
					33 cfs		25.41 cfs (WCP)	cfs	13.46	Q =
							11.77 cfs (ECP)			
						je)	11.77 cfs (ECP) 18.59 cfs (Average			
-						je)				
• Piedmont ('9	NCSUNC		rolina Walker Curves	North Car	VA MD (200)		18.59 cfs (Average			dmont Bank
■ Piedmont ('9	NCSU NC		rolina Walker Curves 12 83 sf	North Car	VA, MD (200:		18.59 cfs (Average 6 - MD (CBFO-S02-01)	nt FWS	na Piedmo	North Carol
Piedmont ('9 17.62 s 10.51 f	NCSU NC		rolina Walker Curves 12.83 sf 11.60 ft	North Car	<i>VA, MD (200</i> : 25 sf 46 ft		18.59 cfs (Average			
17.62 s	NCSU NC		12.83 sf	North Car	25 sf		18.59 cfs (Average 5 - MD (CBFO-S02-01) 14.12 sf	nt FWS sf	na Piedmo 18.13	North Carol CSA =
17.62 s 10.51 f	NCSU NC		12.83 sf 11.60 ft	North Car	25 sf 46 ft		18.59 cfs (Average 5 - MD (CBFO-S02-01) 14.12 sf 13.21 ft	nt FWS sf ft	na Piedmo 18.13 13.08	North Carol CSA = W =
17.62 s 10.51 f 1.37 f	NCSU NC		12.83 sf 11.60 ft 1.04 ft	North Car	25 sf 46 ft 30 ft		18.59 cfs (Average 6 - MD (CBFO-S02-01) 14.12 sf 13.21 ft 1.07 ft 67.95 cfs	nt FWS sf ft ft cfs	na Piedmo 18.13 13.08 1.51 74.69	North Carol CSA = W = D = Q =
17.62 s 10.51 f 1.37 f	NCSU NC		12.83 sf 11.60 ft 1.04 ft		25 sf 46 ft 30 ft 13 cfs	US	18.59 cfs (Average 6 - MD (CBFO-S02-01) 14.12 sf 13.21 ft 1.07 ft 67.95 cfs	nt FWS sf ft ft cfs egional Cur	na Piedmo 18.13 13.08 1.51 74.69	North Carol CSA = W = D = Q =
17.62 s 10.51 f 1.37 f	NCSU NC		12.83 sf 11.60 ft 1.04 ft		25 sf 46 ft 30 ft	US	18.59 cfs (Average 6 - MD (CBFO-S02-01) 14.12 sf 13.21 ft 1.07 ft 67.95 cfs	nt FWS sf ft ft cfs egional Cur	na Piedmo 18.13 13.08 1.51 74.69	North Carol CSA = W = D = Q =
17.62 s 10.51 f 1.37 f	NCSU NC		12.83 sf 11.60 ft 1.04 ft		25 sf 46 ft 80 ft 13 cfs VA, MD (2005-	US	18.59 cfs (Average 6 - MD (CBFO-S02-01) 14.12 sf 13.21 ft 1.07 ft 67.95 cfs ves 6 - MD (CBFO-S03-01)	nt FWS sf ft ft cfs egional Cur R FWS sf	na Piedmo 18.13 13.08 1.51 74.69 Bankfull R	North Carol CSA = W = D = Q =
17.62 s 10.51 f 1.37 f	NCSU NC		12.83 sf 11.60 ft 1.04 ft		25 sf 46 ft 30 ft 43 cfs VA, MD (2005- 23 sf	US	18.59 cfs (Average 8 - MD (CBFO-S02-01) 14.12 sf 13.21 ft 1.07 ft 67.95 cfs ves 8 - MD (CBFO-S03-01) 10.61 sf	nt FWS sf ft ft cfs egional Cur R FWS sf ft	na Piedmo 18.13 13.08 1.51 74.69 Bankfull R arolina V&I 17.77	North Carol CSA = W = D = Q = ley & Ridge North C CSA =

			egional Curve Values		<u>rban Regional Curve V</u>
CSA =	14.39	sf	21.00 ft (Observed Value)	14.39	sf
W =	13.20	ft	13.70 ft (Observed Value)	13.20	ft
D =	1.16	ft	1.53 ft (Observed Value)	1.16	ft
Q =	58.60	cfs	60.00 ft (Observed Value)	58.60	cfs

Project: Reach: 18-007 Banner Branch Mitigation Project BB-R3 Date:

10/7/2019

710/-	37.11.7	0 0:1	1000		Waters		acteristics	/	/ /==/		
0%	Valley 8	& Ridge	100%	Piedmont		0%	Coastal	0%	Urban (> 15% i	Impervious)	
							A	F:-1-1 Ob		24.0	£4
	Б				500.00		0		rved Bankfull C.S.A. =		ft
	Draina	age Area	ı: 0.88	sq mi	563.20	ac	0		rved Bankfull Width =		ft
							Average		rved Bankfull Depth =		ft
								ivian	nings Calculated Q =	75.0	ft
ıral Co	astal Plains I	Bankfull F	Regional Cr	ırves							
	North Carol			VS - MD (CBFO-S0	3-02)	USGS -V	/A, MD (2007-	5162)			
	CSA =	13.35	sf	9.45 sf	,	11.0		,			
	W =	10.48	ft	9.81 ft		9.9	7 ft				
	D =	1.24	ft	0.97 ft		1.1	1 ft				
	Q =	15.10	cfs	28.56 cfs (V	VCP)	26.2	2 cfs				
				13.29 cfs (E	CP)						
				20.93 cfs (•						
					, o. a.g.o,						
ural Pie	dmont Bank				2.04		/				
	North Carol			VS - MD (CBFO-S0)	2-01)		/A, MD (200	North Ca	arolina Walker Curves		NCSU NC Piedmon
	CSA =	20.18	sf	15.87 sf		10.5			14.45		19.0
	W = D =	13.86 1.58	ft ft	14.06 ft 1.13 ft		12.2° 0.8			12.43 1.10		11.: 1.:
	_	83.67	cfs	76.73 cfs			ວ ແ 9 cfs		50.6		81.: 81.:
			CIS	10.13 015		30.0	9 (15		50.63	CIS	01
	Q =										
ural Val	Q =										
ural Val	lley & Ridge		Regional C		3-01)	USGS -V	/A, MD (2005-	5076)			
ural Val	lley & Ridge	Bankfull F	Regional C	urves	3-01)	<i>U</i> SGS -V 11.4		5076)			
ural Val	Iley & Ridge I	Bankfull F	Regional Co	urves VS - MD (CBFO-S0)	3-01)		8 sf	5076)			
ural Val	lley & Ridge North C CSA =	Bankfull Farolina V& 19.8 18.1	Regional Co	urves VS - MD (CBFO-S0: 11.97 sf	3-01)	11.4	8 sf 7 ft	5076)			
ıral Val	North C CSA = W =	Bankfull F arolina V& 19.8 18.1	Regional Co R FV 11 sf 7 ft	urves VS - MD (CBFO-S0: 11.97 sf 13.11 ft	3-01)	11.4 11.7 0.9	8 sf 7 ft	5076)			
ral Val	North C CSA = W = D =	Bankfull F arolina V& 19.8 18.1	Regional Co R FV 11 sf 7 ft 17 ft	urves VS - MD (CBFO-S0: 11.97 sf 13.11 ft 0.91 ft	3-01)	11.4 11.7 0.9	8 sf 7 ft 6 ft	5076)			
ral Val	North C CSA = W = D =	Bankfull F arolina V& 19.8 18.1	Regional Co R FV 11 sf 7 ft 17 ft	urves VS - MD (CBFO-S0: 11.97 sf 13.11 ft 0.91 ft	3-01)	11.4 11.7 0.9	8 sf 7 ft 6 ft	5076)			
ral Val	North C CSA = W = D = Q =	Bankfull F earolina V& 19.8 18.1 1.0 91.3	Regional Co R FV 11 sf 7 ft 17 ft 12 cfs	urves VS - MD (CBFO-S0: 11.97 sf 13.11 ft 0.91 ft	,	11.4 11.7 0.9	8 sf 7 ft 6 ft 8 cfs	,	Jrban Regional Cui	rve Values	

Weigh	ted Avera	age Rural F	Regional Curve Values
CSA =	16.13	sf	21.90 ft (Observed Value)
w =	14.50	ft	14.60 ft (Observed Value)
D =	1 22	ft	1.50 ft (Observed Value)

75.00 ft (Observed Value)

Q = 66.23 cfs

16.13	sf
14.50	ft
1.22	ft
66.23	cfs

Project: Reach: 18-007 Banner Branch Mitigation Project UT1A Date: 10/7/2019

-					Waters	hed Chara	cteristics				
0%	Valley 8	& Ridge	100	% Piedmont		0%	Coastal	0%	Urban (> 15% Imperviou	rs)	
							4	=:			
		_					0		/ed Bankfull C.S.A. =	ft	
	Draina	ige Area	a: 0.0	1 sq mi	4.48	ac			ved Bankfull Width =	ft	
							Average		ved Bankfull Depth =	ft	
								Manr	nings Calculated Q =	ft	
ural Co	astal Plains E	Bankfull F	Regional	Curves							
uiui oo	North Caroli			FWS - MD (CBFO-S0)	3-02)	USGS -VA	A, MD (2007-	-5162)			
	CSA =	0.55	sf	0.32 sf	0 02)	0.51		0.02)			
	W =	1.84	ft	1.56 ft		1.70	ft				
	D =	0.29	ft	0.21 ft		0.29					
	Q =	0.47	cfs	0.84 cfs (V	VCP)	1.45	cfs				
				0.34 cfs (E	-						
					. ,						
				0.59 cfs ((Average)						
ural Pic	admont Bankt	full Regio	nal Curv		(Average)						
ural Pie	edmont Bankt North Caroli CSA = W = D = Q =						ft ft	North Ca	rolina Walker Curves 0.40 sf 1.53 ft 0.21 ft 1.04 cfs	NCSU NC Pie	0.73 1.41 0.31
	North Caroli CSA = W = D = Q =	ina Piedm 0.79 2.43 0.39 2.70	ont sf ft ft cfs	es FWS - MD (CBFO-S02 0.47 sf 2.13 ft 0.22 ft 1.95 cfs		USGS -VA 0.22 1.54 0.14	sf ft ft	North Ca	0.40 sf 1.53 ft 0.21 ft	NCSU NC Pie	dmont ('9 0.73 : 1.41 : 0.31 : 2.50 (
	North Caroli CSA = W = D = Q =	ina Piedm 0.79 2.43 0.39 2.70	ont sf ft ft cfs Regional	es FWS - MD (CBFO-S02 0.47 sf 2.13 ft 0.22 ft 1.95 cfs	2-01)	USGS -VA 0.22 1.54 0.14 0.40	sf ft ft cfs		0.40 sf 1.53 ft 0.21 ft	NCSU NC Pie	0.73 1.41 0.31
	North Caroli CSA = W = D = Q =	ina Piedm 0.79 2.43 0.39 2.70 Bankfull F	ont sf ft ft cfs Regional	es FWS - MD (CBFO-S02 0.47 sf 2.13 ft 0.22 ft 1.95 cfs	2-01)	USGS -VA 0.22 1.54 0.14 0.40	sf ft ft cfs		0.40 sf 1.53 ft 0.21 ft	NCSU NC Pie	0.73 1.41 0.31
	North Caroli CSA = W = D = Q =	ina Piedm 0.79 2.43 0.39 2.70 Bankfull Farolina V8 0.7	ont sf ft ft cfs Regional	es FWS - MD (CBFO-S02 0.47 sf 2.13 ft 0.22 ft 1.95 cfs Curves FWS - MD (CBFO-S03	2-01)	USGS -VA 0.22 1.54 0.14 0.40 USGS -VA	sf ft ft cfs		0.40 sf 1.53 ft 0.21 ft	NCSU NC Pie	0.73 1.41 0.31
	North Caroli CSA = W = D = Q = Iley & Ridge I North C CSA =	ina Piedm 0.79 2.43 0.39 2.70 Bankfull F arolina V8 0.7 3.0	sont sf ft ft cfs Regional	es FWS - MD (CBFO-S02 0.47 sf 2.13 ft 0.22 ft 1.95 cfs Curves FWS - MD (CBFO-S03 0.32 sf	2-01)	USGS -VA 0.22 1.54 0.14 0.40 USGS -VA 0.35	sf ft ft cfs A, MD (2005- sf ft		0.40 sf 1.53 ft 0.21 ft	NCSU NC Pie	0.73 1.41 0.31
	North Caroli CSA = W = D = Q = Illey & Ridge i North C: CSA = W =	ina Piedm 0.79 2.43 0.39 2.70 Bankfull F arolina V8 0.7 3.0 0.2	sont sf ft ft cfs Regional k R '4 sf	es FWS - MD (CBFO-S02 0.47 sf 2.13 ft 0.22 ft 1.95 cfs Curves FWS - MD (CBFO-S03 0.32 sf 1.56 ft	2-01)	USGS -VA 0.22 1.54 0.14 0.40 USGS -VA 0.35 1.43	sf ft ft cfs A, MD (2005-sf ft ft		0.40 sf 1.53 ft 0.21 ft	NCSU NC Pie	0.73 1.41 0.31
	North Caroli CSA = W = D = Q = Illey & Ridge I North C: CSA = W = D =	ina Piedm 0.79 2.43 0.39 2.70 Bankfull F arolina V8 0.7 3.0 0.2	sont sf ft ft cfs Regional kR 74 sf 04 ft	es FWS - MD (CBFO-S02 0.47 sf 2.13 ft 0.22 ft 1.95 cfs Curves FWS - MD (CBFO-S03 0.32 sf 1.56 ft 0.20 ft	2-01)	USGS -VA 0.22 1.54 0.14 0.40 USGS -VA 0.35 1.43 0.24	sf ft ft cfs A, MD (2005-sf ft ft		0.40 sf 1.53 ft 0.21 ft	NCSU NC Pie	0.73 1.41 0.31
	North Caroli CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	0.79 2.43 0.39 2.70 Bankfull Farolina V8 0.7 3.0 0.2 2.3	sont sf ft ft cfs Regional R 4 sf 14 ff 12 cfs	es FWS - MD (CBFO-S02 0.47 sf 2.13 ft 0.22 ft 1.95 cfs Curves FWS - MD (CBFO-S03 0.32 sf 1.56 ft 0.20 ft	2-01) 3-01)	USGS -VA 0.22 1.54 0.14 0.40 USGS -VA 0.35 1.43 0.24	sf ft ft cfs A, MD (2005-sf ft ft cfs	5076) ghted w/ U	0.40 sf 1.53 ft 0.21 ft 1.04 cfs		0.73 1.41 0.31
	North Caroli CSA = W = D = Q = Illey & Ridge I North C: CSA = W = D = Q =	0.79 2.43 0.39 2.70 Bankfull F arolina V8 0.7 3.0 0.2 2.3	sf ft ft cfs Regional RR 44 sf 64 ft 62 cfs	es FWS - MD (CBFO-S02 0.47 sf 2.13 ft 0.22 ft 1.95 cfs Curves FWS - MD (CBFO-S02 0.32 sf 1.56 ft 0.20 ft 0.32 cfs	2-01) 3-01)	USGS -VA 0.22 1.54 0.14 0.40 USGS -VA 0.35 1.43 0.24 0.84	sf ft ft cfs A, MD (2005-sf ft ft cfs	.5076)	0.40 sf 1.53 ft 0.21 ft 1.04 cfs		0.73 1.41 0.31

weight	<u>ea Aver</u>	age Rurai R	egional Curve Values	<u>weighted w/ C</u>	<u> Irban Regional Curve Value</u>
CSA =	0.52	sf	0.00 ft (Observed Value)	0.52	sf
W =	1.18	ft	0.00 ft (Observed Value)	1.18	ft
D =	0.25	ft	0.00 ft (Observed Value)	0.25	ft
Q =	1.72	cfs	0.00 ft (Observed Value)	1.72	cfs

Project: Reach: 18-007 Banner Branch Mitigation Project UT1B Date: 10/7/2019

9.14

cfs

9.14

cfs

0.00 ft (Observed Value)

				Wate	ershed Cha	racteristics				_
0%	Valley 8	& Ridge	10	0% Piedmont	0%	Coastal	0%	Urban (> 15% Impervious)		
						Average	Field Ohse	rved Bankfull C.S.A. =	ft	
	Draina	ige Area		.07 sq mi 41.6	o ac	0		erved Bankfull Width =	ft	
	Diailia	ige Area	a. U	.07 Sq IIII 41.0	ou ac	0		rved Bankfull Depth =	ft	
						Average		nings Calculated Q =	ft	
								g		
ural Co	astal Plains E	Bankfull F	Regiona							
	North Carol	ina Coast	al	FWS - MD (CBFO-S03-02)	USGS -	VA, MD (2007	5162)			
	CSA =	2.39	sf	1.53 sf		10 sf				
	W =	4.10	ft	3.65 ft	3.	85 ft				
	D =	0.57	ft	0.42 ft		54 ft				
	Q =	2.31	cfs	4.26 cfs (WCP)	5.	52 cfs				
				1.84 cfs (ECP)						
				3.05 cfs (Avera	ge)					
ural Pie	edmont Bankt				USGS	.VA MD (200)	North C	arolina Walker Curves	NCSII NC P	Piedmont ('C
Rural Pie	North Carol CSA =	ina Piedm 3.52	ont sf	FWS - MD (CBFO-S02-01) 2.37 sf	1.3	·VA, MD (200: 31 sf	North Ca	arolina Walker Curves 2.08 sf	NCSU NC P	3.34 s
Rural Pie	North Carol CSA = W =	ina Piedm 3.52 5.42	ont sf ft	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft	1. 4.	31 sf 01 ft	North Ca	2.08 sf 4.03 ft	NCSU NC P	3.34 s 3.67 f
tural Pie	North Carol CSA =	ina Piedm 3.52	ont sf	FWS - MD (CBFO-S02-01) 2.37 sf	1. 4. 0.	31 sf	North Ca	2.08 sf	NCSU NC P	3.34 s 3.67 f 0.63 f
	North Carol CSA = W = D = Q =	ina Piedm 3.52 5.42 0.74 13.16	ont sf ft ft cfs	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft 0.47 ft 10.59 cfs	1. 4. 0.	31 sf 01 ft 32 ft	North Ca	2.08 sf 4.03 ft 0.45 ft	NCSU NC P	`
	North Carol CSA = W = D = Q =	ina Piedm 3.52 5.42 0.74 13.16	nont sf ft ft cfs	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft 0.47 ft 10.59 cfs	1. 4. 0. 3.	31 sf 01 ft 32 ft		2.08 sf 4.03 ft 0.45 ft	NCSU NC P	3.34 s 3.67 ft 0.63 ft
	North Carol CSA = W = D = Q =	ina Piedm 3.52 5.42 0.74 13.16 Bankfull I	nont sf ft ft cfs	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft 0.47 ft 10.59 cfs	1. 4. 0. 3. <i>U</i> SGS -	31 sf 01 ft 32 ft 30 cfs		2.08 sf 4.03 ft 0.45 ft	NCSU NC P	3.34 s 3.67 ft 0.63 ft
	North Carol CSA = W = D = Q =	ina Piedm 3.52 5.42 0.74 13.16 Bankfull I arolina V&	nont sf ft ft cfs Regiona	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft 0.47 ft 10.59 cfs al Curves FWS - MD (CBFO-S03-01)	1. 4. 0. 3. USGS -	31 sf 01 ft 32 ft 30 cfs		2.08 sf 4.03 ft 0.45 ft	NCSU NC P	3.34 s 3.67 ft 0.63 ft
	North Carol	ina Piedm 3.52 5.42 0.74 13.16 Bankfull I arolina V8 3.3 6.9	ront sf ft ft cfs Regiona RR 37 sf 33 ft 48 ft	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft 0.47 ft 10.59 cfs al Curves FWS - MD (CBFO-S03-01) 1.70 sf 4.17 ft 0.41 ft	1. 4. 0. 3. USGS - 1. 3. 0.	31 sf 01 ft 32 ft 30 cfs -VA, MD (2005- 75 sf 78 ft 46 ft		2.08 sf 4.03 ft 0.45 ft	NCSU NC P	3.34 s 3.67 ft 0.63 ft
	North Carol CSA = W = D = Q = Uley & Ridge I North C CSA = W =	ina Piedm 3.52 5.42 0.74 13.16 Bankfull I arolina V8 3.3 6.9	riont sf ft ft cfs Regiona RR 37 sf	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft 0.47 ft 10.59 cfs al Curves FWS - MD (CBFO-S03-01) 1.70 sf 4.17 ft	1. 4. 0. 3. USGS - 1. 3. 0.	31 sf 01 ft 32 ft 30 cfs -VA, MD (2005- 75 sf 78 ft		2.08 sf 4.03 ft 0.45 ft	NCSU NC P	3.34 s 3.67 ft 0.63 ft
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 3.52 5.42 0.74 13.16 Bankfull I arolina V& 3.3 6.9 0.4	Regiona Regiona RR 37 sf 93 ft 18 ft 61 cfs	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft 0.47 ft 10.59 cfs al Curves FWS - MD (CBFO-S03-01) 1.70 sf 4.17 ft 0.41 ft 2.61 cfs	USGS - 1. 3. 0. 4.	31 sf 01 ft 32 ft 30 cfs -VA, MD (2005- 75 sf 78 ft 46 ft 94 cfs	5076)	2.08 sf 4.03 ft 0.45 ft 6.23 cfs	NCSU NC P	3.34 s 3.67 ft 0.63 ft
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 3.52 5.42 0.74 13.16 Bankfull I arolina V& 3.3 6.9 0.4 12.6	Regiona Reg	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft 0.47 ft 10.59 cfs al Curves FWS - MD (CBFO-S03-01) 1.70 sf 4.17 ft 0.41 ft 2.61 cfs	USGS- 1. 3. 0. 4.	31 sf 01 ft 32 ft 30 cfs -VA, MD (2005- 75 sf 78 ft 46 ft 94 cfs	5076) 1	2.08 sf 4.03 ft 0.45 ft 6.23 cfs	NCSU NC P	3.34 s 3.67 ft 0.63 ft
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q = Weight CSA =	ina Piedm 3.52 5.42 0.74 13.16 Bankfull I arolina V8 6.9 0.4 12.6	Regiona Reg	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft 0.47 ft 10.59 cfs al Curves FWS - MD (CBFO-S03-01) 1.70 sf 4.17 ft 0.41 ft 2.61 cfs tral Regional Curve Values 0.00 ft (Observed)	1. 4. 0. 3. USGS - 1. 3. 0. 4.	31 sf 01 ft 32 ft 30 cfs -VA, MD (2005- 75 sf 78 ft 46 ft 94 cfs	5076) ghted w/ L 2.53	2.08 sf 4.03 ft 0.45 ft 6.23 cfs	NCSU NC P	3.34 s 3.67 ft 0.63 ft
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 3.52 5.42 0.74 13.16 Bankfull I arolina V& 3.3 6.9 0.4 12.6	Regiona Reg	FWS - MD (CBFO-S02-01) 2.37 sf 5.09 ft 0.47 ft 10.59 cfs al Curves FWS - MD (CBFO-S03-01) 1.70 sf 4.17 ft 0.41 ft 2.61 cfs	1. 4. 0. 3. 3. USGS - 1. 3. 0. 4. Value)	31 sf 01 ft 32 ft 30 cfs -VA, MD (2005- 75 sf 78 ft 46 ft 94 cfs	5076) 1	2.08 sf 4.03 ft 0.45 ft 6.23 cfs	NCSU NC P	3.34 s 3.67 f 0.63 f

Project: Reach: 18-007 Banner Branch Mitigation Project UT1C Lower Date:

						water		racteristics					
0%	Valley 8	& Ridge	10	0%	Piedmor	nt	0%	Coastal	0%	Urban (> 1	5% Impervious)		
												-	
								0		rved Bankfull C.		ft	
	Draina	ige Area	a: 0.	.02	sq mi	15.81	ac	0		erved Bankfull W		ft	
								Average	Field Obse	erved Bankfull D e	epth =	ft	
									Man	nings Calculate	ed Q =	ft	
ural Co	astal Plains E	Bankfull F	Regiona	al Curv	es								
	North Carol					O-S03-02)	USGS -	·VA, MD (2007-	5162)				
	CSA =	1.26	sf			3 sf		13 sf	/				
	W =	2.89	ft		2.52			70 ft					
	D =	0.43	ft		0.3			42 ft					
	Q =	1.15	cfs			cfs (WCP)		09 cfs					
	u –	10	CIG			3 cfs (ECP)	0.0	00 013					
					0.00	o cis (ECF)							
ural Pie	edmont Banki	full Regio	onal Cui	rves	1.49	9 cfs (Averag	e)						
ural Pie	edmont Bankt North Carol CSA = W = D = Q =				- MD (CBF 1.17 3.49 0.34	FO-S02-01) 7 sf 9 ft	USGS - 0.6 2.6 0.2	VA, MD (200: 61 sf 65 ft 22 ft 32 cfs	North C	arolina Walker C	urves 1.02 sf 2.65 ft 0.33 ft 2.86 cfs	:	1.7 2.4 0.4
	North Carol CSA = W = D = Q =	ina Piedm 1.84 3.83 0.56 6.62	sf ft ft cfs	FWS	- MD (CBF 1.1: 3.49 0.34 5.08	FO-S02-01) 7 sf 9 ft 4 ft	USGS - 0.6 2.6 0.2	61 sf 65 ft 22 ft	North C	arolina Walker C	1.02 sf 2.65 ft 0.33 ft		1.7 2.4 0.4
	North Carol CSA = W = D = Q =	ina Piedm 1.84 3.83 0.56 6.62 Bankfull I	nont sf ft ft cfs	FWS	- MD (CBF 1.1: 3.4: 0.3- 5.08	FO-S02-01) 7 sf 9 ft 4 ft 8 cfs	USGS - 0.6 2.6 0.2	61 sf 65 ft 22 ft 32 cfs		arolina Walker C	1.02 sf 2.65 ft 0.33 ft		nont 1.73 2.43 0.44 6.2 0
	North Carol CSA = W = D = Q =	ina Piedm 1.84 3.83 0.56 6.62 Bankfull I	nont sf ft ft cfs Regiona	FWS	- MD (CBF 1.1; 3.4; 0.3; 5.0; res - MD (CBF	FO-S02-01) 7 sf 9 ft 4 ft 8 cfs	USGS - 0.6 2.6 0.2 1.3 USGS -	61 sf 65 ft 22 ft 32 cfs -VA, MD (2005-		arolina Walker C	1.02 sf 2.65 ft 0.33 ft		1.7 2.4 0.4
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA =	ina Piedm 1.84 3.83 0.56 6.62 Bankfull I arolina V8	nont sf ft ft cfs Regiona RR 74 sf	FWS	- MD (CBF 1.1: 3.44 0.34 5.00 7es - MD (CBF 0.82	FO-S02-01) 7 sf 9 ft 4 ft 8 cfs	USGS - 0.0 2.0 1.:	61 sf 65 ft 22 ft 32 cfs -VA, MD (2005- 87 sf		arolina Walker C	1.02 sf 2.65 ft 0.33 ft		1.7 2.4 0.4
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W =	ina Piedm 1.84 3.83 0.56 6.62 Bankfull I arolina V8 1.7 4.8	nont sf ft ft cfs Regiona RR 74 sf	FWS	- MD (CBF 1.11 3.44 0.34 5.06 res - MD (CBF 0.82 2.72	FO-S02-01) 7 sf 9 ft 4 ft 8 cfs FO-S03-01) 2 sf 2 ft	USGS - 0.0 2.0 1.3 USGS - 0.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	61 sf 65 ft 22 ft 32 cfs -VA, MD (2005- 87 sf 48 ft		arolina Walker C	1.02 sf 2.65 ft 0.33 ft		1.7 2.4 0.4
	North Carol	ina Piedm 1.84 3.83 0.56 6.62 Bankfull I arolina V8 1.7 4.8	ront sf ft ft cfs Regiona RR 74 sf 34 ft	FWS	- MD (CBF 1.11 3.44 0.33 5.06 7es - MD (CBF 0.82 2.77 0.30	FO-S02-01) 7 sf 9 ft 4 ft 3 cfs FO-S03-01) 2 sf 2 ft 0 ft	USGS - 0.6 0.7 1.5 USGS - 0.8 2.6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	61 sf 65 ft 22 ft 32 cfs -VA, MD (2005- 87 sf 48 ft 34 ft		arolina Walker C	1.02 sf 2.65 ft 0.33 ft		1.7 2.4 0.4
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W =	ina Piedm 1.84 3.83 0.56 6.62 Bankfull I arolina V8 1.7 4.8	nont sf ft ft cfs Regiona RR 74 sf	FWS	- MD (CBF 1.11 3.44 0.33 5.06 7es - MD (CBF 0.82 2.77 0.30	FO-S02-01) 7 sf 9 ft 4 ft 8 cfs FO-S03-01) 2 sf 2 ft	USGS - 0.6 0.7 1.5 USGS - 0.8 2.6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	61 sf 65 ft 22 ft 32 cfs -VA, MD (2005- 87 sf 48 ft		arolina Walker C	1.02 sf 2.65 ft 0.33 ft		1.7 2.4 0.4
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 1.84 3.83 0.56 6.62 Bankfull I arolina V8 1.7 4.8 0.3 6.6	Regiona Regiona RR 54 sf 35 ft 04 cfs	FWS	- MD (CBF 1.1: 3.4* 0.34 5.06 es - MD (CBF 0.8: 2.7' 0.3: 1.0:	FO-S02-01) 7 sf 9 ft 4 ft 8 cfs FO-S03-01) 2 sf 2 ft 0 ft	USGS - 0.6 0.7 1.5 USGS - 0.8 2.6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	61 sf 65 ft 22 ft 32 cfs <i>VA, MD (2005</i> - 87 sf 48 ft 34 ft 29 cfs	5076)		1.02 sf 2.65 ft 0.33 ft 2.86 cfs		1.7 2.4 0.4
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 1.84 3.83 0.56 6.62 Bankfull I arolina V8 1.7 4.8 0.3 6.6	Regiona Regiona RR 54 sf 35 ft 04 cfs	FWS	- MD (CBF 1.1: 3.4* 0.3* 5.0 6 res - MD (CBF 0.8: 2.7' 0.3(1.0 9	FO-S02-01) 7 sf 9 ft 4 ft 3 cfs FO-S03-01) 2 sf 2 ft 0 ft	USGS - 0.6 0.2 1.3 USGS - 0.8 2.4 0.3 2.5	61 sf 65 ft 22 ft 32 cfs <i>VA, MD (2005</i> - 87 sf 48 ft 34 ft 29 cfs	5076)		1.02 sf 2.65 ft 0.33 ft		1. 2. 0.

			egional Curve Values	Weighted w/ Urban Regional Curve Value
CSA =	1.27	sf	0.00 ft (Observed Value)	1.27 sf
w =	2.13	ft	0.00 ft (Observed Value)	2.13 ft
D =	0.38	ft	0.00 ft (Observed Value)	0.38 ft
Q =	4.42	cfs	0.00 ft (Observed Value)	4.42 cfs

Project: Reach: 18-007 Banner Branch Mitigation Project UT1C Upper Date:

0.37

4.24

ft

cfs

10/7/2019

D=

Q =

0.37

4.24

ft

cfs

0.00 ft (Observed Value)

0.00 ft (Observed Value)

				Wate	rshed Cha	aracteristics					
0%	Valley 8	& Ridge	100	% Piedmont	0%	Coastal	0%	Urban (> 15	% Impervious)		
						Δverage	Field Ohse	rved Bankfull C.S .	A =	ft	
	Draina	ige Area	a: 0.0	02 sq mi 14.9	8 ac	0		erved Bankfull Wid		ft	
	Diama	ige Ale	a. 0.0	02 Sq IIII 14.90	o ac			erved Bankfull Dep		ft	
						71v0/ag0		nings Calculated		ft	
ural C	oastal Plains E	Bankfull I	Regional	Curves							
	North Carol		al	FWS - MD (CBFO-S03-02)	USGS -	-VA, MD (2007	5162)				
	CSA =	1.22	sf	0.75 sf		.09 sf					
	W =	2.84	ft	2.47 ft		.65 ft					
	D =	0.42	ft	0.30 ft		.41 ft					
	Q =	1.11	cfs	2.02 cfs (WCP)	2.	.99 cfs					
				0.84 cfs (ECP)							
				1.43 cfs (Averag	ge)						
ural Pi	edmont Banki				USGS	-VA MD (200)	North C	arolina Walker Cur	N/AS	NCSII NC P	iedmont ('Q
Rural Pi	North Carol CSA = W =	ina Piedm 1.78 3.75	nont sf ft	FWS - MD (CBFO-S02-01) 1.12 sf 3.42 ft	0. 2.	-VA, MD (200: 58 sf 59 ft	North C		0.98 sf 2.59 ft	NCSU NC P	1.67 st 2.37 ft
ural Pi	North Carol CSA =	ina Piedm 1.78	nont sf	FWS - MD (CBFO-S02-01) 1.12 sf	0. 2. 0.	58 sf	North C		0.98 sf	NCSU NC P	1.67 s 2.37 ft 0.45 ft
	North Carol CSA = W = D = Q =	ina Piedm 1.78 3.75 0.55 6.37 Bankfull I arolina V8	nont sf ft ft cfs Regional	FWS - MD (CBFO-S02-01) 1.12 sf 3.42 ft 0.33 ft 4.87 cfs	0. 2. 0. 1. <i>USGS</i> -	58 sf 59 ft 22 ft			0.98 sf 2.59 ft 0.32 ft	NCSU NC PI	1.67 sf 2.37 ft 0.45 ft
	North Carol CSA = W = D = Q = Alley & Ridge I North C CSA =	ina Piedm 1.78 3.75 0.55 6.37 Bankfull I arolina V8	nont sf ft ft cfs Regional RR 88 sf	FWS - MD (CBFO-S02-01) 1.12 sf 3.42 ft 0.33 ft 4.87 cfs I Curves FWS - MD (CBFO-S03-01) 0.79 sf	0. 2. 0. 1. <i>USGS</i> - 0. 2.	58 sf 59 ft 22 ft 25 cfs -VA, MD (2005 84 sf			0.98 sf 2.59 ft 0.32 ft	NCSU NC PI	1.67 sf 2.37 ft 0.45 ft
	North Carol CSA = W = D = Q = Alley & Ridge I North C CSA = W =	ina Piedm 1.78 3.75 0.55 6.37 Bankfull I arolina V8 4.7 0.3	nont sf ft ft cfs Regional &R 58 sf	FWS - MD (CBFO-S02-01) 1.12 sf 3.42 ft 0.33 ft 4.87 cfs I Curves FWS - MD (CBFO-S03-01) 0.79 sf 2.66 ft	0. 2. 0. 1. USGS 0. 2.	58 sf 59 ft 22 ft 25 cfs -VA, MD (2005 84 sf 42 ft			0.98 sf 2.59 ft 0.32 ft	NCSU NC P	1.67 s 2.37 ft 0.45 ft
	North Carol CSA = W = D = Q = Alley & Ridge I North C CSA = W = D = Q =	ina Piedm 1.78 3.75 0.55 6.37 Bankfull I arolina V 1.6 4.7 0.3 5.8	nont sf ft ft cfs Regional &R 68 sf 75 ft 80 cfs	FWS - MD (CBFO-S02-01) 1.12 sf 3.42 ft 0.33 ft 4.87 cfs I Curves FWS - MD (CBFO-S03-01) 0.79 sf 2.66 ft 0.30 ft 1.00 cfs	0. 2. 0. 1. USGS - 0. 2. 0.	58 sf 59 ft 22 ft 25 cfs -VA, MD (2005 84 sf 42 ft 34 ft 20 cfs	-5076)		0.98 sf 2.59 ft 0.32 ft 2.74 cfs	NCSU NC P	1.67 sf 2.37 ft 0.45 ft
	North Carol CSA = W = D = Q = Alley & Ridge I North C CSA = W = D = Q =	ina Piedm 1.78 3.75 0.55 6.37 Bankfull I arolina V 1.6 4.7 0.3 5.8	nont sf ft ft cfs Regional &R 68 sf 75 ft 35 ft 60 cfs	FWS - MD (CBFO-S02-01) 1.12 sf 3.42 ft 0.33 ft 4.87 cfs I Curves FWS - MD (CBFO-S03-01) 0.79 sf 2.66 ft 0.30 ft 1.00 cfs	0. 2. 0. 1. USGS 0. 2. 0. 2.	58 sf 59 ft 22 ft 25 cfs -VA, MD (2005 84 sf 42 ft 34 ft 20 cfs	-5076) ghted w/	Jrban Regional	0.98 sf 2.59 ft 0.32 ft 2.74 cfs	NCSU NC PI	iedmont ('99 1.67 sf 2.37 ft 0.45 ft 5.96 cf
	North Carol CSA = W = D = Q = Alley & Ridge I North C CSA = W = D = Q =	ina Piedm 1.78 3.75 0.55 6.37 Bankfull I arolina V 1.6 4.7 0.3 5.8	nont sf ft ft cfs Regional &R 68 sf 75 ft 80 cfs	FWS - MD (CBFO-S02-01) 1.12 sf 3.42 ft 0.33 ft 4.87 cfs I Curves FWS - MD (CBFO-S03-01) 0.79 sf 2.66 ft 0.30 ft 1.00 cfs	0. 2. 0. 1. USGS 0. 2. 0. 2.	58 sf 59 ft 22 ft 25 cfs -VA, MD (2005 84 sf 42 ft 34 ft 20 cfs	-5076)		0.98 sf 2.59 ft 0.32 ft 2.74 cfs	NCSU NC P	1.67 sf 2.37 ft 0.45 ft

Project: Reach: 18-007 Banner Branch Mitigation Project UT1-R1 Date:

0%				Wate	rshed Cha	racteristics			
	Valley 8	& Ridge	100	% Piedmont	0%	Coastal	1%	Urban (> 15% Impervious)	
						Average	Field Obser	ved Bankfull C.S.A. =	4
	Duning			20	0	0		rved Bankfull Width =	ft
	Draina	age Area	a: 0.0	06 sq mi 41.2	2 ac	0		rved Bankfull Depth =	ft
						Average		nings Calculated Q =	ft ft
							IVIAITI	nings Calculated Q =	π
Rural Co	astal Plains E	Bankfull F	Regional	Curves					
	North Carol			FWS - MD (CBFO-S03-02)	USGS -	VA, MD (2007-	5162)		
	CSA =	2.38	sf	1.52 sf		08 sf	•		
	W =	4.09	ft	3.63 ft	3.	83 ft			
	D =	0.57	ft	0.42 ft	0.	54 ft			
	Q =	2.30	cfs	4.23 cfs (WCP)	5.	49 cfs			
				1.82 cfs (ECP)					
				3.03 cfs (Avera	ne)				
Rural Pie	dmont Bank	full Regio	nal Cur	/es					
	North Carol				11000			" ' ' ' '	
			IOHL	FWS - MD (CBFO-S02-01)	USGS -	VA. MD (200)	North Ca	arolina Walker Curves	NCSU NC Piedmont ('9
	CSA =	3.50	sf	FWS - MD (CBFO-S02-01) 2.35 sf		<i>VA, MD (200</i> : 30 sf	North Ca	arolina vvalker Curves 2.07 sf	NCSU NC Piedmont ('9
	CSA = W =			,	1.3		North Ca		•
		3.50	sf	2.35 sf	1.3 3.5	30 sf	North Ca	2.07 sf	3.32 s
	W =	3.50 5.41	sf ft	2.35 sf 5.07 ft	1. 3. 0.	30 sf 99 ft	North Ca	2.07 sf 4.01 ft	3.32 s 3.66 f
Rural Val	W = D = Q =	3.50 5.41 0.74 13.07	sf ft ft cfs	2.35 sf 5.07 ft 0.46 ft 10.52 cfs	1. 3. 0.	30 sf 99 ft 32 ft	North Ca	2.07 sf 4.01 ft 0.45 ft	3.32 s 3.66 f 0.62 f
Rural Val	W = D = Q =	3.50 5.41 0.74 13.07 Bankfull I	sf ft ft cfs Regiona	2.35 sf 5.07 ft 0.46 ft 10.52 cfs	1. 3. 0. 3.	30 sf 99 ft 32 ft 27 cfs		2.07 sf 4.01 ft 0.45 ft	3.32 s 3.66 f 0.62 f
Rural Val	W = D = Q =	3.50 5.41 0.74 13.07 Bankfull I	sf ft ft cfs Regiona	2.35 sf 5.07 ft 0.46 ft 10.52 cfs	1. 3. 0. 3. <i>U</i> SGS -	30 sf 99 ft 32 ft		2.07 sf 4.01 ft 0.45 ft	3.32 s 3.66 f 0.62 f
Rural Val	W = D = Q = Willey & Ridge I	3.50 5.41 0.74 13.07 Bankfull I arolina V8	sf ft ft cfs Regiona	2.35 sf 5.07 ft 0.46 ft 10.52 cfs Curves FWS - MD (CBFO-S03-01)	1. 3. 0. 3. USGS -	30 sf 99 ft 32 ft 27 cfs -VA, MD (2005-		2.07 sf 4.01 ft 0.45 ft	3.32 s 3.66 f 0.62 f
Rural Val	W = D = Q = Illey & Ridge I North C CSA =	3.50 5.41 0.74 13.07 Bankfull I arolina V8 3.3 6.9	sf ft ft cfs Regiona &R 35 sf	2.35 sf 5.07 ft 0.46 ft 10.52 cfs Curves FWS - MD (CBFO-S03-01) 1.68 sf	1. 3. 0. 3. USGS - 1. 3.	30 sf 99 ft 32 ft 27 cfs -VA, MD (2005- 74 sf		2.07 sf 4.01 ft 0.45 ft	3.32 s 3.66 f 0.62 f
Rural Val	W = D = Q = Uley & Ridge I North C CSA = W =	3.50 5.41 0.74 13.07 Bankfull I arolina V8 3.3 6.9	sf ft ft cfs Regiona &R 35 sf 91 ft	2.35 sf 5.07 ft 0.46 ft 10.52 cfs Curves FWS - MD (CBFO-S03-01) 1.68 sf 4.15 ft	USGS - 1. 3. 0.	30 sf 99 ft 32 ft 27 cfs -VA, MD (2005- 74 sf 76 ft		2.07 sf 4.01 ft 0.45 ft	3.32 s 3.66 f 0.62 f
Rural Val	W = D = Q =	3.50 5.41 0.74 13.07 Bankfull I arolina V8 3.3 6.9	sf ft ft cfs Regiona &R 35 sf 91 ft	2.35 sf 5.07 ft 0.46 ft 10.52 cfs Curves FWS - MD (CBFO-S03-01) 1.68 sf 4.15 ft 0.41 ft	USGS - 1. 3. 0.	30 sf 99 ft 32 ft 27 cfs -VA, MD (2005- 74 sf 76 ft		2.07 sf 4.01 ft 0.45 ft	3.32 s 3.66 f 0.62 f
Rural Val	W = D = Q =	3.50 5.41 0.74 13.07 Bankfull I arolina V& 3.3 6.9 0.4	sf ft ft cfs Regiona &R 35 sf 91 ft 17 ft 52 cfs	2.35 sf 5.07 ft 0.46 ft 10.52 cfs Curves FWS - MD (CBFO-S03-01) 1.68 sf 4.15 ft 0.41 ft	USGS - 1. 3. 0. 4.	30 sf 99 ft 32 ft 27 cfs -VA, MD (2005- 74 sf 76 ft 45 ft 90 cfs	5076)	2.07 sf 4.01 ft 0.45 ft	3.32 s 3.66 f 0.62 f

			egional Curve Values	Weighted w/ Urban Regional Curve Va
CSA =	2.51	sf	0.00 ft (Observed Value)	2.51 sf
W =	3.43	ft	0.00 ft (Observed Value)	3.43 ft
D =	0.52	ft	0.00 ft (Observed Value)	0.52 ft
Q =	9.08	cfs	0.00 ft (Observed Value)	9.08 cfs

Project: Reach: 18-007 Banner Branch Mitigation Project UT1-R2 Date:

				131103		Waters						
		Urban (> 15% Impervious)	1%	astal	0%		Piedmont	100%	je	& Ridge	Valley 8	0%
			01									
	ft	rved Bankfull C.S.A. =		0			_			_		
	ft	rved Bankfull Width =		_	ac	134.98	sq mi	0.21	rea:	ige Are	Draina	
	ft	rved Bankfull Depth =		verage F								
	ft	nings Calculated Q =	Mannir									
-							was	gional Cur	II Por	Rankfull	tal Plains I	ıral Coas
			2)	(2007-5	USGS -\	D-S03-02)	S - MD (CBF)				North Carol	
			,	,200, 0	4.4		3.48	sf		5.20	CSA =	
					5.9		5.70	ft		6.26	W =	
					0.7		0.61	ft		0.81	D =	
					11.1	cfs (WCP)		cfs		5.40	Q =	
					11.1	CIS (VVCI-)	10.00	CIS	, ,	J. T U	u –	
						ofo (ECD)	4.40					
						cfs (ECP)						
						cfs (ECP) cfs (Average						
_								al Curvos	niona	full Pog	mont Bank	ural Piodr
= Piedmont ('	NCSU NC Pi	arolina Walker Curves	orth Caro	0 (200)		cfs (Average	7.28				mont Bank	
,	NCSU NC Pic	arolina Walker Curves 5 00 sf	orth Caro	D (200:	USGS -\	cfs (Average 0-S02-01)	7.28 S - MD (CBF0	nt FW	dmon	ina Pied	North Carol	
7.44	NCSU NC Pie	5.00 sf	orth Caro	D (200:	USGS -\ 3.3	cfs (Average 0-S02-01) sf	7.28 S - MD (CBF0 5.59	nt FW sf	dmon	ina Pied 7.75	North Carol CSA =	
7.44 6.09	NCSU NC Pie	5.00 sf 6.70 ft	orth Caro) (200:	USGS -\ 3.3 6.6	Cfs (Average D-S02-01) sf ft	7.28 S - MD (CBF0 5.59 8.05	nt FW sf ft	dmon	ina Pied 7.75 8.29	North Carol CSA = W =	
Piedmont (* 7.44 6.09 0.91 29.03	NCSU NC Pie	5.00 sf	orth Caro) (200:	USGS -\ 3.3	Cfs (Average D-S02-01) sf ft ft	7.28 S - MD (CBF0 5.59	nt FW sf	dmon	ina Pied 7.75	North Carol CSA =	
7.44 6.09 0.91	NCSU NC Pie	5.00 sf 6.70 ft 0.68 ft	orth Caro) (200:	USGS -\ 3.3 6.6 0.5	Cfs (Average D-S02-01) sf ft ft	7.28 S - MD (CBF0 5.59 8.05 0.70	nt FW sf ft ft	dmon	ina Pied 7.75 8.29 1.04	North Carol CSA = W = D =	
7.44 6.09 0.91	NCSU NC Pie	5.00 sf 6.70 ft 0.68 ft			USGS -\ 3.3 6.6 0.5 10.0	cfs (Average D-S02-01) sf ft ft cfs	7.28 S - MD (CBF0 5.59 8.05 0.70 25.91	nt FW sf ft ft cfs	dmon	ina Pied 7.75 8.29 1.04 30.34	North Carol CSA = W = D = Q =	
7.44 6.09 0.91	NCSU NC Pid	5.00 sf 6.70 ft 0.68 ft			USGS -\ 3.3 6.6 0.5 10.0	Cfs (Average D-S02-01) sf ft ft cfs	7.28 S - MD (CBFC 5.59 8.05 0.70 25.91 rves S - MD (CBFC	nt FW sf ft ft cfs gional Cui	dmon	ina Pied 7.75 8.29 1.04 30.34 Bankfull arolina \	North Carol CSA = W = D = Q =	
7.44 6.09 0.91	NCSU NC Pi	5.00 sf 6.70 ft 0.68 ft			USGS -\ 3.3 6.6 0.5 10.0 USGS -\ 4.0	Cfs (Average D-S02-01) sf ft ft cfs D-S03-01) sf	7.28 S - MD (CBFC 5.59 8.05 0.70 25.91 rves S - MD (CBFC 4.10	nt FW sf ft ft cfs gional Cui	dmon 5	ina Pied 7.75 8.29 1.04 30.34 Bankfull arolina \	North Carol CSA = W = D = Q = y & Ridge North C CSA =	
7.44 6.09 0.91	NCSU NC Pi	5.00 sf 6.70 ft 0.68 ft			USGS -\ 3.3 6.6 0.5 10.0 USGS -\ 4.0 6.3	Cfs (Average D-S02-01) sf ft ft cfs D-S03-01) sf ft	7.28 S - MD (CBFC 5.59 8.05 0.70 25.91 rves S - MD (CBFC 4.10 6.99	nt FW sf ft ft cfs gional Cui FW sf ft	dmon 5	ina Pied 7.75 8.29 1.04 30.34 Bankfull arolina \ 7	North Carol	
7.44 6.09 0.91	NCSU NC Pid	5.00 sf 6.70 ft 0.68 ft			USGS -\ 3.3 6.6 0.5 10.0 USGS -\ 4.0	cfs (Average D-S02-01) sf ft ft cfs D-S03-01) sf ft ft	7.28 S - MD (CBFC 5.59 8.05 0.70 25.91 rves S - MD (CBFC 4.10	nt FW sf ft ft cfs gional Cui FW sf ft ft	dmon 5	ina Pied 7.75 8.29 1.04 30.34 Bankfull arolina \ 7	North Carol CSA = W = D = Q = y & Ridge North C CSA =	

Weigh	ted Avera	<u>age Rural Re</u>	egional Curve Values	Weighted w/ U	rban Regional Curve Valu
CSA =	5.83	sf	0.00 ft (Observed Value)	5.83	sf
W =	6.43	ft	0.00 ft (Observed Value)	6.43	ft
D =	0.77	ft	0.00 ft (Observed Value)	0.77	ft
Q =	22.28	cfs	0.00 ft (Observed Value)	22.28	cfs

Project: Reach: 18-007 Banner Branch Mitigation Project UT1-R3

Date:

/	37.11	0 D: 1					Waters		racteristic		,			l
0%	Valley 8	& Ridge	10	00%	Piedm	ont		0%	Coastal	0%	,	Urban (> 15% Impervious)		
										E:		10.16#004		
		_	_		_				0			ed Bankfull C.S.A. =	ft	
	Draina	age Are	a: 0	.26	sq mi		166.40	ac				red Bankfull Width =	ft	
									Averag			red Bankfull Depth =	ft	
										N	/lann	ings Calculated Q =	ft	
ıral Co	astal Plains I	Bankfull I	Region	al Cur	/es									ı
	North Carol				6 - MD (C	BFO-S	303-02)	USGS -	-VA, MD (200	7-5162)				
	CSA =	5.97	sf			.03 sf	,		08 sf	,				
	W =	6.75	ft		6	.17 ft		6.	38 ft					
	D =	0.86	ft		0	.66 ft		0.	79 ft					
	Q =	6.28	cfs		11	1.73 cfs	(WCP)	12.	64 cfs					
						5.26 cfs	(ECP)							
							s (Average							
					۰	.43 613	s (Average	;)						
					٥	.45 CI	S (Average	;)						
ural Pie	dmont Bank													
ural Pie	North Carol	lina Piedn	nont		S - MD (C	BFO-S		USGS -	-VA, MD (200	! North	n Car	olina Walker Curves	NCSU NC P	•
ural Pie	North Carol CSA =	lina Piedn 8.92	nont sf		S - MD (C	:BFO-S		USGS -	97 sf	! North	n Car	5.84 sf	NCSU NC P	8.57 s
ural Pie	North Carol CSA = W =	lina Piedn 8.92 8.93	nont sf ft		S - MD (C 6 8	:BFO-S 5.52 sf 5.74 ft		USGS - 3. 7.	97 sf 27 ft	! North	n Car	5.84 sf 7.33 ft	NCSU NC P	8.57 s 6.66 ft
ural Pie	North Carol CSA = W = D =	lina Piedn 8.92 8.93 1.11	nont sf ft ft		S - MD (C 6 8 0	:BFO-S :.52 sf :.74 ft :.75 ft	602-01)	USGS - 3. 7. 0.	97 sf 27 ft 54 ft	! North	n Car	5.84 sf 7.33 ft 0.73 ft	NCSU NC P	8.57 s 6.66 ft 0.97 ft
ural Pie	North Carol CSA = W =	lina Piedn 8.92 8.93	nont sf ft		S - MD (C 6 8 0	:BFO-S 5.52 sf 5.74 ft	602-01)	USGS - 3. 7. 0.	97 sf 27 ft	! North	n Car	5.84 sf 7.33 ft	NCSU NC P	8.57 s 6.66 ft 0.97 ft 33.76 c
	North Carol CSA = W = D = Q =	lina Piedn 8.92 8.93 1.11 35.21	nont sf ft ft cfs	FWS	6 - MD (C 6 8 0 30	:BFO-S :.52 sf :.74 ft :.75 ft	602-01)	USGS - 3. 7. 0.	97 sf 27 ft 54 ft	! North	n Car	5.84 sf 7.33 ft 0.73 ft	NCSU NC P	8.57 s 6.66 ft 0.97 ft
	North Carol CSA = W = D = Q =	lina Piedn 8.92 8.93 1.11 35.21	nont sf ft ft cfs	FWS	6 - MD (C 6 8 0 30 ves	:BFO-S :.52 sf :.74 ft :.75 ft	602-01)	USGS - 3. 7. 0. 12.	97 sf 27 ft 54 ft 25 cfs		n Car	5.84 sf 7.33 ft 0.73 ft	NCSU NC P	8.57 s 6.66 ft 0.97 ft
	North Carol CSA = W = D = Q =	lina Piedn 8.92 8.93 1.11 35.21 Bankfull carolina Vo	nont sf ft ft cfs	FWS	S - MD (C 6 8 0 30 30 wes 5 - MD (C	:BFO-S :.52 sf :.74 ft :.75 ft	602-01)	USGS - 3. 7. 0. 12.	97 sf 27 ft 54 ft		n Car	5.84 sf 7.33 ft 0.73 ft	NCSU NC P	8.57 s 6.66 ft 0.97 ft
	North Carol CSA = W = D = Q =	lina Piedn 8.92 8.93 1.11 35.21 Bankfull carolina V	nont sf ft ft cfs Region	FWS	6 - MD (C 6 8 0 30 ves 6 - MD (C 4	BFO-S 5.52 sf 5.74 ft 5.75 ft 5.38 cfs	602-01)	USGS - 3. 7. 0. 12. USGS - 4.	97 sf 27 ft 54 ft 25 cfs		n Car	5.84 sf 7.33 ft 0.73 ft	NCSU NC P	8.57 s 6.66 ft 0.97 ft
	North Carol CSA = W = D = Q = ley & Ridge North C CSA =	lina Piedn 8.92 8.93 1.11 35.21 Bankfull Carolina Vo 8.	nont sf ft ft cfs Region &R	FWS	S - MD (C 6 8 0 30 ves 6 - MD (C 4 7	BFO-S 5.52 sf 5.74 ft 7.75 ft 1.38 cfs BFO-S	602-01)	USGS - 3. 7. 0. 12. USGS - 4. 6.	97 sf 27 ft 54 ft 25 cfs -VA, MD (200 76 sf		n Car	5.84 sf 7.33 ft 0.73 ft	NCSU NC P	8.57 s 6.66 ft 0.97 ft
	North Carol CSA = W = D = Q = ley & Ridge North C CSA = W =	lina Piedn 8.92 8.93 1.11 35.21 Bankfull Carolina Vo 8.	nont sf ft ft cfs Region &R 65 sf 57 ft	FWS	S - MD (C 6 8 0 30 wes 6 - MD (C 4 7	BFO-S i.52 sf i.74 ft i.75 ft i.38 cfs :BFO-S i.80 sf	602-01) 6	USGS - 3. 7. 0. 12. USGS - 4. 6. 0.	97 sf 27 ft 54 ft 25 cfs -VA, MD (200 76 sf 92 ft		า Car	5.84 sf 7.33 ft 0.73 ft	NCSU NC P	8.57 s 6.66 f 0.97 f
	North Carol	lina Piedn 8.92 8.93 1.11 35.21 Bankfull Carolina Vo 8.	nont sf ft ft cfs Region &R 65 sf 57 ft 73 ft	FWS	S - MD (C 6 8 0 30 wes 6 - MD (C 4 7	BFO-S i.52 sf i.74 ft i.75 ft i.38 cfs i.88 cfs i.80 sf i.67 ft	602-01) 6	USGS - 3. 7. 0. 12. USGS - 4. 6. 0.	97 sf 27 ft 54 ft 25 cfs -VA, MD (200 76 sf 92 ft 68 ft		า Car	5.84 sf 7.33 ft 0.73 ft	NCSU NC P	8.57 s 6.66 f 0.97 f
	North Carol CSA = W = D = Q = ley & Ridge North C CSA = W = D = Q =	8.92 8.93 1.11 35.21 Bankfull arolina V 8. 11. 0.	nont sf ft ft cfs Region &R 65 sf 57 ft 73 ft 15 cfs	al Cur FWS	S - MD (C 6 8 0 30 wes 3 - MD (C 4 7	BFO-S .52 sf .74 ft .75 ft .38 cfs .BFO-S .80 sf .67 ft .63 ft	602-01) 6	USGS - 3. 7. 0. 12. USGS - 4. 6. 0.	97 sf 27 ft 54 ft 25 cfs -VA, MD (200 76 sf 92 ft 68 ft 85 cfs	5-5076)		5.84 sf 7.33 ft 0.73 ft 19.00 cfs	NCSU NC P	8.57 s 6.66 f 0.97 f
	North Carol CSA = W = D = Q = ley & Ridge North C CSA = W = D = Q =	lina Piedn 8.92 8.93 1.11 35.21 Bankfull Carolina Vo 8.	nont sf ft ft cfs Region &R 65 sf 57 ft 73 ft 15 cfs	al Cur FWS	6 - MD (C 6 8 0 30 ves 6 - MD (C 4 7 0 9	BFO-S .52 sf .74 ft .75 ft .38 cfs .80 sf .67 ft .63 ft .59 cfs	602-01) 6	USGS 3. 7. 0. 12. USGS 4. 6. 0. 14.	97 sf 27 ft 54 ft 25 cfs -VA, MD (200 76 sf 92 ft 68 ft 85 cfs	5-5076)	v/ Ur	5.84 sf 7.33 ft 0.73 ft	NCSU NC P	8.57 s 6.66 f 0.97 f

weigin	eu Avera	age Kulai K	egional Curve Values	weighted w/ O	rban Regional Curve Values
CSA =	6.76	sf	0.00 ft (Observed Value)	6.76	sf
W =	7.21	ft	0.00 ft (Observed Value)	7.21	ft
D =	0.82	ft	0.00 ft (Observed Value)	0.82	ft
Q =	26.12	cfs	0.00 ft (Observed Value)	26.12	cfs

Project: Reach: 18-007 Banner Branch Mitigation Project UT2 Date: 10/7/2019

0.46

6.85

ft

cfs

0.00 ft (Observed Value)

0.00 ft (Observed Value)

D=

0.46

6.85

ft

cfs

				Wa	tershed Ch	naracteristics	3		•	
0%	Valley 8	& Ridge	10	00% Piedmont	0%	Coastal	0%	Urban (> 15% Impervious)	
						Average	Field Ohan	rved Bankfull C.S.A. =	ft	
	Draina			.04 sa mi 28	.35 ac	0		erved Bankfull Width =		
	Draina	ige Area	a: U	.04 sq mi 28	.35 ac			erved Bankfull Depth =	ft ft	
						Average		nings Calculated Q =	ft	
							Wan	mings calculated & -	10	
ural Co	astal Plains E	Rankfull F	Regiona	al Curves					_	
uiui oo	North Carol			FWS - MD (CBFO-S03-02)) USGS	S -VA, MD (2007	-5162)			
	CSA =	1.86	sf	1.17 sf		1.64 sf	/			
	W =	3.57	ft	3.15 ft	(3.34 ft				
	D =	0.51	ft	0.37 ft	(0.49 ft				
	Q =	1.76	cfs	3.22 cfs (WCP)	4	4.39 cfs				
				1.37 cfs (ECP)						
				2.30 cfs (Ave	rano)					
Dural Die	dmont Bank	full Pegio	nal Cu	n/oe					_	
Rural Pie	edmont Bankt North Carol) USGS	S -VA. MD (200)	North C	arolina Walker Curves	NCSU NC Pi	iedmont ('99
Rural Pie				rves FWS - MD (CBFO-S02-01) 1.79 sf	,	S - <i>VA, MD (200</i> : 0.97 sf	North C	arolina Walker Curves 1.57 sf	NCSU NC Pi	•
Rural Pie	North Carol	ina Piedm	ont	FWS - MD (CBFO-S02-01)	,		North C		NCSU NC Pi	•
Rural Pie	North Carol CSA =	ina Piedm 2.72	ont sf	FWS - MD (CBFO-S02-01) 1.79 sf	, (0.97 sf	North C	1.57 sf	NCSU NC Pi	2.57 sf 3.11 ft
Rural Pie	North Carol CSA = W =	ina Piedm 2.72 4.72	ont sf ft	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft	, (0.97 sf 3.40 ft	North C	1.57 sf 3.41 ft	NCSU NC Pi	2.57 sf 3.11 ft 0.55 ft
Rural Pie	North Carol CSA = W = D =	ina Piedm 2.72 4.72 0.66	ont sf ft ft	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft 0.41 ft	, (0.97 sf 3.40 ft 0.28 ft	North C	1.57 sf 3.41 ft 0.40 ft	NCSU NC Pi	2.57 sf 3.11 ft 0.55 ft
	North Carol CSA = W = D = Q =	ina Piedm 2.72 4.72 0.66 10.02	nont sf ft ft cfs	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft 0.41 ft 7.91 cfs	(0.97 sf 3.40 ft 0.28 ft 2.29 cfs		1.57 sf 3.41 ft 0.40 ft	NCSU NC Pi	2.57 sf 3.11 ft 0.55 ft
	North Carol CSA = W = D = Q =	ina Piedm 2.72 4.72 0.66 10.02 Bankfull I	nont sf ft ft cfs Regiona	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft 0.41 ft 7.91 cfs al Curves FWS - MD (CBFO-S03-01)) USGS	0.97 sf 3.40 ft 0.28 ft 2.29 cfs S -VA, MD (2005		1.57 sf 3.41 ft 0.40 ft	NCSU NC Pi	2.57 sf 3.11 ft 0.55 ft
	North Carol CSA = W = D = Q = Iley & Ridge I North C CSA =	ina Piedm 2.72 4.72 0.66 10.02 Bankfull I arolina V8	nont sf ft ft cfs Regiona RR 60 sf	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft 0.41 ft 7.91 cfs al Curves FWS - MD (CBFO-S03-01) 1.27 sf) USGS	0.97 sf 3.40 ft 0.28 ft 2.29 cfs 6 -VA, MD (2005 1.33 sf		1.57 sf 3.41 ft 0.40 ft	NCSU NC Pi	2.57 sf 3.11 ft 0.55 ft
	North Carol CSA = W = D = Q = Iley & Ridge I North C CSA = W =	ina Piedm 2.72 4.72 0.66 10.02 Bankfull I arolina V8 2.6 6.0	riont sf ft ft cfs Regiona RR 60 sf	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft 0.41 ft 7.91 cfs al Curves FWS - MD (CBFO-S03-01) 1.27 sf 3.52 ft) USGS	0.97 sf 3.40 ft 0.28 ft 2.29 cfs 5 -VA, MD (2005 1.33 sf 3.20 ft		1.57 sf 3.41 ft 0.40 ft	NCSU NC Pi	2.57 sf 3.11 ft 0.55 ft
	North Carol CSA = W = D = Q = Iley & Ridge I North C CSA =	ina Piedm 2.72 4.72 0.66 10.02 Bankfull I arolina V8 2.6 6.0	nont sf ft ft cfs Regiona RR 60 sf	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft 0.41 ft 7.91 cfs al Curves FWS - MD (CBFO-S03-01) 1.27 sf) USGS	0.97 sf 3.40 ft 0.28 ft 2.29 cfs 6 -VA, MD (2005 1.33 sf		1.57 sf 3.41 ft 0.40 ft	NCSU NC Pi	2.57 sf 3.11 ft 0.55 ft
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D =	ina Piedm 2.72 4.72 0.66 10.02 Bankfull I arolina V8 2.6 6.0	nont sf ft ft cfs Regiona &R 60 sf 01 ft 42 ft	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft 0.41 ft 7.91 cfs al Curves FWS - MD (CBFO-S03-01) 1.27 sf 3.52 ft 0.36 ft) USGS	0.97 sf 3.40 ft 0.28 ft 2.29 cfs 6 -VA, MD (2005 1.33 sf 3.20 ft 0.41 ft		1.57 sf 3.41 ft 0.40 ft	NCSU NC Pi	2.57 sf 3.11 ft 0.55 ft
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 2.72 4.72 0.66 10.02 Bankfull I arolina V& 2.6 6.0 9.4	Regiona Regiona Rejona RR 60 sf 01 ft 42 ft	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft 0.41 ft 7.91 cfs al Curves FWS - MD (CBFO-S03-01) 1.27 sf 3.52 ft 0.36 ft 1.82 cfs) USGS	0.97 sf 3.40 ft 0.28 ft 2.29 cfs 6 -VA, MD (2005 1.33 sf 3.20 ft 0.41 ft 3.64 cfs	-5076)	1.57 sf 3.41 ft 0.40 ft 4.58 cfs	NCSU NC Pi	2.57 sf 3.11 ft 0.55 ft
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 2.72 4.72 0.66 10.02 Bankfull I arolina V& 2.6 6.0 0.4 9.4	Regiona Regiona Rejona Regiona Rejona Regiona Regiona Rejona Regiona Region	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft 0.41 ft 7.91 cfs al Curves FWS - MD (CBFO-S03-01) 1.27 sf 3.52 ft 0.36 ft 1.82 cfs) USGS	0.97 sf 3.40 ft 0.28 ft 2.29 cfs 6 -VA, MD (2005 1.33 sf 3.20 ft 0.41 ft 3.64 cfs	-5076) ghted w/ l	1.57 sf 3.41 ft 0.40 ft 4.58 cfs Jrban Regional Curve Values	NCSU NC Pi	2.57 sf
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 2.72 4.72 0.66 10.02 Bankfull I arolina V& 2.6 6.0 9.4	Regiona Regiona Rejona RR 60 sf 01 ft 42 ft	FWS - MD (CBFO-S02-01) 1.79 sf 4.38 ft 0.41 ft 7.91 cfs al Curves FWS - MD (CBFO-S03-01) 1.27 sf 3.52 ft 0.36 ft 1.82 cfs) USGS	0.97 sf 3.40 ft 0.28 ft 2.29 cfs 6 -VA, MD (2005 1.33 sf 3.20 ft 0.41 ft 3.64 cfs	-5076)	1.57 sf 3.41 ft 0.40 ft 4.58 cfs	NCSU NC Pi	2.57 sf 3.11 ft 0.55 ft

18-007 Banner Branch Mitigation Project UT2A Date:

10/7/2019

Project: Reach:

					Waters	hed Chai	racteristics				
0%	Valley 8	k Ridge	100%	Piedmont		0%	Coastal	0%	Urban (> 15% Impervious	s)	
							Average	Eiald Ohsan	ved Bankfull C.S.A. =	ft	
	Draina	ao Aros	a: 0.00	ca mi	3.14	20	0		ved Bankfull Width =		
	Draina	ge Area	1. U.UU	sq mi	3.14	ac			ved Bankfull Depth =	ft ft	
							Average		ings Calculated Q =	ft	
								iviaiii	illigs calculated Q =	Ti.	
ural Co	astal Plains E	Bankfull F	Regional C	urves							
	North Carol			NS - MD (CBFC)-S03-02)	USGS -	VA, MD (2007-	5162)			
	CSA =	0.43	sf	0.25	,		10 sf	/			
	W =	1.62	ft	1.36 1			50 ft				
	D =	0.26	ft	0.18 1	-		27 ft				
	Q =	0.36	cfs		ofs (WCP)		7 cfs				
	-				ofs (ECP)						
					ofe (Avaraga						
ural Pie	edmont Banki	full Regio	nal Curve		cfs (Average						
ural Pie	edmont Bankt North Carol CSA = W = D = Q =				0-S02-01) sf ft	USGS -\ 0.1 1.3 0.1	VA, MD (200: 7 sf 32 ft 2 ft 88 cfs	North Ca	rolina Walker Curves 0.31 sf 1.32 ft 0.19 ft 0.78 cfs	NCSU NC Pied	0.58 1.21 0.27
	North Carol CSA = W = D = Q =	0.62 2.14 0.35 2.10	ont F sf ft ft cfs	0.36 s 1.86 s 0.19 f 1.48 s	0-S02-01) sf ft	USGS -\ 0.1 1.3 0.1	7 sf 32 ft 2 ft	North Ca	0.31 sf 1.32 ft 0.19 ft	NCSU NC Pied	0.58 1.21 0.27 1.93
	North Carol CSA = W = D = Q =	ina Piedm 0.62 2.14 0.35 2.10	siont Find State of S	0.36 (0.19 f) 1.48 (0-S02-01) sf ft ft cfs	USGS -1 0.1 1.3 0.1 0.2	7 sf 32 ft 12 ft 28 cfs		0.31 sf 1.32 ft 0.19 ft	NCSU NC Pied	0.58 1.21 0.27
	North Carol CSA = W = D = Q = Illey & Ridge I North C	0.62 2.14 0.35 2.10 3ankfull F	ont F sf ft ft cfs Regional C	0.36 (0.19 f) 1.48 (0.19 s) 1.48 (0.19 f) 1.	0-S02-01) sf ff ft tt cfs	USGS -1 0.1 1.3 0.1 0.2 USGS -1	17 sf 32 ft 12 ft 28 cfs VA, MD (2005-		0.31 sf 1.32 ft 0.19 ft	NCSU NC Pied	0.58 1.21 0.27
	North Carol CSA = W = D = Q =	0.62 2.14 0.35 2.10 Bankfull F arolina V&	nont F sf ft ft cfs Regional C	0.36 (0.19 f) 1.48 (0.19 f) 1.48 (0.19 f)	0-S02-01) sf tt tt cfs 0-S03-01)	USGS -1 0.1 1.3 0.1 0.2 USGS -1	7 sf 32 ft 12 ft 28 cfs		0.31 sf 1.32 ft 0.19 ft	NCSU NC Pied	0.58 1.21 0.27
	North Carol CSA = W = D = Q = Iley & Ridge I North C CSA =	ina Piedm 0.62 2.14 0.35 2.10 3ankfull F arolina V8 0.5	nont F sf ft ft cfs Regional C kR F 58 sf 66 ft	WS - MD (CBFC 0.36 : 1.86 i 0.19 i 1.48 i urves WS - MD (CBFC 0.24 : 1.34 i	0-S02-01) sf ft ft cfs 0-S03-01) sf	USGS -1 0.1 1.3 0.1 0.2 USGS -1 0.2	17 sf 32 ft 12 ft 28 cfs VA, MD (2005- 27 sf		0.31 sf 1.32 ft 0.19 ft	NCSU NC Pied	0.58 1.21 0.27
	North Carol CSA = W = D = Q = Iley & Ridge I North C CSA = W =	ina Piedm 0.62 2.14 0.35 2.10 3ankfull F arolina V8 0.5 2.6 0.2	nont F sf ft ft cfs Regional C	WS - MD (CBFC 0.36 : 1.86 i 0.19 i 1.48 i urves WS - MD (CBFC 0.24 :	0-S02-01) sf ft ft cfs 0-S03-01) sf ft ft	USGS -1 0.1 1.3 0.1 0.2 USGS -1 0.2 1.2 0.2	17 sf 32 ft 2 ft 2 ft 88 cfs VA, MD (2005- 27 sf 22 ft		0.31 sf 1.32 ft 0.19 ft	NCSU NC Pied	0.58 1.21 0.27
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 0.62 2.14 0.35 2.10 Bankfull F arolina V8 0.5 2.6 0.2	sont F sf ft ft cfs Regional C R R S S S S S S S S S S S S S S S S S	WS - MD (CBFC 0.36 s 1.86 s 0.19 s 1.48 d urves WS - MD (CBFC 0.24 s 1.34 s 0.18 s 0.23 d	0-S02-01) sf it it cfs 0-S03-01) sf it it cfs	USGS -1 0.1 1.3 0.1 0.2 USGS -1 0.2 1.2 0.2	17 sf 32 ft 22 ft 12 ft 18 cfs VA, MD (2005- 17 sf 12 ft 12 ft 13 cfs	.5076)	0.31 sf 1.32 ft 0.19 ft 0.78 cfs		0.58 1.21 0.27
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 0.62 2.14 0.35 2.10 Bankfull F arolina V8 0.5 2.6 0.2 1.7	sont F sf ft ft cfs Regional C kR F 88 sf 66 ft 21 ft 77 cfs	WS - MD (CBFC 0.36 s 1.86 f 0.19 f 1.48 d urves WS - MD (CBFC 0.24 s 1.34 f 0.18 f 0.23 d	0-S02-01) sf it it cfs 0-S03-01) sf it it cfs	USGS 0.1 1.3 0.1 0.2 USGS 0.2 1.2 0.2 0.6	17 sf 32 ft 22 ft 12 ft 18 cfs VA, MD (2005- 17 sf 12 ft 12 ft 13 cfs	5076) ghted w/ U	0.31 sf 1.32 ft 0.19 ft 0.78 cfs		0.58 1.21 0.27
	North Carol CSA = W = D = Q = Illey & Ridge I North C CSA = W = D = Q =	ina Piedm 0.62 2.14 0.35 2.10 Bankfull F arolina V8 0.5 2.6 0.2	sont F sf ft ft cfs Regional C R R S S S S S S S S S S S S S S S S S	WS - MD (CBFC 0.36 s 1.86 f 0.19 f 1.48 d urves WS - MD (CBFC 0.24 s 1.34 f 0.18 f 0.23 d	0-S02-01) sf it it cfs 0-S03-01) sf it it cfs	USGS 0.1 1.3 0.1 0.2 USGS 0.2 1.2 0.2 0.6	17 sf 32 ft 22 ft 12 ft 18 cfs VA, MD (2005- 17 sf 12 ft 12 ft 13 cfs	.5076)	0.31 sf 1.32 ft 0.19 ft 0.78 cfs		0.58 1.21 0.27

weight	ed Aver	age Rurai R	egional Curve Values	<u>weighted w/ C</u>	<u> Irban Regional Curve Values</u>
CSA =	0.41	sf	0.00 ft (Observed Value)	0.41	sf
W =	1.01	ft	0.00 ft (Observed Value)	1.01	ft
D =	0.23	ft	0.00 ft (Observed Value)	0.23	ft
Q =	1.32	cfs	0.00 ft (Observed Value)	1.32	cfs

Project: Reach: 18-007 Banner Branch Mitigation Project UT3 Date:

0.64

14.53

ft

cfs

10/7/2019

0.00 ft (Observed Value)

0.00 ft (Observed Value)

0.64

14.53 cfs

ft

				Wate	rshed Cha	aracteristics				
0%	Valley 8	& Ridge	10	0% Piedmont	0%	Coastal	0%	Urban (> 15% Impervious)		
						Average	Field Ohse	rved Bankfull C.S.A. =	ft	
	Draina	age Area		.12 sq mi 76.8	0 ac	0		erved Bankfull Width =	ft	
	Draina	ige Area	a. U.	. 12 Sq IIII 76.0	o ac			rved Bankfull Depth =	π ft	
						Average		nings Calculated Q =	ft	
							man	migs calculated & -	10	
ural Co	astal Plains I	Bankfull F	Regiona	ıl Curves						
uiui oo	North Carol			FWS - MD (CBFO-S03-02)	USGS -	-VA, MD (2007	-5162)			
	CSA =	3.58	sf	2.34 sf		.10 sf	,			
	W =	5.11	ft	4.60 ft	4.	.81 ft				
	D =	0.68	ft	0.51 ft	0.	.64 ft				
	Q =	3.60	cfs	6.67 cfs (WCP)	7.	.96 cfs				
				2.92 cfs (ECP)						
				4.00 -5- (4						
ural Pie	edmont Bank)// MD /000	North O	and the a Welling Owner	NOCHNOR	
ural Pie	North Carol CSA = W =	ina Piedm 5.31 6.76	ont sf ft	rves FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft	USGS - 2. 5.	-VA, MD (200: 14 sf 22 ft	North Ca	arolina Walker Curves 3.29 sf 5.25 ft	NCSU NC P	5.07 sf 4.78 ft
ural Pie	North Carol CSA = W = D =	ina Piedm 5.31 6.76 0.89	ont sf ft ft	rves FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft 0.57 ft	USGS - 2. 5. 0.	.14 sf .22 ft .40 ft	North Ca	3.29 sf 5.25 ft 0.56 ft	NCSU NC P	5.07 sf 4.78 ft 0.76 ft
ural Pie	North Carol CSA = W =	ina Piedm 5.31 6.76	ont sf ft	rves FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft	USGS - 2. 5. 0.	.14 sf .22 ft	North Ca	3.29 sf 5.25 ft	NCSU NC P	5.07 sf 4.78 ft 0.76 ft
	North Carol CSA = W = D = Q =	5.31 6.76 0.89 20.33 Bankfull I	sf ft ft cfs	TVES FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft 0.57 ft 16.88 cfs	USGS - 2. 5. 0. 5.	.14 sf .22 ft .40 ft .89 cfs		3.29 sf 5.25 ft 0.56 ft	NCSU NC P	5.07 sf 4.78 ft 0.76 ft
	North Carol CSA = W = D = Q = Illey & Ridge North C	ina Piedm 5.31 6.76 0.89 20.33 Bankfull I	ont sf ft ft cfs Regiona	rves FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft 0.57 ft 16.88 cfs	USGS - 2. 5. 0. 5.	.14 sf .22 ft .40 ft .89 cfs		3.29 sf 5.25 ft 0.56 ft	NCSU NC P	5.07 sf 4.78 ft 0.76 ft
	North Carol CSA = W = D = Q = Iley & Ridge North C CSA =	ina Piedm 5.31 6.76 0.89 20.33 Bankfull I arolina V8	siont sf ft ft cfs Regiona	FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft 0.57 ft 16.88 cfs al Curves FWS - MD (CBFO-S03-01) 2.69 sf	USGS - 2. 5. 0. 5. USGS - 2.	.14 sf .22 ft .40 ft .89 cfs -VA, MD (2005 .72 sf		3.29 sf 5.25 ft 0.56 ft	NCSU NC P	5.07 sf 4.78 ft 0.76 ft
	North Carol CSA = W = D = Q = Iley & Ridge North C CSA = W =	ina Piedm 5.31 6.76 0.89 20.33 Bankfull I arolina V8 5.1	sont sf ft ft cfs Regiona RR 11 sf	rves FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft 0.57 ft 16.88 cfs al Curves FWS - MD (CBFO-S03-01) 2.69 sf 5.46 ft	USGS - 2. 5. 0. 5. USGS - 2. 4.	.14 sf .22 ft .40 ft .89 cfs -VA, MD (2005 .72 sf .94 ft		3.29 sf 5.25 ft 0.56 ft	NCSU NC P	5.07 sf 4.78 ft 0.76 ft
	North Carol CSA = W = D = Q = Illey & Ridge North C CSA = W = D =	ina Piedm 5.31 6.76 0.89 20.33 Bankfull I arolina V8 5.1 8.6	sont sf ft ft cfs Regiona RR 11 sf 69 ft	rves FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft 0.57 ft 16.88 cfs al Curves FWS - MD (CBFO-S03-01) 2.69 sf 5.46 ft 0.49 ft	USGS - 2. 5. 5. 5. USGS - 4. 0.	.14 sf .22 ft .40 ft .89 cfs VA, MD (2005 .72 sf .94 ft .54 ft		3.29 sf 5.25 ft 0.56 ft	NCSU NC P	5.07 sf 4.78 ft 0.76 ft
	North Carol CSA = W = D = Q = Iley & Ridge North C CSA = W =	ina Piedm 5.31 6.76 0.89 20.33 Bankfull I arolina V8 5.1 8.6	sont sf ft ft cfs Regiona RR 11 sf	rves FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft 0.57 ft 16.88 cfs al Curves FWS - MD (CBFO-S03-01) 2.69 sf 5.46 ft	USGS - 2. 5. 5. 5. USGS - 4. 0.	.14 sf .22 ft .40 ft .89 cfs -VA, MD (2005 .72 sf .94 ft		3.29 sf 5.25 ft 0.56 ft	NCSU NC P	5.07 sf 4.78 ft 0.76 ft
	North Carol CSA = W = D = Q = Illey & Ridge North C CSA = W = D = Q =	5.31 6.76 0.89 20.33 Bankfull I arolina V& 5.1 8.6 0.5	sont sf ft ft cfs Regiona RR 11 sf 69 ft 58 ft 19 cfs	rves FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft 0.57 ft 16.88 cfs al Curves FWS - MD (CBFO-S03-01) 2.69 sf 5.46 ft 0.49 ft 4.64 cfs	USGS - 2. 5. 0. 5. USGS - 2. 4. 0. 8.	.14 sf .22 ft .40 ft .89 cfs -VA, MD (2005 .72 sf .94 ft .54 ft .04 cfs	-5076)	3.29 sf 5.25 ft 0.56 ft 10.20 cfs	NCSU NC P	5.07 sf 4.78 ft
	North Carol CSA = W = D = Q = Illey & Ridge North C CSA = W = D = Q =	ina Piedm 5.31 6.76 0.89 20.33 Bankfull I arolina V& 5.1 8.6 0.5 20.0	Regiona AR Segiona Regiona Regiona R R Segiona	FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft 0.57 ft 16.88 cfs al Curves FWS - MD (CBFO-S03-01) 2.69 sf 5.46 ft 0.49 ft 4.64 cfs	USGS - 2. 5. 0. 5. USGS - 2. 4. 0. 8.	.14 sf .22 ft .40 ft .89 cfs -VA, MD (2005 .72 sf .94 ft .54 ft .04 cfs	-5076) ghted w/ l	3.29 sf 5.25 ft 0.56 ft 10.20 cfs	NCSU NC P	5.07 sf 4.78 ft 0.76 ft
	North Carol CSA = W = D = Q = Illey & Ridge North C CSA = W = D = Q =	5.31 6.76 0.89 20.33 Bankfull I arolina V& 5.1 8.6 0.5	sont sf ft ft cfs Regiona RR 11 sf 69 ft 58 ft 19 cfs	rves FWS - MD (CBFO-S02-01) 3.71 sf 6.46 ft 0.57 ft 16.88 cfs al Curves FWS - MD (CBFO-S03-01) 2.69 sf 5.46 ft 0.49 ft 4.64 cfs	USGS - 2. 5. 0. 5. USGS - 2. 4. 0. 8.	.14 sf .22 ft .40 ft .89 cfs -VA, MD (2005 .72 sf .94 ft .54 ft .04 cfs	-5076)	3.29 sf 5.25 ft 0.56 ft 10.20 cfs	NCSU NC P	5.07 sf 4.78 ft 0.76 ft

Project: 18-007 Banner Branch Mitigation Project

Date:

10/7/2019

Reach: UT4-R1 Lower

0%	Valley & Ridge	100%	Piedmont		0%	Coastal	0%	Urban (> 15% Imper	rvious)
	Darlana Ama	0.04		450.00	l	0		rved Bankfull C.S.A. =	ft
	Drainage Area:	0.24	sq mi	153.60	ac	Average Field Observed Bankfull Width = Average Field Observed Bankfull Depth =			ft
						Average		nings Calculated Q =	ft

North Caroli	ina Coast	al	FWS - MD (CBFO-S03-02)	USGS -VA, MD (2007-5162)
CSA =	5.66	sf	`3.81 sf	4.82 sf
W =	6.56	ft	5.99 ft	6.20 ft
D =	0.84	ft	0.64 ft	0.78 ft
Q =	5.93	cfs	11.06 cfs (WCP)	12.05 cfs
			4.95 cfs (ECP)	
			8 01 cfs (Average	e)

Rural Piedmont Bankfull Regional Curves

North Caroli	ina Piedm	ont	FWS - MD (CBFO-S02-01)	USGS -VA, MD (200:	North Carolina Walker Curves	NCSU NC Piedmont ('99)
CSA =	8.45	sf	6.15 sf	3.73 sf	5.50 sf	8.12 sf
W =	8.68	ft	8.47 ft	7.02 ft	7.09 ft	6.44 ft
D =	1.08	ft	0.73 ft	0.52 ft	0.71 ft	0.95 ft
Q =	33.26	cfs	28.58 cfs	11.36 cfs	17.82 cfs	31.87 cfs

Rural Valley & Ridge Bankfull Regional Curves

North Car	olina V&R	FWS - MD (CBFO-S03-01)	USGS -VA, MD (2005-5076)
CSA =	8.19 sf	4.52 sf	4.49 sf
W =	11.24 ft	7.40 ft	6.68 ft
D =	0.71 ft	0.61 ft	0.66 ft
Q =	34.02 cfs	8.89 cfs	13.93 cfs

weight	tea Avera	age Kural R	egional Curve Values	Weighted w/ Urban Regional Curve Value		
CSA =	6.39	sf	0.00 ft (Observed Value)	6.39	sf	
W =	6.90	ft	0.00 ft (Observed Value)	6.90	ft	
D =	0.80	ft	0.00 ft (Observed Value)	0.80	ft	
Q =	24.58	cfs	0.00 ft (Observed Value)	24.58	cfs	

18-007 Banner Branch Mitigation Project UT4-R1 Upper

Date:

10/7/2019

Project: Reach:

	\/-U- (0 D:-L	100	0/ 0: 1		rshed Char		00/	114	F0/ (
0%	valley &	& Ridge	100	% Piedmor	nt	0%	Coastal	0%	Urban (> 1	5% Impervious)		
							A. (0.10.00	Field Obser	ned Bankfull C S	S A =	£4	
					100 10		0		ved Bankfull C.S		ft	
	Draina	age Area	ı: 0.1	6 sq mi	102.40	ac			rved Bankfull Wi		ft	
							Average		rved Bankfull De		ft	
								ivian	nings Calculate	a Q =	ft	
ural Coa	astal Plains E	Bankfull F	Regional	Curves								
	North Carol			FWS - MD (CBF	O-S03-02)	USGS -V	/A, MD (2007-	5162)				
	CSA =	4.33	sf	2.87		3.72		,				
	W =	5.67	ft	5.13	3 ft	5.35	5 ft					
	D =	0.74	ft	0.56	6 ft	0.69	9 ft					
	Q =	4.43	cfs	8.23	3 cfs (WCP)	9.46	6 cfs					
				3.64	4 cfs (ECP)							
						e)						
					3 cfs (Averag	e)						
				5.93		e)						
ural Pie	dmont Banki			5.93 es	3 cfs (Averag		/A MD (200)	North Ca	arolina Walker Cı	in/es	NCSH NC Pier	dmont
ural Pie	North Carol	ina Piedm	ont	es FWS - MD (CBF	3 cfs (Averag	USGS -V	/A, MD (200: 0 sf	North Ca	arolina Walker Cu		NCSU NC Pied	
ural Pie	North Carol CSA =	ina Piedm 6.44	ont sf	es FWS - MD (CBF 4.57	3 cfs (Averag FO-S02-01) 7 sf	USGS -V 2.7(0 sf	North Ca	arolina Walker Cu	4.07 sf	NCSU NC Piec	6.16
ural Pie	North Carol	ina Piedm 6.44 7.50	ont sf ft	es FWS - MD (CBF 4.57 7.23	3 cfs (Averag FO-S02-01) 7 sf 3 ft	USGS -V 2.7(5.90	0 sf 0 ft	North Ca	arolina Walker Cu	4.07 sf 5.95 ft	NCSU NC Piec	6.16 5.4
ural Pie	North Carol CSA = W =	ina Piedm 6.44	ont sf	es FWS - MD (CBF 4.57	3 cfs (Averag FO-S02-01) 7 sf 3 ft 3 ft	USGS -V 2.7(5.9(0.4	0 sf 0 ft	North Ca		4.07 sf	NCSU NC Pied	6.16 5.4 0.83
ural Pie	North Carol CSA = W = D =	ina Piedm 6.44 7.50 0.96	ont sf ft ft	5.93 es FWS - MD (CBF 4.57 7.23 0.63	3 cfs (Averag FO-S02-01) 7 sf 3 ft 3 ft	USGS -V 2.7(5.9(0.4	0 sf 0 ft 5 ft	North Ca		4.07 sf 5.95 ft 0.62 ft	NCSU NC Pied	dmont (6.16 5.41 0.83 23.80
	North Carol CSA = W = D = Q =	ina Piedm 6.44 7.50 0.96 24.94 Bankfull F	ont sf ft ft cfs Regional	es FWS - MD (CBF 4.57 7.20 0.60 21.00	Graph	USGS -V 2.70 5.90 0.44 7.74	0 sf 0 ft 5 ft 4 cfs			4.07 sf 5.95 ft 0.62 ft	NCSU NC Pied	6.16 5.4 0.83
	North Carol CSA = W = D = Q =	ina Piedm 6.44 7.50 0.96 24.94 Bankfull F	ont sf ft ft cfs Regional	es FWS - MD (CBF 4.5; 7.2; 0.6; 21.00 Curves FWS - MD (CBF	Government of the second of th	USGS -V 2.70 5.90 0.44 7.74 USGS -V	0 sf 0 ft 5 ft 4 cfs /A, MD (2005-			4.07 sf 5.95 ft 0.62 ft	NCSU NC Pied	6.1 5.4 0.8
	North Carol CSA = W = D = Q =	ina Piedm 6.44 7.50 0.96 24.94 Bankfull F arolina V& 6.2	ont sf ft ft cfs Regional	es FWS - MD (CBF 4.57 7.23 0.63 21.00 Curves FWS - MD (CBF 3.33	Government of the second of th	USGS -V 2.70 5.90 0.44 7.74 USGS -V 3.38	0 sf 0 ft 5 ft 4 cfs /A, MD (2005- 5 sf			4.07 sf 5.95 ft 0.62 ft	NCSU NC Pied	6.1 5.4 0.8
	North Carol CSA = W = D = Q = ley & Ridge North C CSA = W =	ina Piedm 6.44 7.50 0.96 24.94 Bankfull F arolina V8 6.2 9.6	ont sf ft ft cfs Regional R 2 sf 67 ft	es FWS - MD (CBF 4.57 7.23 0.63 21.00 Curves FWS - MD (CBF 3.33 6.19	GO-S02-01) Tof	USGS -V 2.70 5.90 0.44 7.74 USGS -V 3.38 5.60	0 sf 0 ft 5 ft 4 cfs //A, MD (2005- 5 sf 0 ft			4.07 sf 5.95 ft 0.62 ft	NCSU NC Pied	6.1 5.4 0.8
	North Carol	ina Piedm 6.44 7.50 0.96 24.94 Bankfull F arolina V8 6.2 9.6	ont sf ft ft cfs Regional R 2 sf 67 ft	es FWS - MD (CBF 4.57 7.23 0.63 21.00 Curves FWS - MD (CBF 3.33 6.19 0.54	Government of the state of the	USGS -V 2.70 5.90 0.44 7.74 USGS -V 3.38 5.60 0.58	0 sf 0 ft 5 ft 4 cfs //A, MD (2005- 5 sf 0 ft 9 ft			4.07 sf 5.95 ft 0.62 ft	NCSU NC Pied	6.1 5.4 0.8
	North Carol CSA = W = D = Q = ley & Ridge North C CSA = W =	ina Piedm 6.44 7.50 0.96 24.94 Bankfull F arolina V8 6.2 9.6	ont sf ft ft cfs Regional R 2 sf 67 ft	es FWS - MD (CBF 4.57 7.23 0.63 21.00 Curves FWS - MD (CBF 3.33 6.19 0.54	GO-S02-01) Tof	USGS -V 2.70 5.90 0.44 7.74 USGS -V 3.38 5.60 0.58	0 sf 0 ft 5 ft 4 cfs //A, MD (2005- 5 sf 0 ft			4.07 sf 5.95 ft 0.62 ft	NCSU NC Pied	6.1 5.4 0.8

CSA =	4.79	sf	0.00 ft (Observed Value)	4.79	sf
w =	5.53	ft	0.00 ft (Observed Value)	5.53	ft
D =	0.70	ft	0.00 ft (Observed Value)	0.70	ft
Q =	18.07	cfs	0.00 ft (Observed Value)	18.07	cfs

	Ran	kfull VELOC	CITY/DISCHAF	GF Fetimate) C		
Cita	Banner Branch BB-R3 XS1	KIUII VLLOC	III I/DIOONAI		Lawsonville	e. NC	
Site		L.		Location		-,	
Date	10/7/2019 Stream Type	E4		Valley Type	U-AL-FD		
Observers	CAT			HUC (8-digit)	03010103		
	Input Varial	oles			Output \	/ariables	
Banl	kfull Cross-section AREA	21.86	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	1.50	D _{bkf} (ft)
	Bankfull Width 14.56			Wetted PER (~2*D _{bkf} +		17.56	W _{Pbkf} (ft)
	D84 @Riffle	40.17	Dia (mm)	D84 mm/3		0.13	D84 (ft)
	Bankfull Slope	0.0052	S (ft/ft)	Hydraulic I (A _{bkf} /W	Pbkf)	1.24	R (ft)
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Rou (R(ft)/D8	34(ft))	9.44	ft/ft
	Drainage Area	0.88	DA (sqmi)	Shear Ve (u*=(g*R	•	0.46	u* (ft/sec)
	ESTIMATION MI	ETHODS		Bankfull VE	Bankfull VELOCITY		CHARGE
	Factor/Relative Roughness 66*log{R/D84}]*u*			3.81	ft/sec	83.32	CFS
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	3.55	ft/sec	77.62	CFS
2. Roughne	$R^{2/3} \times S^{1/2}/n$; n= (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		0.035 "n"calcuated		ft/sec		CFS
NOTE: Thi boundary r	s equation is for applications involuded the sequence of the s	olving steep, s					
	ess Coefficient: u=1.4895*ling's 'n' from Stream Type (Tab		input 'n' below 0.0375	3.31	ft/sec	72.45	CFS
Chezy C	C, etc.)				ft/sec		CFS
3. Other M Chezy C	ethods, i.e. Hydraulic Geometry C. etc.)	(Hey, Darcy W	eisbach,		ft/sec		CFS
	ty Equation: b) USGS Gage D	ata u=Q/A	1.5 yr Return	4.78	ft/sec	104.53	CFS
4a. Continu	uity Equation: a) Regional Curv	/es u=Q/A	Old Rural =	3.83	ft/sec	83.78	050
Return F	Period for Bankfull Discharge Q	<u> </u>	Old Urban =	14.49	ft/sec	316.72	CFS
4b. Continu	uity Equation: a) Regional Curv	/es u=Q/A	New Rural =	3.83	ft/sec	83.67	050
Return F	Period for Bankfull Discharge Q	<u> </u>	New Urban =	12.95	ft/sec	283.06	CFS
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	2.32	ft/sec	50.65	CFS

	Ran	kfull VELOC	CITY/DISCHAF	GF Fetimate)e		
Cita	Banner Branch BB-R2 XS3	KIUII VLLOC	JII I/DIOONAI		Lawsonville	e. NC	
Site				Location		-,	
Date	10/7/2019 Stream Type	E4		Valley Type	U-AL-FD		
Observers	CAT			HUC (8-digit)	03010103		
	Input Varial	oles			Output \	/ariables	
Banl	ofull Cross-section AREA	20.95	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	1.53	D _{bkf} (ft)
	Bankfull Width 13.72			Wetted PER (~2*D _{bkf} +		16.77	W _{Pbkf} (ft)
	D84 @Riffle	25.38	Dia (mm)	D84 mm/3		0.08	D84 (ft)
	Bankfull Slope	0.0073	S (ft/ft)	Hydraulic l (A _{bkf} /W	Pbkf)	1.25	R (ft)
Gra	avitational Acceleration	32.2	g (ft/sec ²)	Relative Ro	34(ft))	15.00	ft/ft
	Drainage Area	0.75	DA (sqmi)	Shear Ve (u*=(g*R	•	0.54	u* (ft/sec)
	ESTIMATION MI	ETHODS		Bankfull VELOCITY		Bankfull DISCHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			5.14	ft/sec	107.69	CFS
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	4.61	ft/sec	96.63	CFS
2. Roughne	$R^{2/3*}S^{1/2}/n$; n= (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.1		"n"calcuated		ft/sec		CFS
NOTE: This boundary r	s equation is for applications involughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s					
_	ess Coefficient: u=1.4895*ling's 'n' from Stream Type (Tab		input 'n' below 0.038	3.88	ft/sec	81.37	CFS
Chezy C	s, etc.)				ft/sec		CFS
	ethods, i.e. Hydraulic Geometry	(Hey, Darcy W	eisbach,		ft/sec		CFS
Chezy C	5, etc.)						
	ty Equation: b) USGS Gage D		1.5 yr Return	4.53	ft/sec	94.88	CFS
4a. Continι	uity Equation: a) Regional Curv	/es u=Q/A	Old Rural =	3.58	ft/sec	74.91	CFS
Return F	Period for Bankfull Discharge Q		Old Urban =	13.80	ft/sec	289.14	0.0
4b. Continu	uity Equation: a) Regional Curv	es u=Q/A	New Rural =	3.57	ft/sec	74.69	050
Return F	Period for Bankfull Discharge Q=	·	New Urban =	12.22	ft/sec	255.94	CFS
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	2.13	ft/sec	44.54	CFS

	Ran	kfull VELOC	CITY/DISCHAR	GF Fetimate) C			
Site	Banner Branch UT2 XS4	KIUII VLLOC	III I/DIOGITAL	I	Lawsonville	e. NC		
				Location		-,		
Date	10/7/2019 Stream Type	F4b		Valley Type	U-AL-FD			
Observers	CAT			HUC (8-digit)	03010103			
	Input Varial	oles			Output Variables			
Banl	kfull Cross-section AREA	4.52	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	0.38	D _{bkf} (ft)	
	Bankfull Width 11.81			Wetted PER (~2*D _{bkf} +		12.58	W _{Pbkf} (ft)	
	D84 @Riffle	53.67	Dia (mm)	D84 mm/3		0.18	D84 (ft)	
	Bankfull Slope	0.0341	S (ft/ft)	Hydraulic I (A _{bkf} /W	Pbkf)	0.36	R (ft)	
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Rou (R(ft)/D8	34(ft))	2.04	ft/ft	
	Drainage Area	0.0443	DA (sqmi)	Shear Ve (u*=(g*R	•	0.63	u* (ft/sec)	
	ESTIMATION MI	ETHODS		Bankfull VELOCITY		Bankfull DISCHARGE		
	Factor/Relative Roughness 66*log{R/D84}]*u*			2.88	ft/sec	13.02	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	2.36	ft/sec	10.65	CFS	
2. Roughne	${}^{1}R^{2/3} \times S^{1/2}/n$; n= (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		"n"calcuated		ft/sec		CFS	
NOTE: Thi boundary r	s equation is for applications invoughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s						
	ess Coefficient: u=1.4895*ling's 'n' from Stream Type (Tab		input 'n' below 0.041	3.39	ft/sec	15.33	CFS	
Chezy C	c, etc.)				ft/sec		CFS	
3. Other M Chezy C	ethods, i.e. Hydraulic Geometry	(Hey, Darcy W	eisbach,		ft/sec		CFS	
	ty Equation: b) USGS Gage D	ata u=Q/A	1.5 yr Return	3.50	ft/sec	15.81	CFS	
4a. Continu	uity Equation: a) Regional Curv	/es u=Q/A	Old Rural =	2.29	ft/sec	10.34	075	
Return F	Period for Bankfull Discharge Q	<u> </u>	Old Urban =	12.75	ft/sec	57.65	CFS	
4b. Continu	uity Equation: a) Regional Curv	/es u=Q/A	New Rural =	2.22	ft/sec	10.02	OF 0	
Return F	Period for Bankfull Discharge Q		New Urban =	9.53	ft/sec	43.06	CFS	
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	1.01	ft/sec	4.58	CFS	

	Ran	kfull VELOC	CITY/DISCHAF	GF Fetimate) C			
Cit-	Banner Branch BB-R1 XS5	KIUII VLLOC	II I/DISCIIAI		Lawsonville	e. NC		
Site				Location		-,		
Date	10/7/2019 Stream Type	B4c		Valley Type	U-AL-FD			
Observers	CAT			HUC (8-digit)	03010103			
	Input Varial	oles		Output Variables				
Banl	kfull Cross-section AREA	16.13	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	1.09	D _{bkf} (ft)	
	Bankfull Width 14.83		W _{bkf} (ft)	Wetted PER (~2*D _{bkf} +		17.01	W _{Pbkf} (ft)	
	D84 @Riffle	25.38	Dia (mm)	D84 mm/3		04.8 = 0.08		
	Bankfull Slope	0.0076	S (ft/ft)	Hydraulic I (A _{bkf} /W	Pbkf)	0.95	R (ft)	
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Rou (R(ft)/D8	34(ft))	11.39	ft/ft	
	Drainage Area	0.64	DA (sqmi)	Shear Ve (u*=(g*R	•	0.48	u* (ft/sec)	
	ESTIMATION M	ETHODS		Bankfull VELOCITY		Bankfull DIS	CHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			4.24	ft/sec	68.47	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	3.80	ft/sec	61.27	CFS	
2. Roughne	$(R^{2/3}*S^{1/2}/n; n=$ (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		0.033 "n"calcuated		ft/sec		CFS	
NOTE: This boundary r	s equation is for applications invoughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s						
	ess Coefficient: u=1.4895* ing's 'n' from Stream Type (Tab		input 'n' below 0.056	2.24	ft/sec	36.11	CFS	
Chezy C	C, etc.)				ft/sec		CFS	
	ethods, i.e. Hydraulic Geometry	(Hey, Darcy W	eisbach,		ft/sec		CFS	
Chezy C		1.5 yr Return						
	4. Continuity Equation: b) USGS Gage Data u=Q/A			5.34	ft/sec	86.14	CFS	
4a. Continuity Equation: a) Regional Curves u=Q/A			Old Rural =	4.16	ft/sec	67.04	CFS	
	Period for Bankfull Discharge Q		Old Urban =	16.38	ft/sec	264.15		
	uity Equation: a) Regional Cur		New Rural =	4.14	ft/sec	66.74	CFS	
	Period for Bankfull Discharge Q		New Urban =	14.36	ft/sec	231.61		
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	2.43	ft/sec	39.21	CFS	

	Ran	kfull VELOC	CITY/DISCHAF	PGF Fetimate	ıe			
Site	Banner Branch UT1-R2 XS6	KIGH VELOC	JII I/BIOGIIAI		Lawsonville	e. NC		
		<u>.</u>		Location		-,		
Date	10/7/2019 Stream Type	F4		Valley Type	U-AL-FD			
Observers	CAT			HUC (8-digit)	03010103			
	Input Varial	oles		Output Variables				
Banl	Bankfull Cross-section AREA 6.98			Bankfull Mea	n DEPTH	0.61	D _{bkf} (ft)	
	Bankfull Width	Bankfull Width 11.47 W_{bkf} (ft) Wetted PERIMETER (~2*D _{bkf} +W _{bkf}) 12.69		W _{Pbkf} (ft)				
	D84 @Riffle	28.09	Dia (mm)	D84 mm/3		0.09	D84 (ft)	
	Bankfull Slope	0.0157	S (ft/ft)	Hydraulic I (A _{bkf} /W	Pbkf)	0.55		
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Rou (R(ft)/D8	34(ft))	5.97	ft/ft	
	Drainage Area 0.21			Shear Ve (u*=(g*R	-	0.53	u* (ft/sec)	
	ESTIMATION MI	ETHODS		Bankfull VE	LOCITY	Bankfull DIS	CHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			3.81	ft/sec	26.58	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	3.21	ft/sec	22.43	CFS	
2. Roughne	$R^{2/3} \times S^{1/2}/n$; n= (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		"n"calcuated		ft/sec		CFS	
NOTE: Thi boundary r	s equation is for applications invoughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s						
	ess Coefficient: u=1.4895*ling's 'n' from Stream Type (Tab		input 'n' below 0.041	3.06	ft/sec	21.33	CFS	
Chezy C	c, etc.)				ft/sec		CFS	
3. Other M Chezy C	ethods, i.e. Hydraulic Geometry c, etc.)	(Hey, Darcy W	/eisbach,		ft/sec		CFS	
	ty Equation: b) USGS Gage D	ata u=Q/A	1.5 yr Return	6.17	ft/sec	43.05	CFS	
4a. Continu	4a. Continuity Equation: a) Regional Curves u=Q/A			4.40	ft/sec	30.73	050	
Return F	Period for Bankfull Discharge Q	<u> </u>	Old Urban =	20.05	ft/sec	139.95	CFS	
4b. Continu	uity Equation: a) Regional Curv	/es u=Q/A	New Rural =	4.33	ft/sec	30.25	050	
Return F	Period for Bankfull Discharge Q	<u> </u>	New Urban =	16.44	ft/sec	114.78	CFS	
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	2.29	ft/sec	16.00	CFS	

	Dow	LE.U.VELOC	NTV/DICCUAE	OF Fatimate	-			
		KTUII VELOC	ITY/DISCHAF	GE ESTIMATO		n NC		
Site	Banner Branch UT1B XS7	I		Location	Lawsonville	e, NC		
Date	10/7/2019 Stream Type	B4		Valley Type	U-AL-FD			
Observers	CAT			HUC (8-digit)	03010103			
	Input Varial	oles		Output Variables				
Banl	kfull Cross-section AREA	3.8	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	0.59	D _{bkf} (ft)	
	Bankfull Width 6		W _{bkf} (ft)	Wetted PER (~2*D _{bkf} -		7.66	W _{Pbkf} (ft)	
	D84 @Riffle	1	Dia (mm)	D84 mm/3	0.00		D84 (ft)	
	Bankfull Slope	0.0251	S (ft/ft)	Hydraulic (A _{bkf} /W	Pbkf)	_f) 0.50		
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Ro (R(ft)/D8	34(ft))	151.19	ft/ft	
	Drainage Area	0.065	DA (sqmi)	Shear Ve (u*=(g*R	•	0.63	u* (ft/sec)	
	ESTIMATION MI	ETHODS		Bankfull VELOCITY E		Bankfull DIS	CHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			9.60	ft/sec	36.49	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	7.04	ft/sec	26.76	CFS	
2. Roughne	$R^{2/3*}S^{1/2}/n$; n= (from tables ess Coefficient: u=1.4895*R g's 'n' from Jarrett (USGS): n=0.3		"n"calcuated		ft/sec		CFS	
NOTE: Thi	s equation is for applications involughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, st						
2. Roughne	ess Coefficient: u=1.4895*F	R ^{2/3} *S ^{1/2} /n	input 'n' below	3.08	ft/sec	11.71	CFS	
c) Mann	ing's 'n' from Stream Type(Tab	le 3)	0.048	0.00	14,000		0.0	
Chezy C	e, etc.)				ft/sec		CFS	
3. Other M	ethods, i.e. Hydraulic Geometry	(Hey, Darcy W	eisbach,		ft/sec		CFS	
Chezy C	;, etc.)				10300		010	
4. Continui	ty Equation: b) USGS Gage Da	ata u=Q/A	1.5 yr Return	5.34	ft/sec	20.29	CFS	
4a. Continւ	uity Equation: a) Regional Curv	res u=Q/A	Old Rural =	3.56	ft/sec	13.52	CFS	
Return F	Period for Bankfull Discharge Q=	:	Old Urban =	18.88	ft/sec	71.73	0, 0	
4b. Continu	uity Equation: a) Regional Curv	res u=Q/A	New Rural =	3.46	ft/sec	13.16	OF C	
Return F	Period for Bankfull Discharge Q=	:	New Urban =	14.43	ft/sec	54.83	CFS	
4c. Continι	uity Equation: a) Walker Curve	s u=Q/A	Rural =	1.64	ft/sec	6.23	CFS	

	-		NEW (PICCI)					
		RGE Estimate	ı	110				
Site	Banner Branch UT1A XS8			Location	Lawsonville	e, NC		
Date	10/7/2019 Stream Type			Valley Type	U-AL-FD			
Observers	CAT			HUC (8-digit)	03010103			
	Input Varial	oles			Output \	/ariables		
Banl	kfull Cross-section AREA	0.8	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	0.29	D _{bkf} (ft)	
	Bankfull Width		W _{bkf} (ft)	Wetted PER (~2*D _{bkf} +		3.32	W _{Pbkf} (ft)	
	D84 @Riffle	2	Dia (mm)	D84 mm/3	04.8 =	0.01	D84 (ft)	
	Bankfull Slope	0.0261	S (ft/ft)	Hydraulic I (A _{bkf} /W	Pbkf)	0.24		
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Rou (R(ft)/D8	34(ft))	36.77	ft/ft	
	Drainage Area	0.007	DA (sqmi)	Shear Ve (u*=(g*R	•	0.45	u* (ft/sec)	
	ESTIMATION MI	ETHODS		Bankfull VELOCITY Bank		Bankfull DIS	kfull DISCHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			5.26	ft/sec	4.21	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	4.44	ft/sec	3.55	CFS	
2. Roughne	$(R^{2/3}*S^{1/2}/n; n=$ (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		"n"calcuated		ft/sec		CFS	
NOTE: Thi boundary r	s equation is for applications invoughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s						
	ess Coefficient: u=1.4895*l ing's 'n' from Stream Type (Tab		input 'n' below 0.056	1.67	ft/sec	1.33	CFS	
	C, etc.)	<u> </u>			ft/sec		CFS	
	ethods, i.e. Hydraulic Geometry C, etc.)	, , ,	/eisbach,		ft/sec		CFS	
4. Continuity Equation: b) USGS Gage Data u=Q/A			1.5 yr Return	5.82	ft/sec	4.66	CFS	
4a. Continuity Equation: a) Regional Curves u=Q/A		Old Rural =	3.55	ft/sec	2.84	050		
, , ,			Old Urban =	25.17	ft/sec	20.14	CFS	
4b. Continu	uity Equation: a) Regional Curv	es u=Q/A	New Rural =	3.38	ft/sec	2.70		
Return F	Period for Bankfull Discharge Q		New Urban =	16.83	ft/sec	13.47	CFS	
	uity Equation: a) Walker Curve		Rural =	1.30	ft/sec	1.04	CFS	

	Ran	kfull VELOC	CITY/DISCHAR	GF Fetimate) C			
Site	Banner Branch UT1C Lower	KIUII VLLOC	III I/DIOGITAL		Lawsonville	e. NC		
		<u> </u>		Location		-,		
Date	10/10/2019 Stream Type	B4		Valley Type	U-AL-FD			
Observers	CAT			HUC (8-digit)	03010103			
	Input Varial	oles		Output Variables				
Banl	kfull Cross-section AREA	2.6	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	0.62	D _{bkf} (ft)	
	Bankfull Width 4.2 W _{bkf} (ft)		Wetted PER (~2*D _{bkf} +		5.44	W _{Pbkf} (ft)		
	D84 @Riffle	18.55	Dia (mm)	D84 mm/3	604.8 =	0.06		
	Bankfull Slope	0.0497	S (ft/ft)	Hydraulic I (A _{bkf} /W	Pbkf)	0.48		
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Rou (R(ft)/D8	34(ft))	7.86	ft/ft	
	Drainage Area 0.0247			Shear Ve (u*=(g*R	•	0.87	u* (ft/sec)	
	ESTIMATION M	ETHODS		Bankfull VELOCITY		Bankfull DIS	CHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			6.91	ft/sec	17.96	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	5.21	ft/sec	13.54	CFS	
2. Roughne	$R^{2/3} \times S^{1/2}/n$; n= (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		"n"calcuated		ft/sec		CFS	
NOTE: Thi boundary r	s equation is for applications invoughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s						
	ess Coefficient: u=1.4895* ing's 'n' from Stream Type (Tab		input 'n' below 0.059	3.44	ft/sec	8.95	CFS	
Chezy C	C, etc.)				ft/sec		CFS	
3. Other M Chezy C	ethods, i.e. Hydraulic Geometry C. etc.)	(Hey, Darcy W	eisbach,		ft/sec		CFS	
	ty Equation: b) USGS Gage D	ata u=Q/A	1.5 yr Return	4.14	ft/sec	10.77	CFS	
4a. Continu	uity Equation: a) Regional Cur	/es u=Q/A	Old Rural =	2.64	ft/sec	6.87	050	
Return F	Period for Bankfull Discharge Q	=	Old Urban =	15.89	ft/sec	41.32	CFS	
4b. Continu	uity Equation: a) Regional Cur	/es u=Q/A	New Rural =	2.55	ft/sec	6.62	CES	
	Period for Bankfull Discharge Q		New Urban =	11.46	ft/sec	29.80	CFS	
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	1.10	ft/sec	2.86	CFS	

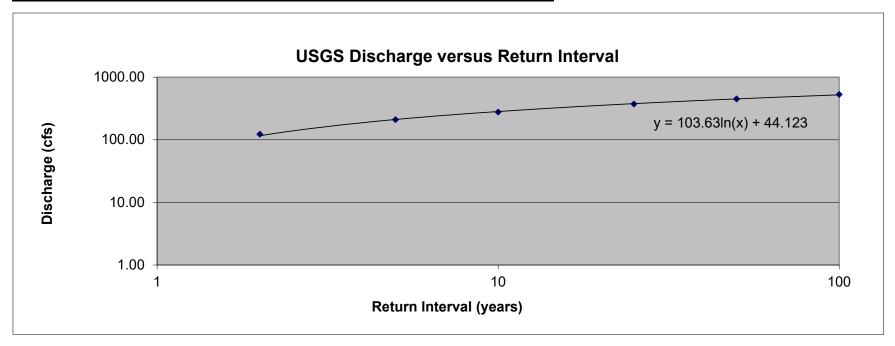
	Ran	kfull VELOC	CITY/DISCHAR	GF Fetimate) C			
Site	Banner Branch UT1C Upper	KIUII VLLOC	III I/DIOGITAL		Lawsonville	e. NC		
	1	<u> </u>		Location		-,		
Date	10/10/2019 Stream Type	B4		Valley Type	U-AL-FD			
Observers	CAT			HUC (8-digit)	03010103			
	Input Varial	oles		Output Variables				
Banl	kfull Cross-section AREA	2.5	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	0.56	D _{bkf} (ft)	
	Bankfull Width 4.5		W _{bkf} (ft)	Wetted PER (~2*D _{bkf} +		5.61	W _{Pbkf} (ft)	
	D84 @Riffle	18.55	Dia (mm)	D84 mm/3		0.06	D84 (ft)	
	Bankfull Slope	0.0497	S (ft/ft)	Hydraulic I (A _{bkf} /W	Pbkf)	0.45	R (ft)	
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Rou (R(ft)/D8	34(ft))	7.32	ft/ft	
	Drainage Area 0.0234			Shear Ve (u*=(g*R	•	0.84	u* (ft/sec)	
	ESTIMATION M	ETHODS		Bankfull VELOCITY E		Bankfull DIS	CHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			6.52	ft/sec	16.30	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	5.24	ft/sec	13.09	CFS	
2. Roughne	$(R^{2/3}*S^{1/2}/n; n=$ (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		"n"calcuated		ft/sec		CFS	
NOTE: Thi boundary r	s equation is for applications involudences, cobble-boulder doming, B2, B3, C2, and E3)	olving steep, s						
	ess Coefficient: u=1.4895* ing's 'n' from Stream Type (Tab		input 'n' below 0.059	3.28	ft/sec	8.21	CFS	
Chezy C	C, etc.)				ft/sec		CFS	
3. Other M Chezy C	ethods, i.e. Hydraulic Geometry	(Hey, Darcy W	eisbach,		ft/sec		CFS	
	ty Equation: b) USGS Gage D	ata u=Q/A	1.5 yr Return	4.16	ft/sec	10.40	CFS	
4a. Continu	uity Equation: a) Regional Cur	/es u=Q/A	Old Rural =	2.65	ft/sec	6.61	050	
Return F	Period for Bankfull Discharge Q	<u> </u>	Old Urban =	16.03	ft/sec	40.07	CFS	
4b. Continu	uity Equation: a) Regional Cur	/es u=Q/A	New Rural =	2.55	ft/sec	6.37	OF 0	
Return F	Period for Bankfull Discharge Q		New Urban =	11.52	ft/sec	28.80	CFS	
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	1.10	ft/sec	2.74	CFS	

	Ran	kfull VELOC	CITY/DISCHAR	GF Fetimate) C			
Site	Banner Branch UT1-R1 XS9	KIUII VLLOC	III I/DIOGITAL		Lawsonville	e. NC		
		<u> </u>		Location		-,		
Date	10/7/2019 Stream Type	E4b		Valley Type	C-AL-FD			
Observers	CAT			HUC (8-digit) 03010103				
	Input Varial	oles		Output Variables				
Banl	kfull Cross-section AREA	4.22	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	0.72	D _{bkf} (ft)	
	Bankfull Width 5.86		W _{bkf} (ft)	Wetted PER (~2*D _{bkf} +		7.30	W _{Pbkf} (ft)	
	D84 @Riffle	19.93	Dia (mm)	D84 mm/3	04.8 = 0.07		D84 (ft)	
	Bankfull Slope	0.0269	S (ft/ft)	Hydraulic l (A _{bkf} /W	Pbkf)	0.58	R (ft)	
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Ro	34(ft))	8.84	ft/ft	
	Drainage Area 0.0644			Shear Ve (u*=(g*R	•	0.71	u* (ft/sec)	
	ESTIMATION MI	ETHODS		Bankfull VELOCITY		Bankfull DIS	CHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			5.79	ft/sec	24.45	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	4.84	ft/sec	20.44	CFS	
2. Roughne	${}^{2}R^{2/3} \times S^{1/2}/n$; n= (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		0.035 "n"calcuated		ft/sec		CFS	
NOTE: Thi boundary r	s equation is for applications invoughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s						
	ess Coefficient: u=1.4895*ling's 'n' from Stream Type (Tab		input 'n' below 0.038	4.46	ft/sec	18.83	CFS	
Chezy C	c, etc.)				ft/sec		CFS	
3. Other M Chezy C	ethods, i.e. Hydraulic Geometry	(Hey, Darcy W	eisbach,		ft/sec		CFS	
	ty Equation: b) USGS Gage D	ata u=Q/A	1.5 yr Return	4.78	ft/sec	20.17	CFS	
4a. Continu	uity Equation: a) Regional Curv	/es u=Q/A	Old Rural =	3.18	ft/sec	13.43	050	
Return F	Period for Bankfull Discharge Q	·	Old Urban =	16.91	ft/sec	71.35	CFS	
4b. Continu	uity Equation: a) Regional Curv	/es u=Q/A	New Rural =	3.10	ft/sec	13.07	050	
Return F	Period for Bankfull Discharge Q	<u> </u>	New Urban =	12.92	ft/sec	54.51	CFS	
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	1.47	ft/sec	6.19	CFS	

			NEW PLANTS	OF F. (1)				
	1	RGE Estimate	T T	- NO				
Site	Banner Branch UT4-R2 XS10			Location	Lawsonville	e, NC		
Date	10/7/2019 Stream Type			Valley Type				
Observers	CAT			HUC (8-digit)	03010103			
	Input Varial	oles		Output Variables				
Banl	kfull Cross-section AREA	10.73	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	1.01	D _{bkf} (ft)	
	Bankfull Width	10.63	$W_{bkf} (ft) \qquad Wetted PERIMETER \\ (\sim 2*D_{bkf} + W_{bkf}) \qquad 12.65$		12.65	W _{Pbkf} (ft)		
	D84 @Riffle	0.22	Dia (mm)	D84 mm/3	04.8 =	Cadius 0.85		
	Bankfull Slope	0.0098	S (ft/ft)	Hydraulic I (A _{bkf} /W	Pbkf)			
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Ro	34(ft))	1175.28	ft/ft	
	Drainage Area	0.35	DA (sqmi)	Shear Ve (u*=(g*R	-	0.52	u* (ft/sec)	
	ESTIMATION MI	ETHODS		Bankfull VELOCITY E		Bankfull DIS	CHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			10.45	ft/sec	112.18	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	5.75	ft/sec	61.64	CFS	
2. Roughne	$(R^{2/3}*S^{1/2}/n; n=$ (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.3		0.023 "n"calcuated		ft/sec		CFS	
NOTE: Thi boundary r	s equation is for applications invoughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s						
_	ess Coefficient: u=1.4895*ling's 'n' from Stream Type (Tab		input 'n' below 0.046	2.87	ft/sec	30.82	CFS	
	c, etc.)	,			ft/sec		CFS	
	ethods, i.e. Hydraulic Geometry , etc.)	, , ,	/eisbach,		ft/sec		CFS	
4. Continuity Equation: b) USGS Gage Data u=Q/A			1.5 yr Return	5.53	ft/sec	59.34	CFS	
4a. Continu	4a. Continuity Equation: a) Regional Curves u=Q/A		Old Rural =	4.09	ft/sec	43.94	050	
, , ,		Old Urban =	17.45	ft/sec	187.26	CFS		
4b. Continu	uity Equation: a) Regional Curv	res u=Q/A	New Rural =	4.05	ft/sec	43.48		
Return F	Period for Bankfull Discharge Q		New Urban =	14.76	ft/sec	158.35	CFS	
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	2.25	ft/sec	24.13	CFS	

	Ran	kfull VELOC	CITY/DISCHAR	GF Estimate) C			
Site	Banner Branch UT4-R1 XS11	KIUII VLLOC	III I/DIOGITAL		Lawsonville	e. NC		
		<u> </u>		Location		-,		
Date	10/7/2019 Stream Type	B4c		Valley Type	U-AL-FD			
Observers	CAT			HUC (8-digit)	03010103			
	Input Varial	oles		Output Variables				
Banl	kfull Cross-section AREA	8.22	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	0.83	D _{bkf} (ft)	
	Bankfull Width 9.86 W_{bkf} (ft) Wetted PERIME (~2*D _{bkf} +W _b			11.53	W _{Pbkf} (ft)			
	D84 @Riffle	37.95	Dia (mm)	D84 mm/3	604.8 =	0.12	D84 (ft)	
	Bankfull Slope	0.0181	S (ft/ft)	Hydraulic l (A _{bkf} /W	Pbkf)	0.71		
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Ro	34(ft))	5.73	ft/ft	
	Drainage Area 0.16			Shear Ve (u*=(g*R	•	0.64	u* (ft/sec)	
	ESTIMATION MI	ETHODS		Bankfull VELOCITY		Bankfull DIS	CHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			4.59	ft/sec	37.73	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	4.00	ft/sec	32.87	CFS	
2. Roughne	$R^{2/3} \times S^{1/2}/n$; n= (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		"n"calcuated		ft/sec		CFS	
NOTE: Thi boundary r	s equation is for applications invoughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s						
	ess Coefficient: u=1.4895*ling's 'n' from Stream Type (Tab		input 'n' below 0.057	2.81	ft/sec	23.07	CFS	
Chezy C	C, etc.)				ft/sec		CFS	
3. Other M Chezy C	ethods, i.e. Hydraulic Geometry	(Hey, Darcy W	eisbach,		ft/sec		CFS	
			<u> </u>					
4. Continuity Equation: b) USGS Gage Data u=Q/A			1.5 yr Return	4.41	ft/sec	36.22	CFS	
4a. Continuity Equation: a) Regional Curves u=Q/A Return Period for Bankfull Discharge Q=			Old Urban =	3.09	ft/sec	25.40	CFS	
	uity Equation: a) Regional Cur		Old Urban = New Rural =	14.58 3.03	ft/sec ft/sec	119.86 24.94		
	Period for Bankfull Discharge Q		New Urban =	11.76	ft/sec	96.71	CFS	
	uity Equation: a) Walker Curve		Rural =	1.56	ft/sec	12.86	CFS	

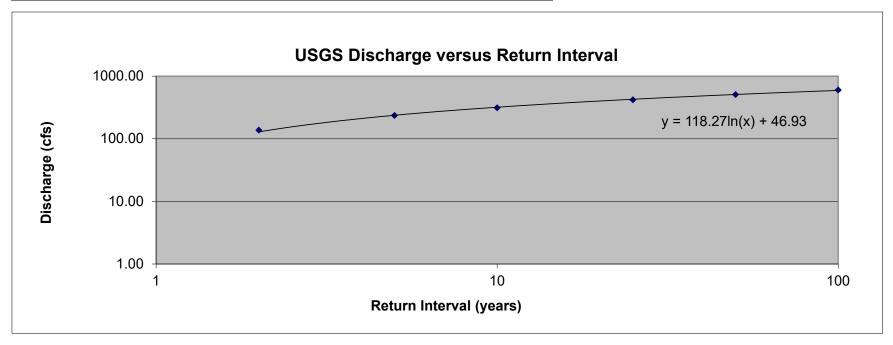
		RGE Estimate	ı					
Site	Banner Branch UT4-R1 XS12	1		Location	Lawsonville	e, NC		
Date	10/7/2019 Stream Type	F4		Valley Type	U-AL-FD			
Observers	CAT			HUC (8-digit)	03010103			
	Input Varial	oles		Output Variables				
Ban	kfull Cross-section AREA	8.3	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	0.68	D _{bkf} (ft)	
	Bankfull Width		W _{bkf} (ft)	Wetted PER (~2*D _{bkf} +		13.53	W _{Pbkf} (ft)	
	D84 @Riffle	10.98	Dia (mm)	D84 mm/3	04.8 = 0.04		D84 (ft)	
	Bankfull Slope	0.0181	S (ft/ft)	Hydraulic I (A _{bkf} /W	Pbkf)	0.61		
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Rou (R(ft)/D8	34(ft))	17.04	ft/ft	
	Drainage Area	0.24	DA (sqmi)	Shear Ve (u*=(g*R	•	0.60	u* (ft/sec)	
	ESTIMATION M	ETHODS		Bankfull VELOCITY Bankfu		Bankfull DIS	II DISCHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			5.86	ft/sec	48.64	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	4.82	ft/sec	40.04	CFS	
2. Roughn	${}^{\circ}R^{2/3} \times S^{1/2}/n$; n= (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		0.03 "n"calcuated		ft/sec		CFS	
NOTE: Thi boundary r	s equation is for applications invoughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s						
	ess Coefficient: u=1.4895* ing's 'n' from Stream Type (Tab		input 'n' below	3.53	ft/sec	29.30	CFS	
	C, etc.)				ft/sec		CFS	
	ethods, i.e. Hydraulic Geometry C, etc.)		/eisbach,		ft/sec		CFS	
4. Continuity Equation: b) USGS Gage Data u=Q/A			1.5 yr Return	5.64	ft/sec	46.84	CFS	
4a. Continu	4a. Continuity Equation: a) Regional Curves u=Q/A		Old Rural =	4.06	ft/sec	33.74	050	
Return Period for Bankfull Discharge Q=			Old Urban =	18.20	ft/sec	151.02	CFS	
4b. Continu	uity Equation: a) Regional Cur	/es u=Q/A	New Rural =	4.01	ft/sec	33.26		
Return F	Period for Bankfull Discharge Q	=	New Urban =	15.04	ft/sec	124.85	CFS	
	uity Equation: a) Walker Curve		Rural =	2.15	ft/sec	17.82	CFS	


	Ran	kfull VELOC	CITY/DISCHAF	GF Fetimate	ne .		
Site	Banner Branch UT2A	KIUII VLLOC	JII I/DIOONAI	1	Lawsonville	e. NC	
				Location		-,	
Date	10/7/2019 Stream Type	E5b		Valley Type	U-AL-FD		
Observers	CAT			HUC (8-digit) 03010103			
	Input Varial	oles			Output \	/ariables	
Banl	kfull Cross-section AREA	0.7	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	0.17	D _{bkf} (ft)
	Bankfull Width 4.04		W _{bkf} (ft)	Wetted PER (~2*D _{bkf} +		4.39	W _{Pbkf} (ft)
	D84 @Riffle	1	Dia (mm)	D84 mm/3	304.8 = 0.00		D84 (ft)
	Bankfull Slope	0.0455	S (ft/ft)	Hydraulic l (A _{bkf} /W	Pbkf)	0.16	R (ft)
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Ro	34(ft))	48.64	ft/ft
	Drainage Area 0.0049		DA (sqmi)	Shear Ve (u*=(g*R	-	0.48	u* (ft/sec)
	ESTIMATION M	ETHODS		Bankfull VELOCITY		Bankfull DIS	CHARGE
	Factor/Relative Roughness 66*log{R/D84}]*u*			5.99	ft/sec	4.19	CFS
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	4.25	ft/sec	2.97	CFS
2. Roughne	$(R^{2/3}*S^{1/2}/n; n=$ (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		"n"calcuated		ft/sec		CFS
NOTE: Thi boundary r	s equation is for applications invoughness, cobble-boulder domi , B2, B3, C2, and E3)	olving steep, s					
	ess Coefficient: u=1.4895* ing's 'n' from Stream Type (Tab		input 'n' below 0.047	1.99	ft/sec	1.39	CFS
Chezy C	c, etc.)				ft/sec		CFS
3. Other M Chezy C	ethods, i.e. Hydraulic Geometry	(Hey, Darcy W	/eisbach,		ft/sec		CFS
	ty Equation: b) USGS Gage D	ata u=Q/A	1.5 yr Return	5.24	ft/sec	3.67	CFS
4a. Continu	4a. Continuity Equation: a) Regional Curves u=Q/A			3.16	ft/sec	2.21	050
Return F	Period for Bankfull Discharge Q	=	Old Urban =	23.48	ft/sec	16.43	CFS
4b. Continu	uity Equation: a) Regional Cur	/es u=Q/A	New Rural =	3.00	ft/sec	2.10	OF C
Return F	Period for Bankfull Discharge Q	<u> </u>	New Urban =	15.37	ft/sec	10.76	CFS
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	1.11	ft/sec	0.78	CFS

	_							
		RGE Estimate	1					
Site	Banner Branch UT3	1		Location	Lawsonville	e, NC		
Date	10/7/2019 Stream Type	E5		Valley Type	U-AL-FD			
Observers	CAT			HUC (8-digit)	03010103			
	Input Varia	oles			Output \	/ariables		
Banl	kfull Cross-section AREA	6.2	A _{bkf} (sqft)	Bankfull Mea	n DEPTH	1.11	D _{bkf} (ft)	
	Bankfull Width 5.6		W _{bkf} (ft)	Wetted PER (~2*D _{bkf} +		7.81	W _{Pbkf} (ft)	
	D84 @Riffle	2.9	Dia (mm)	D84 mm/3	04.8 =	0.01	D84 (ft)	
	Bankfull Slope	0.0105	S (ft/ft)	Hydraulic I (A _{bkf} /W	0.79		R (ft)	
Gr	avitational Acceleration	32.2	g (ft/sec ²)	Relative Rou (R(ft)/D8	34(ft))	83.39	ft/ft	
	Drainage Area	0.1187	DA (sqmi)	Shear Ve (u*=(g*R	-	0.52	u* (ft/sec)	
	ESTIMATION M	ETHODS		Bankfull VELOCITY Bankf		Bankfull DIS	ull DISCHARGE	
	Factor/Relative Roughness 66*log{R/D84}]*u*			7.10	ft/sec	44.00	CFS	
2. Roughne factor/relat	ess Coefficient: a) Manning's 'n' ive roughness.		input 'n' below	5.95	ft/sec	36.86	CFS	
2. Roughne	$R^{2/3} \times S^{1/2}/n$; n= (from tables ess Coefficient: u=1.4895*R y's 'n' from Jarrett (USGS): n=0.		"n"calcuated		ft/sec		CFS	
NOTE: Thi boundary r	s equation is for applications involuded the coupling services of the coupling services (Section 1997). The coupling services (Section 1997) is a service service service services (Section 1997) in the coupling services (Section 1997) in the coupl	olving steep, s						
_	ess Coefficient: u=1.4895* ing's 'n' from Stream Type (Tak		input 'n' below 0.047	2.78	ft/sec	17.26	CFS	
	c, etc.)				ft/sec		CFS	
	ethods, i.e. Hydraulic Geometry c, etc.)	, , ,	/eisbach,		ft/sec		CFS	
4. Continuity Equation: b) USGS Gage Data u=Q/A			1.5 yr Return	4.83	ft/sec	29.93	CFS	
4a. Continu	uity Equation: a) Regional Cur	/es u=Q/A	Old Rural =	3.32	ft/sec	20.61	050	
Return Period for Bankfull Discharge Q=			Old Urban =	16.31	ft/sec	101.10	CFS	
4b. Continu	uity Equation: a) Regional Cur	/es u=Q/A	New Rural =	3.25	ft/sec	20.18		
Return F	Period for Bankfull Discharge Q		New Urban =	12.92	ft/sec	80.12	CFS	
4c. Continu	uity Equation: a) Walker Curve	s u=Q/A	Rural =	1.63	ft/sec	10.12	CFS	

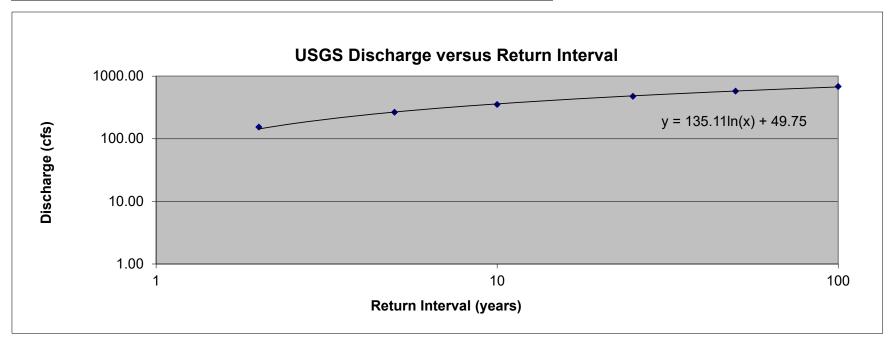
Site Description: Banner Branch BB-R1 XS5

Drainage Area = 0.64 mi²


Retun Interval	Discharge	Notes
1	44.12	extrapolated. Need to use equation generated below.
1.2	63.02	extrapolated. Need to use equation generated below.
1.5	86.14	extrapolated. Need to use equation generated below.
2	122.75	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	209.47	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	277.33	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	371.32	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	448.23	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	529.14	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

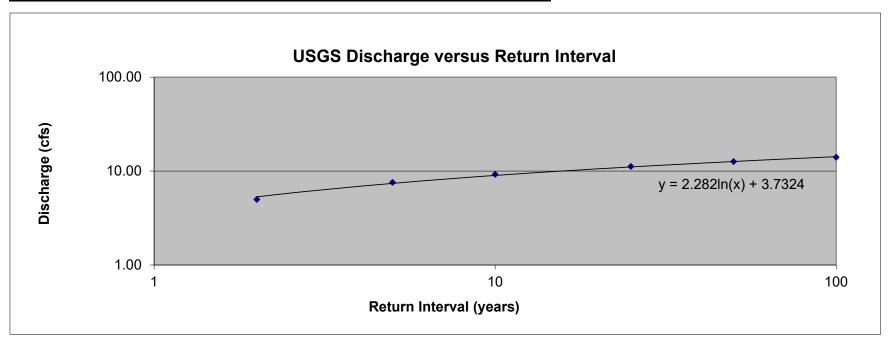
Site Description: Banner Branch BB-R2 XS3

Drainage Area = 0.75 mi²


Retun Interval	Discharge	Notes
1	46.93	extrapolated. Need to use equation generated below.
1.2	68.49	extrapolated. Need to use equation generated below.
1.5	94.88	extrapolated. Need to use equation generated below.
2	137.36	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	235.37	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	312.54	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	419.90	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	508.09	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	601.09	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

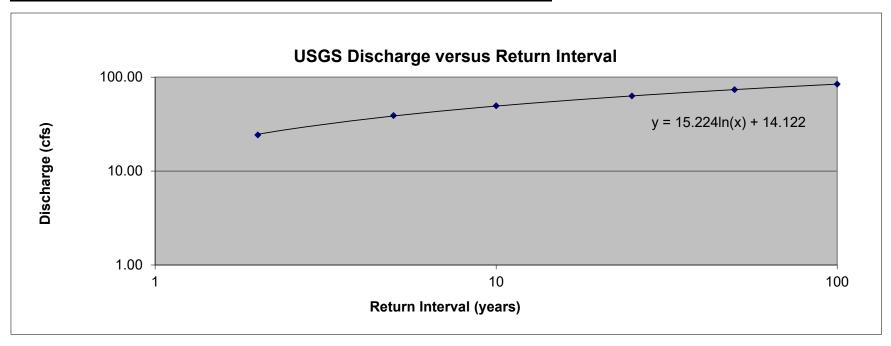
Site Description: Banner Branch BB-R3 XS1

Drainage Area = 0.88 mi²

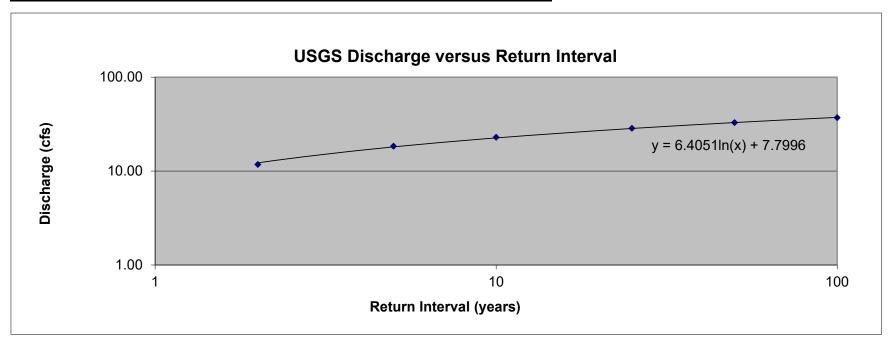

Retun Interval	Discharge	Notes
1	49.75	extrapolated. Need to use equation generated below.
1.2	74.38	extrapolated. Need to use equation generated below.
1.5	104.53	extrapolated. Need to use equation generated below.
2	153.84	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	264.72	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	352.55	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	475.30	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50		USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	683.50	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

Site Description: Banner Branch UT1A XS8

Drainage Area = 0.007 mi²

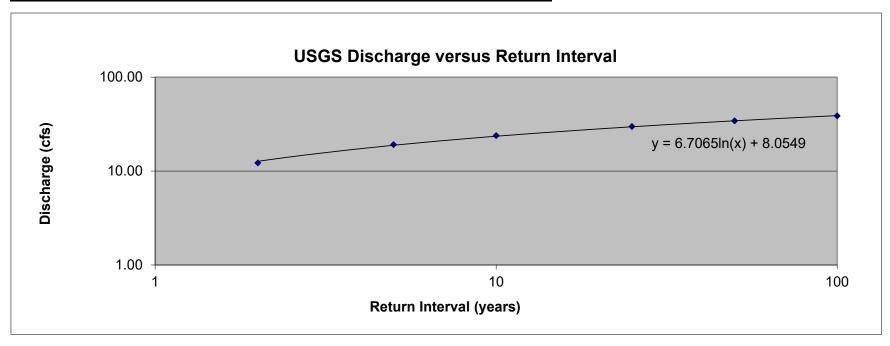

Retun Interval	Discharge	Notes
1	3.73	extrapolated. Need to use equation generated below.
1.2	4.15	extrapolated. Need to use equation generated below.
1.5	4.66	extrapolated. Need to use equation generated below.
2	5.00	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	7.58	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	9.23	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	11.21	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	12.64	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	14.04	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

Site Description: Banner Branch UT1B XS7


Drainage Area = 0.065 mi²

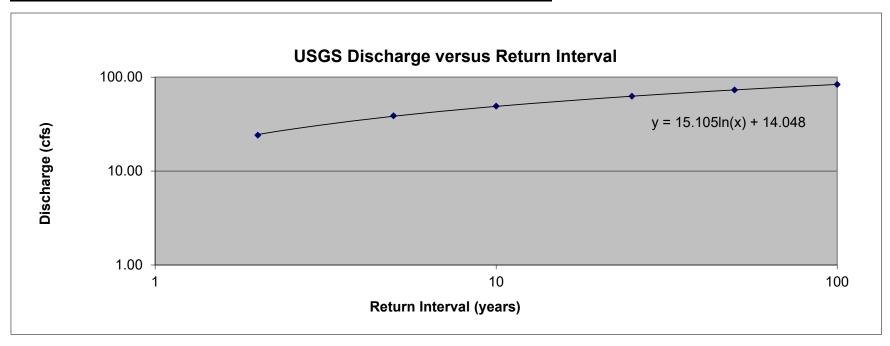
Retun Interval	Discharge	Notes
1	14.12	extrapolated. Need to use equation generated below.
1.2	16.90	extrapolated. Need to use equation generated below.
1.5	20.29	extrapolated. Need to use equation generated below.
2	24.26	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	38.99	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	49.48	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	63.06	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	73.54	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	84.17	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

Site Description: Banner Branch UT1C Upper Drainage Area = 0.0234 mi²


Retun Interval	Discharge	Notes
1	7.80	extrapolated. Need to use equation generated below.
1.2	8.97	extrapolated. Need to use equation generated below.
1.5	10.40	extrapolated. Need to use equation generated below.
2	11.76	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	18.40	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	22.91	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	28.56	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	32.80	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	37.03	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

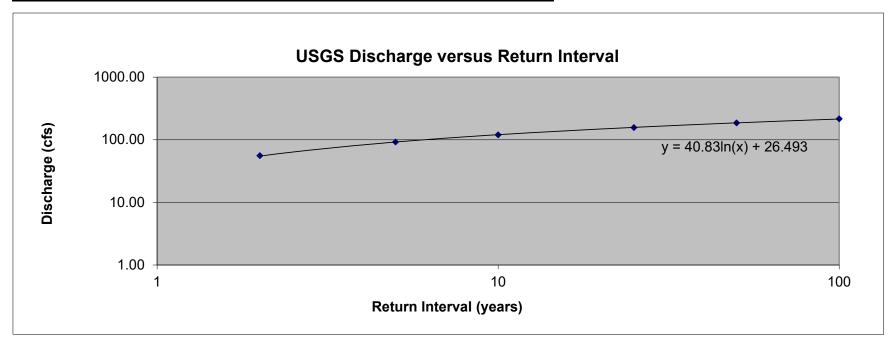
Site Description: Banner Branch UT1C Lower

Drainage Area = 0.0247 mi²


Retun Interval	Discharge	Notes
1	8.05	extrapolated. Need to use equation generated below.
1.2	9.28	extrapolated. Need to use equation generated below.
1.5	10.77	extrapolated. Need to use equation generated below.
2	12.22	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	19.15	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	23.87	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	29.79	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50		USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	38.67	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

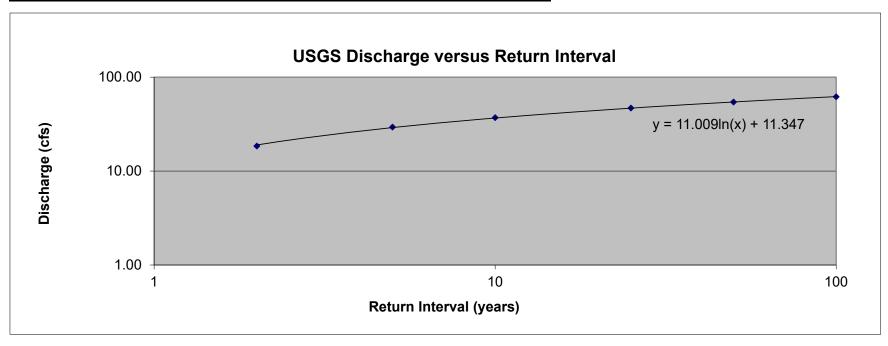
Site Description: Banner Branch UT1-R1 XS9

Drainage Area = 0.0644 mi²

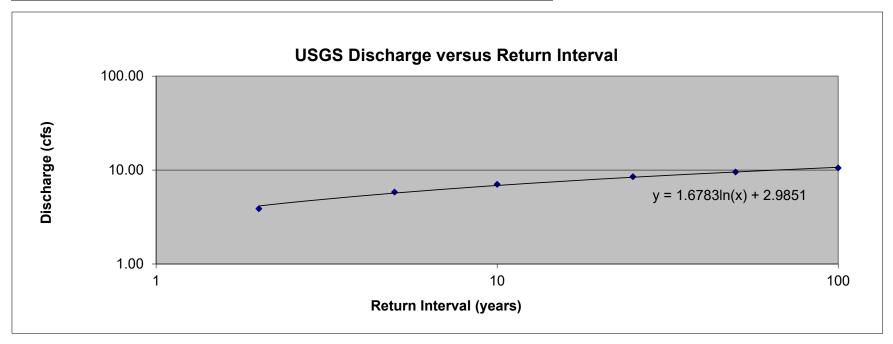

Retun Interval	Discharge	Notes
1	14.05	extrapolated. Need to use equation generated below.
1.2	16.80	extrapolated. Need to use equation generated below.
1.5	20.17	extrapolated. Need to use equation generated below.
2	24.10	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	38.73	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	49.14	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	62.61	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	73.00	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	83.55	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

Site Description: Banner Branch UT1-R2 XS6

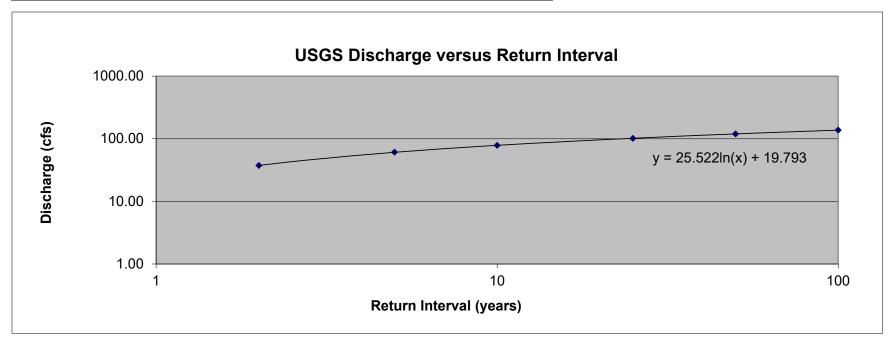
Drainage Area = 0.21 mi²


Retun Interval	Discharge	Notes
1	26.49	extrapolated. Need to use equation generated below.
1.2	33.94	extrapolated. Need to use equation generated below.
1.5	43.05	extrapolated. Need to use equation generated below.
2	55.71	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	92.33	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	119.75	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	156.53	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	185.79	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	216.05	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

Site Description: Banner Branch UT2 XS4

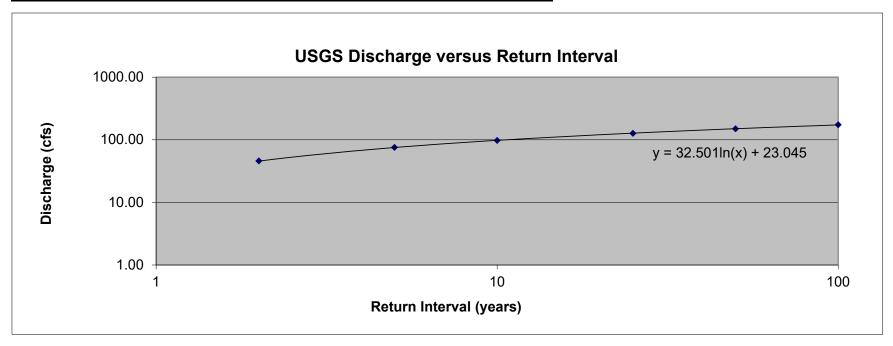

Drainage Area = 0.0443 mi²

Retun Interval	Discharge	Notes
1	11.35	extrapolated. Need to use equation generated below.
1.2		extrapolated. Need to use equation generated below.
1.5	15.81	extrapolated. Need to use equation generated below.
2	18.49	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	29.41	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	37.07	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	46.85	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	54.32	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	61.85	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)


Site Description: Banner Branch UT2A Drainage Area = 0.0049 mi²

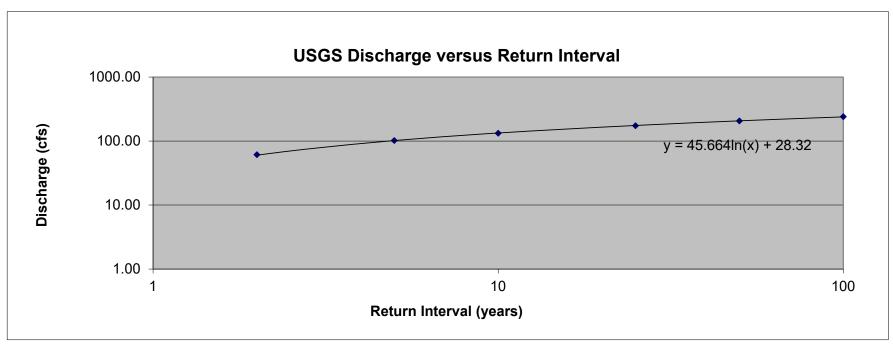
Retun Interval	Discharge	Notes
1	2.99	extrapolated. Need to use equation generated below.
1.2	3.29	extrapolated. Need to use equation generated below.
1.5	3.67	extrapolated. Need to use equation generated below.
2	3.88	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	5.83	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	7.05	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	8.50	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	9.53	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	10.54	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

Site Description: Banner Branch UT3
Drainage Area = 0.12 mi²


Retun Interval	Discharge	Notes
1	19.79	extrapolated. Need to use equation generated below.
1.2	24.45	extrapolated. Need to use equation generated below.
1.5	30.14	extrapolated. Need to use equation generated below.
2	37.47	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	61.19	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	78.55	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	101.43	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	119.39	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	137.79	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

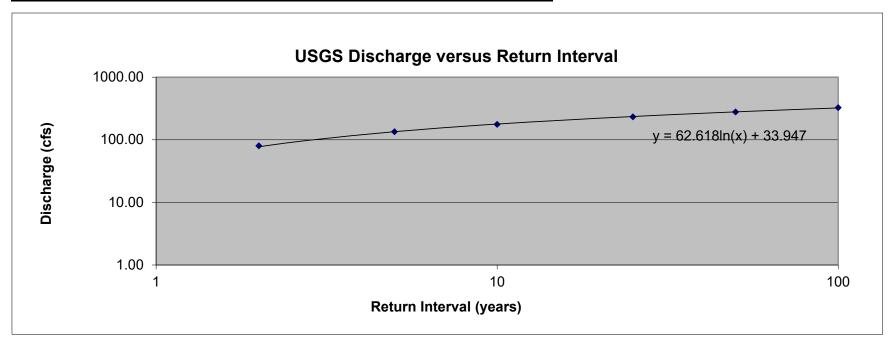
Site Description: Banner Branch UT4-R1 XS11

Drainage Area = 0.16 mi²


Retun Interval	Discharge	Notes
1	23.05	extrapolated. Need to use equation generated below.
1.2	28.97	extrapolated. Need to use equation generated below.
1.5	36.22	extrapolated. Need to use equation generated below.
2	45.94	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	75.60	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	97.56	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	126.78	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	149.86	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	173.63	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

Site Description: Banner Branch UT4-R1 XS12

Drainage Area = 0.24 mi²


Retun Interval	Discharge	Notes
1	28.32	extrapolated. Need to use equation generated below.
1.2	36.65	extrapolated. Need to use equation generated below.
1.5		extrapolated. Need to use equation generated below.
2	61.24	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	101.86	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	132.43	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	173.60	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	206.47	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	240.53	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

Site Description: Banner Branch UT4-R2 XS10

Drainage Area = 0.35 mi²

Retun Interval	Discharge	Notes
1	33.95	extrapolated. Need to use equation generated below.
1.2	45.36	extrapolated. Need to use equation generated below.
1.5	59.34	extrapolated. Need to use equation generated below.
2	80.02	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
5	134.41	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
10	175.98	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
25	232.57	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
50	278.20	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)
100	325.75	USGS regional regression, 2011 (small streams, HR1, ≤3 sq. mi.)

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F
Restoration Potential	Level 3 - Geomorphology

CATCHMENT ASSESSMENT						
	Categories		Description of Catchment Condition		Rating	
	Categories	Poor	Good	(P/F/G		
1	Concentrated Flow (Hydrology)	Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources		F	
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%	G	
3	Land Use Change (Hydrology)	Rapidly urbanizing/urban	Single family homes/suburban	Rural communities/slow growth or primarily forested	G	
4	Distance to Roads (Hydrology)	Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans	No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.	No roads in or adjacent to project reach. No proposed roads in 10 year DOT plans.	G	
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%	F	
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width	F	
7	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff	Moderate sediment supply from upstream bank erosion and surface runoff	Low sediment supply. Upstream bank erosion and surface runoff is minimal		
		On, upstream, or downstream of 303(d) and no TMDL/WS Mgmt plan to address deficiencies	On, upstream, or downstream of 303(d) and TMDL/WS Mgmt plan addressing deficiencies	Not on 303(d) list	G	
9 Agricultural Land Use (Physicochemical)		Livestock access to stream and/or intensive cropland immediately upstream of project reach.	Livestock access to stream and/or intensive cropland upstream of project reach. A sufficient reach of stream is between Ag. land use and project reach.	There is little to no agricultural land uses or the livestock or cropland is far enough away from project reach to cause no impact to water quality or biology.	Р	
10	NPDES Permits (Physicochemical)	Many NPDES permits within catchment or some within one mile of project reach	A few NPDES permits within catchment and none within one mile of project reach	No NPDES permits within catchment and none within one mile of project reach	G	
11	Specific Conductance (uS/cm at 25oC) (Physicochemical)	Piedmont = >229; Blue Ridge = >66	Piedmont = 78-229; Blue Ridge = 41-66	Piedmont = <78; Blue Ridge = <41	-	
12	Watershed impoundments (Biology)	Impoundment(s) located within 1 mile upstream or downstream of project area and/or has a negative effect on project area and fish passage	No impoundment within 1 mile upstream or downstream of project area OR impoundment does not adversely affect project area but a blockage could exist outside of 1 mile and impact fish passage	No impoundment upstream or downstream of project area OR impoundment provides beneficial effect on project area and allows for fish passage	G	
13	Organism Recruitment (Biology)	Channel immediately upstream or downstream of project reach is concrete, piped, or hardened.	Channel immediately upstream or downstream of project reach has native bed and bank material, but is impaired.	Channel immediately upstream or downstream of project reach has native bed and bank material.	G	
	Percent of Catchment being Enhanced or Restored	Less than 40% of the total catchment area is draining to the project reach.	40 to 60% of the total catchment area is draining to the project reach.	Greater than 60% of the total catchment area is draining to the project reach.	G	
5	Other					

Site Information and				
Performance Standard Stratification				
Project Name: Banner Branch				
Reach ID:	BB-R1			
Restoration Potential:	Level 3 - Geomorphology			
Existing Stream Type:	Bc			
Proposed Stream Type:	С			
Region:	Piedmont			
Drainage Area (sqmi):	0.64			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	935			
Proposed Stream Length (ft):	810			
Stream Slope (%):	1			
Flow Type:	Perennial			
River Basin:	Roanoke			
Stream Temperature:	Warmwater			
Data Collection Season:	Fall			
Valley Type:	Unconfined Alluvial			

Notes
1. Users input values that are highlighted based on restoration potential
2. Users select values from a pull-down menu
Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY					
Exisiting Condition Score (ECS)	0.24				
Proposed Condition Score (PCS)	0.42				
Change in Functional Condition (PCS - ECS)	0.18				
Percent Condition Change	75%				
Existing Stream Length (ft)	935				
Proposed Stream Length (ft)	810				
Additional Stream Length (ft)	-125				
Existing Functional Foot Score (FFS)	224				
Proposed Functional Foot Score (FFS)	340				
Proposed FFS - Existing FFS	116				
Functional Change (%)	52%				

BMP FUNCTIONAL CHANGE SUMMARY				
Existing BMP Functional Feet Score (FFS) 0				
Proposed BMP Functional Feet Score (FFS)	0			
Proposed BMP FFS - Existing BMP FFS	0			
Functional Change (%)				

FUNCTIONAL FEET (FF) SUMMARY					
Existing Stream FFS + Existing BMP FFS 224					
Proposed Stream FFS + Proposed BMP FFS	340				
Total Proposed FFS - Total Existing FFS	116				
Functional Change (%)	52%				

FUNCTION BASED PARAMETERS SUMMARY						
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter			
Hydrology	Catchment Hydrology	0.45	0.45			
Trydrology	Reach Runoff	0.45	0.45			
Hydraulics	Floodplain Connectivity	0.28	0.75			
	Large Woody Debris					
	Lateral Stability	0.30	1.00			
Geomorphology	Riparian Vegetation	0.14	0.57			
Geomorphology	Bed Material	0.65	1.00			
	Bed Form Diversity	0.15	1.00			
	Plan Form	1.00	1.00			
	Temperature					
	Bacteria					
Physicochemical	Organic Matter					
	Nitrogen					
	Phosphorus					
Biology	Macros					
Biology	Fish					

FUNCTIONAL CATEGORY REPORT CARD						
Functional Category	ECS	PCS	Functional Change			
Hydrology	0.45	0.45	0.00			
Hydraulics	0.28	0.75	0.47			
Geomorphology	0.45	0.91	0.46			
Physicochemical						
Biology						

EXISTING CONDITION ASSESSMENT				Roll Up Scoring					
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
Hydrology	Catchment Hydrology	Curve Number	65	0.45	0.45				
		Curve Number	65	0.45		0.45	Functioning At Risk		
	Reach Runoff	Concentrated Flow Points			0.45	0.45	Turictioning Activisk		
		Soil Compaction							
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.3	0.56	0.28	0.28	Not Functioning		
Trydrudites	11000piani connectivity	Entrenchment Ratio	1.8	0	0.20	0.20	TTOT I directioning		
	Large Woody Debris	LWD Index							
	targe woody bears	# Pieces							
		Erosion Rate (ft/yr)							
	Lateral Stability	Dominant BEHI/NBS	M/H	0.3	0.30				
		Percent Streambank Erosion (%)							
		Left Canopy Coverage (%)							
		Right Canopy Coverage (%)							
		Left Buffer Width (ft)	20	0.13		0.45	Functioning At Risk	0.24	
	Riparian Vegetation	Right Buffer Width (ft)	10	0.03	0.14				
Geomorphology		Left Basal Area (sq.ft/acre)			0.14				
		Right Basal Area (sq.ft/acre)							Not Functioning
		Left Stem Density (stems/acre)	100	0.19					
		Right Stem Density (stems/acre)	100	0.19		4			
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.1	0.65	0.65				
		Pool Spacing Ratio							
	Bed Form Diversity	Pool Depth Ratio	1.1	0	0.15				
		Percent Riffle	80	0.3					
		Aggradation Ratio							
	Plan Form	Sinuosity	1.3	1	1.00				
	Temperature	Summer Daily Maximum (°F)							
	Bacteria	Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate							
,	- 0	Percent Shredders							
	Nitrogen	Total Nitrogen (mg/L)							
	Phosphorus	Total Phosphorus (mg/L)							
	Macros	Biotic Index							
Biology		EPT Taxa Present							
	Fish	North Carolina Index of Biotic Integrity							

	PROPOSED COM	IDITION ASSESSMENT					Roll Up Scoring		
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
	Catchment Hydrology	Curve Number	65	0.45	0.45			•	
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk		
	Reach Runoff	Concentrated Flow Points			0.45	0.45	T directoring the misk		
		Soil Compaction							
Hvdraulics	Floodplain Connectivity	Bank Height Ratio	1	1	0.75	0.75	Functioning		
-,	,	Entrenchment Ratio	2.2	0.5		*			
	Large Woody Debris	LWD Index							
	0	# Pieces							
		Erosion Rate (ft/yr)							
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00				
		Percent Streambank Erosion (%)							
		Left Canopy Coverage (%)	100	1					
		Right Canopy Coverage (%)	100	1			4 .		
		Left Buffer Width (ft)	30	0.3				4	
	Riparian Vegetation	Right Buffer Width (ft)	30	0.3	0.57				
Geomorphology	Riparian Vegetation	Left Basal Area (sq.ft/acre)			0.57	0.91	Functioning		
		Right Basal Area (sq.ft/acre)						0.42	Functioning At F
		Left Stem Density (stems/acre)	210	0.4				0.42	runctioning At K
		Right Stem Density (stems/acre)	210	0.4			4		
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00				
		Pool Spacing Ratio							
	Bed Form Diversity	Pool Depth Ratio	1.8	1	1.00				
	bed Form Diversity	Percent Riffle	70	1	1.00				
		Aggradation Ratio							
	Plan Form	Sinuosity	1.2	1	1.00				
	Temperature	Summer Daily Maximum (°F)							
	Bacteria	Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate							
- injunction in the second	organic carbon	Percent Shredders							
	Nitrogen	Total Nitrogen (mg/L)							
	Phosphorus	Total Phosphorus (mg/L)							
	Macros	Biotic Index							
Biology		EPT Taxa Present							
	Fish	North Carolina Index of Biotic Integrity							

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F
Restoration Potential	Level 3 - Geomorphology

CATCHMENT ASSESSMENT									
	Categories		Description of Catchment Condition		Rating (P/F/G)				
	Categories	Poor	Fair	Good					
1	Concentrated Flow (Hydrology)	Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources	No potential for concentrated flow/impairments from adjacent land use	F				
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%	G				
3	Land Use Change (Hydrology)	Rapidly urbanizing/urban	Single family homes/suburban	Rural communities/slow growth or primarily forested	G				
4	Distance to Roads (Hydrology)	Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans	No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.	No roads in or adjacent to project reach. No proposed roads in 10 year DOT plans.	G				
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%	F				
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width	F				
7	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff	Moderate sediment supply from upstream bank erosion and surface runoff	Low sediment supply. Upstream bank erosion and surface runoff is minimal	F				
8	Located on or downstream of a 303(d) listed stream TMDL list (Physicochemical)	On, upstream, or downstream of 303(d) and no TMDL/WS Mgmt plan to address deficiencies	On, upstream, or downstream of 303(d) and TMDL/WS Mgmt plan addressing deficiencies	Not on 303(d) list	G				
9	Agricultural Land Use (Physicochemical)	Livestock access to stream and/or intensive cropland immediately upstream of project reach.	Livestock access to stream and/or intensive cropland upstream of project reach. A sufficient reach of stream is between Ag. land use and project reach.	There is little to no agricultural land uses or the livestock or cropland is far enough away from project reach to cause no impact to water quality or biology.	Р				
10	NPDES Permits (Physicochemical)	Many NPDES permits within catchment or some within one mile of project reach	A few NPDES permits within catchment and none within one mile of project reach	No NPDES permits within catchment and none within one mile of project reach	G				
11	Specific Conductance (uS/cm at 25oC) (Physicochemical)	Piedmont = >229; Blue Ridge = >66	Piedmont = 78-229; Blue Ridge = 41-66	Piedmont = <78; Blue Ridge = <41	-				
12	Watershed impoundments (Biology)	Impoundment(s) located within 1 mile upstream or downstream of project area and/or has a negative effect on project area and fish passage	No impoundment within 1 mile upstream or downstream of project area OR impoundment does not adversely affect project area but a blockage could exist outside of 1 mile and impact fish passage	No impoundment upstream or downstream of project area OR impoundment provides beneficial effect on project area and allows for fish passage	G				
13	Organism Recruitment (Biology)	Channel immediately upstream or downstream of project reach is concrete, piped, or hardened.	Channel immediately upstream or downstream of project reach has native bed and bank material, but is impaired.	Channel immediately upstream or downstream of project reach has native bed and bank material.	G				
14	Percent of Catchment being Enhanced or Restored	Less than 40% of the total catchment area is draining to the project reach.	40 to 60% of the total catchment area is draining to the project reach.	Greater than 60% of the total catchment area is draining to the project reach.	G				
15	Other								

Site Information and				
Performance Stan	dard Stratification			
Project Name:	Banner Branch			
Reach ID:	BB-R2			
Restoration Potential:	Level 3 - Geomorphology			
Existing Stream Type:	E			
Proposed Stream Type:	С			
Region:	Piedmont			
Drainage Area (sqmi):	0.75			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	2169			
Proposed Stream Length (ft):	1876			
Stream Slope (%):	0.9			
Flow Type:	Perennial			
River Basin:	Roanoke			
Stream Temperature:	Warmwater			
Data Collection Season:	Fall			
Valley Type:	Unconfined Alluvial			

Notes
 Users input values that are highlighted based on restoration potential
2. Users select values from a pull-down menu
Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY						
Exisiting Condition Score (ECS)	0.32					
Proposed Condition Score (PCS)	0.48					
Change in Functional Condition (PCS - ECS)	0.16					
Percent Condition Change	50%					
Existing Stream Length (ft)	2169					
Proposed Stream Length (ft)	1876					
Additional Stream Length (ft)	-293					
Existing Functional Foot Score (FFS)	694					
Proposed Functional Foot Score (FFS)	900					
Proposed FFS - Existing FFS	206					
Functional Change (%)	30%					

BMP FUNCTIONAL CHANGE SUMMARY						
Existing BMP Functional Feet Score (FFS)	0					
Proposed BMP Functional Feet Score (FFS)	0					
Proposed BMP FFS - Existing BMP FFS	0					
Functional Change (%)						

FUNCTIONAL FEET (FF) SUMMARY						
Existing Stream FFS + Existing BMP FFS 694						
Proposed Stream FFS + Proposed BMP FFS	900					
Total Proposed FFS - Total Existing FFS	206					
Functional Change (%)	30%					

FUNCTION BASED PARAMETERS SUMMARY								
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter					
Hydrology	Catchment Hydrology	0.45	0.45					
Trydrology	Reach Runoff	0.45	0.45					
Hydraulics	Floodplain Connectivity	0.66	1.00					
	Large Woody Debris							
	Lateral Stability	0.30	1.00					
Geomorphology	Riparian Vegetation	0.29	0.71					
Geomorphology	Bed Material	0.65	1.00					
	Bed Form Diversity	0.15	1.00					
	Plan Form	1.00	1.00					
	Temperature							
	Bacteria							
Physicochemical	Organic Matter							
	Nitrogen							
	Phosphorus							
Biology	Macros							
biology	Fish							

FUN	ICTIONAL CA	TEGORY REPORT	CARD
Functional Category	ECS	PCS	Functional Change
Hydrology	0.45	0.45	0.00
Hydraulics	0.66	1.00	0.34
Geomorphology	0.48	0.94	0.46
Physicochemical			
Biology			

	EXISTING CON	DITION ASSESSMENT					Roll Up Scoring		
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
	Catchment Hydrology	Curve Number	65	0.45	0.45				
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk		
7	Reach Runoff	Concentrated Flow Points			0.45		Tunctioning At Mak		
		Soil Compaction							
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.5	0.31	0.66	0.66	Functioning At Risk		
<u> </u>		Entrenchment Ratio	7.7	1					
	Large Woody Debris	LWD Index						1	
		# Pieces							
	Lateral Stability	Erosion Rate (ft/yr)			0.20				
	Later at Stability	Dominant BEHI/NBS	M/H	0.3	0.30			l l	
		Percent Streambank Erosion (%) Left Canopy Coverage (%)							
		Right Canopy Coverage (%)							
		Left Buffer Width (ft)	15	0.07					
		Right Buffer Width (ft)	50	0.72					
Geomorphology	Riparian Vegetation	Left Basal Area (sq.ft/acre)	30	0.72	0.29	0.48	Functioning At Risk		
		Right Basal Area (sq.ft/acre)							
		Left Stem Density (stems/acre)	100	0.19				0.32	Functioning At Risk
		Right Stem Density (stems/acre)	100	0.19					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.1	0.65	0.65	İ		<u>/ </u>	
		Pool Spacing Ratio				Ī			
	Bed Form Diversity	Pool Depth Ratio	1.1	0	0.15				
	Ded Form Diversity	Percent Riffle	80	0.3	0.25				
		Aggradation Ratio							
	Plan Form	Sinuosity	1.3	1	1.00				
	Temperature	Summer Daily Maximum (°F)							
	Bacteria	Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate							
	***	Percent Shredders							
	Nitrogen Phosphorus	Total Nitrogen (mg/L) Total Phosphorus (mg/L)				+			
	rnospnorus	Biotic Index						1	
Biology	Macros	EPT Taxa Present							
BIOIOGY	Fish	North Carolina Index of Biotic Integrity							
	1131	North Carolina muck of Biotic integrity							

	PROPOSED CON	DITION ASSESSMENT					Roll Up Scoring		
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
	Catchment Hydrology	Curve Number	65	0.45	0.45				
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk		
,	Reach Runoff	Concentrated Flow Points			0.45				
		Soil Compaction							
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1	1	1.00	1.00	Functioning		
*	, ,	Entrenchment Ratio	5	1					
	Large Woody Debris	LWD Index							
		# Pieces							
		Erosion Rate (ft/yr)							
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00				
		Percent Streambank Erosion (%)							
		Left Canopy Coverage (%)	100	1					
		Right Canopy Coverage (%)	100	1					
		Left Buffer Width (ft)	50	0.72					
	Riparian Vegetation	Right Buffer Width (ft)	50	0.72	0.71				
Geomorphology	,	Left Basal Area (sq.ft/acre)				0.94	Functioning		
		Right Basal Area (sq.ft/acre)						0.48	Functioning At Risk
		Left Stem Density (stems/acre)	210	0.4					
		Right Stem Density (stems/acre)	210	0.4					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00				
		Pool Spacing Ratio							
	Bed Form Diversity	Pool Depth Ratio	1.8	1	1.00				
		Percent Riffle	70	1					
		Aggradation Ratio							
	Plan Form	Sinuosity	1.24	1	1.00				
	Temperature	Summer Daily Maximum (°F)							
	Bacteria	Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate							
	***	Percent Shredders							
	Nitrogen	Total Nitrogen (mg/L)						1	
	Phosphorus	Total Phosphorus (mg/L)						4	
Riolomy	Macros	Biotic Index							
Biology	Fish	EPT Taxa Present							
	FISH	North Carolina Index of Biotic Integrity							

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F
Restoration Potential	Level 5 - Biology

	CATCHMENT ASSESSMENT							
	Categories		Description of Catchment Condition		Rating			
		Poor	Fair	Good	(P/F/G			
1	Concentrated Flow (Hydrology)	Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources	No potential for concentrated flow/impairments from adjacent land use	F			
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%	G			
3	Land Use Change (Hydrology)	Ise Change (Hydrology) Rapidly urbanizing/urban Single family homes/suburban Rural communities/slow growth or primarily forested		G				
4	Distance to Roads (Hydrology)	Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans	No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.	No roads in or adjacent to project reach. No proposed roads in 10 year DOT plans.	G			
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%	F			
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width	F			
7	Sediment Supply (Geomorphology)	ediment Supply (Geomorphology) High sediment supply from upstream bank erosion and surface runoff High sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosion and surface runoff Block to the sediment supply from upstream bank erosio						
8	Located on or downstream of a 303(d) listed stream TMDL list (Physicochemical)	On, upstream, or downstream of 303(d) and no TMDL/WS Mgmt plan to address deficiencies	On, upstream, or downstream of 303(d) and TMDL/WS Mgmt plan addressing deficiencies	Not on 303(d) list	G			
9	Agricultural Land Use (Physicochemical)	cropland immediately upstream or project reach. reach or stream is between Ag. land use and project reach to cause no impact to water quality or		j –	Р			
10	NPDES Permits (Physicochemical)	Many NPDES permits within catchment or some within one mile of project reach	A few NPDES permits within catchment and none within one mile of project reach	No NPDES permits within catchment and none within one mile of project reach	G			
11	Specific Conductance (uS/cm at 25oC) (Physicochemical)	Piedmont = >229; Blue Ridge = >66	Piedmont = 78-229; Blue Ridge = 41-66	Piedmont = <78; Blue Ridge = <41	G			
12	Watershed impoundments (Biology)	Impoundment(s) located within 1 mile upstream or downstream of project area and/or has a negative effect on project area and fish passage	No impoundment within 1 mile upstream or downstream of project area OR impoundment does not adversely affect project area but a blockage could exist outside of 1 mile and impact fish passage	No impoundment upstream or downstream of project area OR impoundment provides beneficial effect on project area and allows for fish passage	G			
13	Organism Recruitment (Biology)	Channel immediately upstream or downstream of project reach is concrete, piped, or hardened.	Channel immediately upstream or downstream of project reach has native bed and bank material, but is impaired.	Channel immediately upstream or downstream of project reach has native bed and bank material.	G			
	Percent of Catchment being Enhanced or Restored	Less than 40% of the total catchment area is draining to the project reach.	40 to 60% of the total catchment area is draining to the project reach.	Greater than 60% of the total catchment area is draining to the project reach.	G			
15	Other							

Site Information and					
Performance Standard Stratification					
Project Name: Banner Branch					
Reach ID:	BB-R3				
Restoration Potential:	Level 5 - Biology				
Existing Stream Type:	E				
Proposed Stream Type:	С				
Region:	Piedmont				
Drainage Area (sqmi):	0.88				
Proposed Bed Material:	Gravel				
Existing Stream Length (ft):	708				
Proposed Stream Length (ft):	657				
Stream Slope (%):	0.5				
Flow Type:	Perennial				
River Basin:	Roanoke				
Stream Temperature:	Warmwater				
Data Collection Season:	Fall				
Valley Type:	Unconfined Alluvial				

Notes
Users input values that are highlighted based on restoration potential
Users select values from a pull-down menu
 Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY					
Exisiting Condition Score (ECS)	0.33				
Proposed Condition Score (PCS)	0.69				
Change in Functional Condition (PCS - ECS)	0.36				
Percent Condition Change	109%				
Existing Stream Length (ft)	708				
Proposed Stream Length (ft)	657				
Additional Stream Length (ft)	-51				
Existing Functional Foot Score (FFS)	234				
Proposed Functional Foot Score (FFS)	453				
Proposed FFS - Existing FFS	220				
Functional Change (%)	94%				

	Notes	i	
nput valu	es that are highlighte	d based on restoration potential	
2. Us	ers select values from	a pull-down menu	
eave valu	es blank for field valu	es that were not measured	
SUM	//ARY	BMP FUNCTIONAL CHANGE SU	JMMARY
	0.33	Existing BMP Functional Feet Score (FFS)	0
	0.69	Proposed BMP Functional Feet Score (FFS)	0
ECS)	0.36	Proposed BMP FFS - Existing BMP FFS	0
	109%	Functional Change (%)	
	708	•	
	657		
	-51	FUNCTIONAL FEET (FF) SUM	MARY
	234	Existing Stream FFS + Existing BMP FFS	234
	453	Proposed Stream FFS + Proposed BMP FFS	453
	220	Total Proposed FFS - Total Existing FFS	219
	94%	Functional Change (%)	94%

FUNCTIONAL FEET (FF) SUMMARY						
Existing Stream FFS + Existing BMP FFS	234					
Proposed Stream FFS + Proposed BMP FFS 453						
Total Proposed FFS - Total Existing FFS 219						
Functional Change (%)	94%					

FUNCTION BASED PARAMETERS SUMMARY						
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter			
Hydrology	Catchment Hydrology	0.45	0.45			
. iyurology	Reach Runoff	0.45	0.45			
Hydraulics	Floodplain Connectivity	0.63	1.00			
	Large Woody Debris					
	Lateral Stability	0.50	1.00			
Geomorphology	Riparian Vegetation	0.51	0.71			
Geomorphology	Bed Material	0.65	1.00			
	Bed Form Diversity	0.43	1.00			
	Plan Form	0.00	1.00			
	Temperature					
	Bacteria					
Physicochemical	Organic Matter	0.00	0.36			
	Nitrogen					
	Phosphorus					
Biology	Macros	0.14	0.71			
ынову	Fish					

FUNCTIONAL CATEGORY REPORT CARD						
Functional Category	ECS	PCS	Functional Change			
Hydrology	0.45	0.45	0.00			
Hydraulics	0.63	1.00	0.37			
Geomorphology	0.42	0.94	0.52			
Physicochemical	0.00	0.36	0.36			
Biology	0.14	0.71	0.57			

	EXISTING CONDITION ASSESSMENT					Roll Up Scoring			
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
-	Catchment Hydrology	Curve Number	65	0.45	0.45		-		
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk		
Tryanology	Reach Runoff	Concentrated Flow Points			0.45	1 directioning At Misk			
		Soil Compaction							
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.4	0.43	0.63 0.63	0.63	Functioning At Risk		
.,	,	Entrenchment Ratio	3.5	0.83	5.00		8		
	Large Woody Debris	LWD Index							
	8,	# Pieces							
		Erosion Rate (ft/yr)							
	Lateral Stability	Dominant BEHI/NBS	M/M	0.5	0.50				
		Percent Streambank Erosion (%)							
		Left Canopy Coverage (%)							
		Right Canopy Coverage (%)							
	Riparian Vegetation	Left Buffer Width (ft)	100	0.86		0.42			
		Right Buffer Width (ft)	50	0.72	0.51		Functioning At Risk		
Geomorphology		Left Basal Area (sq.ft/acre)							
		Right Basal Area (sq.ft/acre)							Functioning At Risk
		Left Stem Density (stems/acre)	120	0.23					
		Right Stem Density (stems/acre)	120	0.23					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.1	0.65	0.65				
		Pool Spacing Ratio							
	Bed Form Diversity	Pool Depth Ratio	1.4	0.56	0.43				
		Percent Riffle	80	0.3					
		Aggradation Ratio							
	Plan Form	Sinuosity	1.15	0	0.00				
	Temperature	Summer Daily Maximum (°F)							
	Bacteria	Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate			0.00	0.00	Not Functioning		
		Percent Shredders	0	0					
	Nitrogen	Total Nitrogen (mg/L)						l	
	Phosphorus	Total Phosphorus (mg/L)							
Distance	Macros	Biotic Index	5.94	0.27	0.14		Non Franchischer		
Biology	Fish	EPT Taxa Present	4	0		0.14	Not Functioning		
	FISH	North Carolina Index of Biotic Integrity						L	

	PROPOSED CONDITION ASSESSMENT					Roll Up Scoring				
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall	
	Catchment Hydrology	Curve Number	65	0.45	0.45					
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk			
Tryotology	Reach Runoff	Concentrated Flow Points			0.45		Tunctioning / te trisk			
		Soil Compaction								
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1	1	1.00 1.00	1.00 1.00	Functioning			
,	,	Entrenchment Ratio	5	1						
	Large Woody Debris	LWD Index								
		# Pieces								
		Erosion Rate (ft/yr)								
	Lateral Stability	Dominant BEHI/NBS	L/L	1 1.00	1.00	1.00		4 ,		
		Percent Streambank Erosion (%)								
		Left Canopy Coverage (%)	100	1					4	
	Riparian Vegetation	Right Canopy Coverage (%)	100	1						
		Left Buffer Width (ft)	50	0.72						
		Right Buffer Width (ft)	50	0.72	0.71					
Geomorphology		Left Basal Area (sq.ft/acre)				0.94	Functioning			
		Right Basal Area (sq.ft/acre)					0.69	Functioning At Risk		
		Left Stem Density (stems/acre)	210	0.4				4		
		Right Stem Density (stems/acre)	210	0.4					4	
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00					
		Pool Spacing Ratio								
	Bed Form Diversity	Pool Depth Ratio	1.8	1	1.00			i i		
		Percent Riffle	70	1						
		Aggradation Ratio								
	Plan Form	Sinuosity	1.2	1	1.00					
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	Fecal Coliform (Cfu/100 ml)								
Physicochemical	Organic Carbon	Leaf Litter Processing Rate			0.36	0.36	Functioning At Risk			
		Percent Shredders	5	0.36						
	Nitrogen	Total Nitrogen (mg/L)								
	Phosphorus	Total Phosphorus (mg/L)								
Distance.	Macros	Biotic Index	5	0.78	0.71		Constitution .			
Biology		EPT Taxa Present	20	0.64		0.71	Functioning			
	Fish	North Carolina Index of Biotic Integrity								

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F				
Restoration Potential	Level 3 - Geomorphology				

Purpose: This form is used to determine the project's restoration potential.

CATCHMENT ASSESSMENT **Description of Catchment Condition** Rating Categories Fair (P/F/G) Poor Good Potential for concentrated flow/impairments Some potential for concentrated flow/impairments No potential for concentrated flow/impairments from G 1 Concentrated Flow (Hydrology) immediately upstream of the project and no to reach restoration site, however, measures are in adjacent land use treatments are in place place to protect resources Between 10% and 25% 2 Impervious cover (Hydrology) Greater than 25% Less than 10% G 3 Land Use Change (Hydrology) Rapidly urbanizing/urban Single family homes/suburban Rural communities/slow growth or primarily forested G No roads in or adjacent to project reach. No more Roads located in or adjacent to project reach No roads in or adjacent to project reach. No 4 Distance to Roads (Hydrology) than one major road proposed in 10 year DOT G and/or major roads proposed in 10 year DOT plans proposed roads in 10 year DOT plans. plans. 5 Percent Forested (Hydrology) >20% and <70% <= 20% >=70% F <50% of contributing stream length has > 25 ft 50-80% of contributing stream length has > 25 ft >80% of contributing stream length has > 25 ft 6 Riparian Vegetation (Geomorphology) corridor width corridor width corridor width High sediment supply from upstream bank erosion Moderate sediment supply from upstream bank Low sediment supply. Upstream bank erosion and F 7 Sediment Supply (Geomorphology) surface runoff is minimal and surface runoff erosion and surface runoff Located on or downstream of a 303(d) On, upstream, or downstream of 303(d) and no On, upstream, or downstream of 303(d) and G Not on 303(d) list listed stream TMDL list (Physicochemical) TMDL/WS Mgmt plan to address deficiencies TMDL/WS Mgmt plan addressing deficiencies Livestock access to stream and/or intensive There is little to no agricultural land uses or the Livestock access to stream and/or intensive livestock or cropland is far enough away from cropland upstream of project reach. A sufficient 9 Agricultural Land Use (Physicochemical) Р cropland immediately upstream of project reach. reach of stream is between Aq. land use and project reach to cause no impact to water quality or project reach. biology. Many NPDES permits within catchment or some A few NPDES permits within catchment and none No NPDES permits within catchment and none 10 NPDES Permits (Physicochemical) G within one mile of project reach within one mile of project reach within one mile of project reach Specific Conductance (uS/cm at 25oC) Piedmont = >229: Blue Ridge = >66 Piedmont = 78-229: Blue Ridge = 41-66 Piedmont = <78: Blue Ridge = <41 (Physicochemical) No impoundment within 1 mile upstream or Impoundment(s) located within 1 mile upstream or downstream of project area OR impoundment does No impoundment upstream or downstream of 12 Watershed impoundments (Biology) downstream of project area and/or has a negative not adversely affect project area but a blockage project area OR impoundment provides beneficial G could exist outside of 1 mile and impact fish effect on project area and allows for fish passage effect on project area and fish passage passage Channel immediately upstream or downstream of Channel immediately upstream or downstream of Channel immediately upstream or downstream of 13 Organism Recruitment (Biology) project reach has native bed and bank material, but F project reach is concrete, piped, or hardened. project reach has native bed and bank material. is impaired. Percent of Catchment being Enhanced or Less than 40% of the total catchment area is 40 to 60% of the total catchment area is draining to Greater than 60% of the total catchment area is G Restored draining to the project reach. the project reach. draining to the project reach. 15 Other

Site Information and			
Performance Standard Stratification			
Project Name:	Banner Branch		
Reach ID:	UT1A		
Restoration Potential:	Level 3 - Geomorphology		
Existing Stream Type:	G		
Proposed Stream Type:	В		
Region:	Piedmont		
Drainage Area (sqmi):	0.072		
Proposed Bed Material:	Gravel		
Existing Stream Length (ft):	410		
Proposed Stream Length (ft):	410		
Stream Slope (%):	2.6		
Flow Type:	Perennial		
River Basin:	Roanoke		
Stream Temperature:	Warmwater		
Data Collection Season:	Fall		
Valley Type:	Confined Alluvial		

Notes
 Users input values that are highlighted based on restoration potential
2. Users select values from a pull-down menu
Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY		
Exisiting Condition Score (ECS)	0.25	
Proposed Condition Score (PCS)	0.39	
Change in Functional Condition (PCS - ECS)	0.14	
Percent Condition Change	56%	
Existing Stream Length (ft)	410	
Proposed Stream Length (ft)	410	
Additional Stream Length (ft)	0	
Existing Functional Foot Score (FFS)	103	
Proposed Functional Foot Score (FFS)	160	
Proposed FFS - Existing FFS	57	
Functional Change (%)	56%	

BMP FUNCTIONAL CHANGE SUMMARY				
Existing BMP Functional Feet Score (FFS)	0			
Proposed BMP Functional Feet Score (FFS)	0			
Proposed BMP FFS - Existing BMP FFS	0			
Functional Change (%)				

FUNCTIONAL FEET (FF) SUMMARY			
Existing Stream FFS + Existing BMP FFS	103		
Proposed Stream FFS + Proposed BMP FFS	160		
Total Proposed FFS - Total Existing FFS	57		
Functional Change (%)	55%		

FUNCTION BASED PARAMETERS SUMMARY					
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter		
Hydrology	Catchment Hydrology	0.36	0.36		
Trydrology	Reach Runoff	0.36	0.36		
Hydraulics	Floodplain Connectivity	0.15	0.71		
	Large Woody Debris				
	Lateral Stability	1.00	1.00		
Geomorphology	Riparian Vegetation	0.19	0.70		
Geomorphology	Bed Material	1.00	1.00		
	Bed Form Diversity	0.69	1.00		
	Plan Form	0.70	0.70		
	Temperature				
	Bacteria				
Physicochemical	Organic Matter				
	Nitrogen				
	Phosphorus				
Biology	Macros				
ыоюду	Fish				

FUNCTIONAL CATEGORY REPORT CARD						
Functional Category	ECS	PCS	Functional Change			
Hydrology	0.36	0.36	0.00			
Hydraulics	0.15	0.71	0.56			
Geomorphology	0.72	0.88	0.16			
Physicochemical						
Biology						

EXISTING CONDITION ASSESSMENT							Roll Up Scoring					
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall			
	Catchment Hydrology	Curve Number	68	0.36	0.36							
Hydrology		Curve Number	68	0.36		0.36	Functioning At Risk					
11,410.05,	Reach Runoff	Concentrated Flow Points			0.36	0.50	T directioning / te mak					
		Soil Compaction										
Hydraulics	Floodplain Connectivity	Bank Height Ratio	3.4	0	0.15	0.15	Not Functioning					
riyaraanes	1 loodplain connectivity	Entrenchment Ratio	1.2	0.3	0.13	0:13	rece r unectioning					
	Large Woody Debris	LWD Index										
	8	# Pieces										
		Erosion Rate (ft/yr)										
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00							
		Percent Streambank Erosion (%)										
		Left Canopy Coverage (%)										
		Right Canopy Coverage (%)										
	Riparian Vegetation	Left Buffer Width (ft)	15	0.35								
		Right Buffer Width (ft)	15	0.35	0.19							
Geomorphology		Left Basal Area (sq.ft/acre)			0.72	Functioning	0.25					
		Right Basal Area (sq.ft/acre)						Not Functioning				
		Left Stem Density (stems/acre)	15	0.03				0.23				
		Right Stem Density (stems/acre)	15	0.03								
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00							
		Pool Spacing Ratio										
	Bed Form Diversity	Pool Depth Ratio	1.5	0.69	0.69	0.69						
	,	Percent Riffle	75	0.69								
		Aggradation Ratio										
	Plan Form	Sinuosity	1.15	0.7	0.70							
	Temperature	Summer Daily Maximum (°F)										
	Bacteria	Fecal Coliform (Cfu/100 ml)										
Physicochemical	Organic Carbon	Leaf Litter Processing Rate										
,	-	Percent Shredders						ı				
	Nitrogen	Total Nitrogen (mg/L)										
	Phosphorus	Total Phosphorus (mg/L)										
	Macros	Biotic Index										
Biology		EPT Taxa Present										
	Fish	North Carolina Index of Biotic Integrity										

PROPOSED CONDITION ASSESSMENT							Roll Up Scoring																					
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall																			
	Catchment Hydrology	Curve Number	68	0.36	0.36																							
Hydrology		Curve Number	68	0.36		0.36	Functioning At Risk																					
nya.ology	Reach Runoff	Concentrated Flow Points			0.36	0.36	0.50	T directioning At Misk	4																			
		Soil Compaction																										
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.3	0.56	0.71	0.71	Functioning																					
nyaraanes	Tioodpidiii Connectivity	Entrenchment Ratio	1.8	0.85	0.71	6.71	ranctioning																					
	Large Woody Debris	LWD Index																										
	Earge Woody Debris	# Pieces																										
		Erosion Rate (ft/yr)																										
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00	1.00	0.88 Functioning 0.39	1 .																				
		Percent Streambank Erosion (%)																										
		Left Canopy Coverage (%)	100	1																								
		Right Canopy Coverage (%)	100	1		0.88 Functioning					1																	
		Left Buffer Width (ft)	30	0.7				0.39	Functioning At R																			
	Riparian Vegetation	Right Buffer Width (ft)	30	0.7	0.70																							
Geomorphology		Left Basal Area (sq.ft/acre)			0.70																							
		Right Basal Area (sq.ft/acre)																										
		Left Stem Density (stems/acre)	210	0.4																								
		Right Stem Density (stems/acre)	210	0.4			+																					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1 1.00			1	1	I	Ī	1				1			i .	ĺ	ĺ				i i			
		Pool Spacing Ratio																										
	Bed Form Diversity	Pool Depth Ratio	2	1	1.00			i l																				
	Ded Form Diversity	Percent Riffle	65	1	1.00																							
		Aggradation Ratio																										
	Plan Form	Sinuosity	1.15	0.7	0.70																							
	Temperature	Summer Daily Maximum (°F)																										
	Bacteria	Fecal Coliform (Cfu/100 ml)																										
Physicochemical	Organic Carbon	Leaf Litter Processing Rate																										
.,		Percent Shredders																										
	Nitrogen	Total Nitrogen (mg/L)																										
	Phosphorus	Total Phosphorus (mg/L)																										
	Macros	Biotic Index																										
Biology		EPT Taxa Present																										
	Fish	North Carolina Index of Biotic Integrity																										

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F			
Restoration Potential	Level 3 - Geomorphology			

		CATCHI	MENT ASSESSMENT		
	Categories		Description of Catchment Condition		Rating
		Poor	Fair	Good	(P/F/G
1	Concentrated Flow (Hydrology)	Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources	No potential for concentrated flow/impairments from adjacent land use	G
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%	G
3	Land Use Change (Hydrology)	Rapidly urbanizing/urban	Single family homes/suburban	Rural communities/slow growth or primarily forested	G
4	Distance to Roads (Hydrology)	Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans	No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.	No roads in or adjacent to project reach. No proposed roads in 10 year DOT plans.	G
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%	G
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width	F
7	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff	Moderate sediment supply from upstream bank erosion and surface runoff	Low sediment supply. Upstream bank erosion and surface runoff is minimal	F
8	Located on or downstream of a 303(d) listed stream TMDL list (Physicochemical)	On, upstream, or downstream of 303(d) and no TMDL/WS Mgmt plan to address deficiencies	On, upstream, or downstream of 303(d) and TMDL/WS Mgmt plan addressing deficiencies	Not on 303(d) list	G
9	Agricultural Land Use (Physicochemical)	Livestock access to stream and/or intensive cropland immediately upstream of project reach.	Livestock access to stream and/or intensive cropland upstream of project reach. A sufficient reach of stream is between Ag. land use and project reach.	There is little to no agricultural land uses or the livestock or cropland is far enough away from project reach to cause no impact to water quality or biology.	Р
10	NPDES Permits (Physicochemical)	Many NPDES permits within catchment or some within one mile of project reach	A few NPDES permits within catchment and none within one mile of project reach	No NPDES permits within catchment and none within one mile of project reach	G
11	Specific Conductance (uS/cm at 25oC) (Physicochemical)	Piedmont = >229; Blue Ridge = >66	Piedmont = 78-229; Blue Ridge = 41-66	Piedmont = <78; Blue Ridge = <41	-
12	Watershed impoundments (Biology)	Impoundment(s) located within 1 mile upstream or downstream of project area and/or has a negative effect on project area and fish passage	No impoundment within 1 mile upstream or downstream of project area OR impoundment does not adversely affect project area but a blockage could exist outside of 1 mile and impact fish passage	No impoundment upstream or downstream of project area OR impoundment provides beneficial effect on project area and allows for fish passage	G
13	Organism Recruitment (Biology)	Channel immediately upstream or downstream of project reach is concrete, piped, or hardened.	Channel immediately upstream or downstream of project reach has native bed and bank material, but is impaired.	Channel immediately upstream or downstream of project reach has native bed and bank material.	F
	Percent of Catchment being Enhanced or Restored	Less than 40% of the total catchment area is draining to the project reach.	40 to 60% of the total catchment area is draining to the project reach.	Greater than 60% of the total catchment area is draining to the project reach.	G
15	Other				

Site Information and			
Performance Standard Stratification			
Project Name:	Banner Branch		
Reach ID:	UT1B		
Restoration Potential:	Level 3 - Geomorphology		
Existing Stream Type:	E		
Proposed Stream Type:	В		
Region:	Piedmont		
Drainage Area (sqmi):	0.069		
Proposed Bed Material:	Gravel		
Existing Stream Length (ft):	391		
Proposed Stream Length (ft):	494		
Stream Slope (%):	2.5		
Flow Type:	Perennial		
River Basin:	Roanoke		
Stream Temperature:	Warmwater		
Data Collection Season:	Fall		
Valley Type:	Confined Alluvial		

Notes
Users input values that are highlighted based on restoration potential
Users select values from a pull-down menu
3. Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY				
Exisiting Condition Score (ECS)	0.41			
Proposed Condition Score (PCS)	0.45			
Change in Functional Condition (PCS - ECS)	0.04			
Percent Condition Change	10%			
Existing Stream Length (ft)	391			
Proposed Stream Length (ft)	494			
Additional Stream Length (ft)	103			
Existing Functional Foot Score (FFS)	160			
Proposed Functional Foot Score (FFS)	222			
Proposed FFS - Existing FFS	62			
Functional Change (%)	39%			

BMP FUNCTIONAL CHANGE SUMMARY			
Existing BMP Functional Feet Score (FFS)	0		
Proposed BMP Functional Feet Score (FFS)	0		
Proposed BMP FFS - Existing BMP FFS	0		
Functional Change (%)			

FUNCTIONAL FEET (FF) SUMMARY				
Existing Stream FFS + Existing BMP FFS	160			
Proposed Stream FFS + Proposed BMP FFS	222			
Total Proposed FFS - Total Existing FFS	62			
Functional Change (%)	39%			

FUNCTION BASED PARAMETERS SUMMARY								
Functional Category Function-Based Parameters Existing Parameter Proposed Parameters								
Hydrology	Catchment Hydrology	0.36	0.36					
i i yurology	Reach Runoff	0.36	0.36					
Hydraulics	Floodplain Connectivity	0.92	1.00					
	Large Woody Debris							
	Lateral Stability	1.00	1.00					
Geomorphology	Riparian Vegetation	0.52	0.80					
Geomorphology	Bed Material	1.00	1.00					
	Bed Form Diversity	0.56	1.00					
	Plan Form	0.74	0.71					
	Temperature							
	Bacteria							
Physicochemical	Organic Matter							
	Nitrogen							
	Phosphorus							
Biology	Macros							
DIOIOGY	Fish							

FUNCTIONAL CATEGORY REPORT CARD						
Functional Category	ECS	PCS	Functional Change			
Hydrology	0.36	0.36	0.00			
Hydraulics	0.92	1.00	0.08			
Geomorphology	0.76	0.90	0.14			
Physicochemical						
Biology						

EXISTING CONDITION ASSESSMENT					Roll Up Scoring							
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall			
	Catchment Hydrology	Curve Number	68	0.36	0.36							
Hydrology		Curve Number	68	0.36	0.36		0.36	Functioning At Risk				
,	Reach Runoff	Concentrated Flow Points			0.36							
		Soil Compaction										
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.1	0.84	0.92	0.92	Functioning					
******	,	Entrenchment Ratio	2.5	1								
	Large Woody Debris	LWD Index										
		# Pieces										
		Erosion Rate (ft/yr)										
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00							
		Percent Streambank Erosion (%)										
		Left Canopy Coverage (%)										
		Right Canopy Coverage (%)										
		Left Buffer Width (ft)	100	1								
	Riparian Vegetation	Right Buffer Width (ft)	50	1	0.52	0.76	Functioning					
Geomorphology		Left Basal Area (sq.ft/acre)										
		Right Basal Area (sq.ft/acre)						0.41	Functioning At Risk			
		Left Stem Density (stems/acre)	15	0.03								
		Right Stem Density (stems/acre)	15	0.03							4 .	
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00							
		Pool Spacing Ratio						1				
	Bed Form Diversity	Pool Depth Ratio	1.3	0.43	0.56				4 .			
		Percent Riffle	75	0.69				4				
		Aggradation Ratio										
	Plan Form	Sinuosity	1.18	0.74	0.74							
	Temperature	Summer Daily Maximum (°F)										
	Bacteria	Fecal Coliform (Cfu/100 ml)										
Physicochemical	Organic Carbon	Leaf Litter Processing Rate										
,	-	Percent Shredders										
	Nitrogen	Total Nitrogen (mg/L)										
	Phosphorus	Total Phosphorus (mg/L)										
	Macros	Biotic Index										
Biology		EPT Taxa Present										
	Fish	North Carolina Index of Biotic Integrity										

PROPOSED CONDITION ASSESSMENT					Roll Up Scoring																													
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall																									
	Catchment Hydrology	Curve Number	68	0.36	0.36																													
Hydrology		Curve Number	68	0.36								0.26	0.36	Functioning At Risk																				
,	Reach Runoff	Concentrated Flow Points			0.36																													
		Soil Compaction																																
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1	1	1.00	1.00	Functioning																											
*	, ,	Entrenchment Ratio	2.5	1																														
	Large Woody Debris	LWD Index																																
		# Pieces																																
		Erosion Rate (ft/yr)																																
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00																													
		Percent Streambank Erosion (%)																																
		Left Canopy Coverage (%)	100	1																														
		Right Canopy Coverage (%)	100	1																														
		Left Buffer Width (ft)	50	1																														
	Riparian Vegetation	Right Buffer Width (ft)	50	1	0.80																													
Geomorphology	,	Left Basal Area (sq.ft/acre)				0.90	Functioning																											
		Right Basal Area (sq.ft/acre)						0.45	Functioning At Risk																									
		Left Stem Density (stems/acre)	210	0.4																														
		Red Material Characterization	Right Stem Density (stems/acre)	210	0.4				1	ļ				4																				
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00																													
		Pool Spacing Ratio						i .															1				i i	i i						
	Bed Form Diversity	Pool Depth Ratio	2	1	1.00																													
		Percent Riffle	60	1				4																										
		Aggradation Ratio																																
	Plan Form	Sinuosity	1.16	0.71	0.71																													
	Temperature	Summer Daily Maximum (°F)																																
	Bacteria	Fecal Coliform (Cfu/100 ml)																																
Physicochemical	Organic Carbon	Leaf Litter Processing Rate																																
	***	Percent Shredders																																
	Nitrogen	Total Nitrogen (mg/L)																																
	Phosphorus	Total Phosphorus (mg/L)																																
Rielem	Macros	Biotic Index																																
Biology	El-h	EPT Taxa Present																																
	Fish	North Carolina Index of Biotic Integrity																																

7 Sediment Supply (Geomorphology)

Located on or downstream of a 303(d)

9 Agricultural Land Use (Physicochemical)

Specific Conductance (uS/cm at 25oC)

10 NPDES Permits (Physicochemical)

12 Watershed impoundments (Biology)

13 Organism Recruitment (Biology)

Restored

15 Other

Percent of Catchment being Enhanced or

(Physicochemical)

listed stream TMDL list (Physicochemical)

Rater(s): KMV

Date: 10/9/19

CATCHMENT ASSESSMENT

Description of Catalyment Candition

Moderate sediment supply from upstream bank

erosion and surface runoff

On, upstream, or downstream of 303(d) and

TMDL/WS Mgmt plan addressing deficiencies

Livestock access to stream and/or intensive

cropland upstream of project reach. A sufficient

reach of stream is between Ag. land use and

project reach.

A few NPDES permits within catchment and none

within one mile of project reach

Piedmont = 78-229; Blue Ridge = 41-66

No impoundment within 1 mile upstream or

downstream of project area OR impoundment does

not adversely affect project area but a blockage

could exist outside of 1 mile and impact fish

passage

Channel immediately upstream or downstream of

project reach has native bed and bank material, but

is impaired.

40 to 60% of the total catchment area is draining to

the project reach.

Overall Catchment Condition	F
Restoration Potential	Level 3 - Geomorphology

Purpose: This form is used to determine the project's restoration potential.

Rating (P/F/G)

G

G G

G

G

G

G

G

G

G

G

G

G

Low sediment supply. Upstream bank erosion and

surface runoff is minimal

Not on 303(d) list

There is little to no agricultural land uses or the

livestock or cropland is far enough away from

project reach to cause no impact to water quality or

biology.

No NPDES permits within catchment and none

within one mile of project reach

Piedmont = <78; Blue Ridge = <41

No impoundment upstream or downstream of

project area OR impoundment provides beneficial

effect on project area and allows for fish passage

Channel immediately upstream or downstream of

project reach has native bed and bank material.

Greater than 60% of the total catchment area is

draining to the project reach.

	Categories	Description of Catchment Condition					
	Categories	Poor	Fair	Good			
1	Concentrated Flow (Hydrology)	Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources	No potential for concentrated flow/impairments from adjacent land use			
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%			
3	Land Use Change (Hydrology)	Rapidly urbanizing/urban	Single family homes/suburban	Rural communities/slow growth or primarily forested			
4	Distance to Roads (Hydrology)	Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans	No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.	No roads in or adjacent to project reach. No proposed roads in 10 year DOT plans.			
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%			
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width			

High sediment supply from upstream bank erosion

and surface runoff

On, upstream, or downstream of 303(d) and no

TMDL/WS Mgmt plan to address deficiencies

Livestock access to stream and/or intensive

cropland immediately upstream of project reach.

Many NPDES permits within catchment or some

within one mile of project reach

Piedmont = >229; Blue Ridge = >66

Impoundment(s) located within 1 mile upstream or

downstream of project area and/or has a negative

effect on project area and fish passage

Channel immediately upstream or downstream of

project reach is concrete, piped, or hardened.

Less than 40% of the total catchment area is

draining to the project reach.

Site Information and				
Performance Standard Stratification				
Project Name:	Banner Branch			
Reach ID:	UT1C			
Restoration Potential:	Level 3 - Geomorphology			
Existing Stream Type:	В			
Proposed Stream Type:	В			
Region:	Piedmont			
Drainage Area (sqmi):	0.025			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	528			
Proposed Stream Length (ft):	528			
Stream Slope (%):	5.1			
Flow Type:	Perennial			
River Basin:	Roanoke			
Stream Temperature:	Warmwater			
Data Collection Season:	Fall			
Valley Type: Confined Alluvial				

Notes	
Users input values that are highlighted based on restoration potential	
2. Users select values from a pull-down menu	
3. Leave values blank for field values that were not measured	

FUNCTIONAL CHANGE SUMMARY				
Exisiting Condition Score (ECS)	0.49			
Proposed Condition Score (PCS)	0.50			
Change in Functional Condition (PCS - ECS)	0.01			
Percent Condition Change	2%			
Existing Stream Length (ft)	528			
Proposed Stream Length (ft)	528			
Additional Stream Length (ft)	0			
Existing Functional Foot Score (FFS)	259			
Proposed Functional Foot Score (FFS)	264			
Proposed FFS - Existing FFS	5			
Functional Change (%)	2%			

BMP FUNCTIONAL CHANGE SUMMARY				
0				
0				
0				

FUNCTIONAL FEET (FF) SUMMARY				
Existing Stream FFS + Existing BMP FFS	259			
Proposed Stream FFS + Proposed BMP FFS	264			
Total Proposed FFS - Total Existing FFS	5			
Functional Change (%)	2%			

FUNCTION BASED PARAMETERS SUMMARY						
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter			
Hydrology	Catchment Hydrology	0.80	0.80			
Trydrology	Reach Runoff	0.80	0.80			
Hydraulics	Floodplain Connectivity	0.92	0.92			
	Large Woody Debris					
	Lateral Stability	1.00	1.00			
Geomorphology	Riparian Vegetation	0.69	0.79			
Geomorphology	Bed Material	1.00	1.00			
	Bed Form Diversity	1.00	1.00			
	Plan Form	0.00	0.00			
	Temperature					
	Bacteria					
Physicochemical	Organic Matter					
	Nitrogen					
	Phosphorus					
Rieleny	Macros					
Biology	Fish					

FUNCTIONAL CATEGORY REPORT CARD						
Functional Category	ECS	PCS	Functional Change			
Hydrology	0.80	0.80	0.00			
Hydraulics	0.92	0.92	0.00			
Geomorphology	0.74	0.76	0.02			
Physicochemical						
Biology						

	EXISTING CON	DITION ASSESSMENT					Roll Up Scoring																											
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall																									
	Catchment Hydrology	Curve Number	50	0.8	0.80																													
Hydrology		Curve Number	50	0.8		0.80	Functioning																											
Trydrology	Reach Runoff	Concentrated Flow Points			0.80	0.80	0.80	Tunctioning																										
		Soil Compaction																																
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.1	0.84	0.92	0.92	Functioning																											
Trydraulies	Tioodpidin connectivity	Entrenchment Ratio	2.2	1	0.52	0.52	Tunctioning																											
	Large Woody Debris	LWD Index																																
	Earge Woody Bebris	# Pieces																																
		Erosion Rate (ft/yr)																																
	Lateral Stability	Dominant BEHI/NBS	L/VL	1	1.00																													
		Percent Streambank Erosion (%)																																
		Left Canopy Coverage (%)																																
		Right Canopy Coverage (%)																																
		Left Buffer Width (ft)	100	1																														
	Riparian Vegetation	Right Buffer Width (ft)	100	1	0.69																													
Geomorphology	Niparian vegetation	Left Basal Area (sq.ft/acre)			0.03	0.74	Functioning																											
		Right Basal Area (sq.ft/acre)						0.49	Functioning At Risk																									
	Left Stem Density (stems/acre)	200 0.38	0.38																														0.49	Fullctioning At Kisk
		Right Stem Density (stems/acre)	200	0.38				ı l																										
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00	i																												
		Pool Spacing Ratio																																
	Bed Form Diversity	Pool Depth Ratio	2	1	1.00	,			i e																									
	bea to this biversity	Percent Riffle	60	1	1.00																													
		Aggradation Ratio																																
	Plan Form	Sinuosity	1.1	0	0.00																													
	Temperature	Summer Daily Maximum (°F)																																
	Bacteria	Fecal Coliform (Cfu/100 ml)																																
Physicochemical	Organic Carbon	Leaf Litter Processing Rate																																
,	organic carpon	Percent Shredders																																
	Nitrogen	Total Nitrogen (mg/L)																																
	Phosphorus	Total Phosphorus (mg/L)																																
	Macros	Biotic Index																																
Biology		EPT Taxa Present																																
	Fish	North Carolina Index of Biotic Integrity						ı																										

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F
Restoration Potential	Level 3 - Geomorphology

		CATCHI	MENT ASSESSMENT		
					Rating
	Galogonios	Poor	Fair	Good	(P/F/G
1	Concentrated Flow (Hydrology)	Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources	No potential for concentrated flow/impairments from adjacent land use	G
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%	G
3	Land Use Change (Hydrology)	Rapidly urbanizing/urban	Single family homes/suburban	Rural communities/slow growth or primarily forested	G
4	Distance to Roads (Hydrology)	Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans	No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.	No roads in or adjacent to project reach. No proposed roads in 10 year DOT plans.	G
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%	G
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width	G
7	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff	Moderate sediment supply from upstream bank erosion and surface runoff	Low sediment supply. Upstream bank erosion and surface runoff is minimal	G
8	Located on or downstream of a 303(d) listed stream TMDL list (Physicochemical)	On, upstream, or downstream of 303(d) and no TMDL/WS Mgmt plan to address deficiencies	On, upstream, or downstream of 303(d) and TMDL/WS Mgmt plan addressing deficiencies	Not on 303(d) list	G
9	Agricultural Land Use (Physicochemical)	Livestock access to stream and/or intensive cropland immediately upstream of project reach.	Livestock access to stream and/or intensive cropland upstream of project reach. A sufficient reach of stream is between Ag. land use and project reach.	There is little to no agricultural land uses or the livestock or cropland is far enough away from project reach to cause no impact to water quality or biology.	G
10	NPDES Permits (Physicochemical)	Many NPDES permits within catchment or some within one mile of project reach	A few NPDES permits within catchment and none within one mile of project reach	No NPDES permits within catchment and none within one mile of project reach	G
11	Specific Conductance (uS/cm at 25oC) (Physicochemical)	Piedmont = >229; Blue Ridge = >66	Piedmont = 78-229; Blue Ridge = 41-66	Piedmont = <78; Blue Ridge = <41	-
12	Watershed impoundments (Biology)	Impoundment(s) located within 1 mile upstream or downstream of project area and/or has a negative effect on project area and fish passage	No impoundment within 1 mile upstream or downstream of project area OR impoundment does not adversely affect project area but a blockage could exist outside of 1 mile and impact fish passage	No impoundment upstream or downstream of project area OR impoundment provides beneficial effect on project area and allows for fish passage	G
13	Organism Recruitment (Biology)	Channel immediately upstream or downstream of project reach is concrete, piped, or hardened.	Channel immediately upstream or downstream of project reach has native bed and bank material, but is impaired.	Channel immediately upstream or downstream of project reach has native bed and bank material.	G
	Percent of Catchment being Enhanced or Restored	Less than 40% of the total catchment area is draining to the project reach.	40 to 60% of the total catchment area is draining to the project reach.	Greater than 60% of the total catchment area is draining to the project reach.	G
15	Other				

Site Information and				
Performance Standard Stratification				
Project Name: Banner Branch				
Reach ID:	UT1-R1			
Restoration Potential:	Level 3 - Geomorphology			
Existing Stream Type:	E			
Proposed Stream Type:	E			
Region:	Piedmont			
Drainage Area (sqmi):	0.088			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	612			
Proposed Stream Length (ft):	612			
Stream Slope (%):	2.7			
Flow Type:	Perennial			
River Basin:	Roanoke			
Stream Temperature:	Warmwater			
Data Collection Season:	Fall			
Valley Type:	Confined Alluvial			

Notes
Users input values that are highlighted based on restoration potential
2. Users select values from a pull-down menu
Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY				
Exisiting Condition Score (ECS)	0.38			
Proposed Condition Score (PCS)	0.41			
Change in Functional Condition (PCS - ECS)	0.03			
Percent Condition Change	8%			
Existing Stream Length (ft)	612			
Proposed Stream Length (ft)	612			
Additional Stream Length (ft)	0			
Existing Functional Foot Score (FFS)	233			
Proposed Functional Foot Score (FFS)	251			
Proposed FFS - Existing FFS	18			
Functional Change (%)	8%			

BMP FUNCTIONAL CHANGE SUMMARY				
Existing BMP Functional Feet Score (FFS)	0			
Proposed BMP Functional Feet Score (FFS)	0			
Proposed BMP FFS - Existing BMP FFS	0			
Functional Change (%)				

FUNCTIONAL FEET (FF) SUMMARY				
Existing Stream FFS + Existing BMP FFS	233			
Proposed Stream FFS + Proposed BMP FFS	251			
Total Proposed FFS - Total Existing FFS	18			
Functional Change (%)	8%			

FUNCTION BASED PARAMETERS SUMMARY					
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter		
Hydrology	Catchment Hydrology	0.45	0.45		
Trydrology	Reach Runoff	0.45	0.45		
Hydraulics	Floodplain Connectivity	0.57	0.67		
	Large Woody Debris				
	Lateral Stability	1.00	1.00		
Geomorphology	Riparian Vegetation	0.60	0.73		
Geomorphology	Bed Material	1.00	1.00		
	Bed Form Diversity	1.00	1.00		
	Plan Form	0.84	0.88		
	Temperature				
	Bacteria				
Physicochemical	Organic Matter				
	Nitrogen				
	Phosphorus				
Biology	Macros				
Biology	Fish				

FUNCTIONAL CATEGORY REPORT CARD						
Functional Category	ECS	PCS	Functional Change			
Hydrology	0.45	0.45	0.00			
Hydraulics	0.57	0.67	0.10			
Geomorphology	0.89	0.92	0.03			
Physicochemical						
Biology						

	EXISTING COND	ITION ASSESSMENT					Roll Up Scoring				
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall		
	Catchment Hydrology	Curve Number	65	0.45	0.45						
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk				
nyarology	Reach Runoff	Concentrated Flow Points			0.45	0.43	Tunctioning / te trisk				
		Soil Compaction									
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.4	0.43	0.57 0.57	0.57 0.57	0.57 0.57	0.57 0.57	0.57 Functioning At Risk		
Trydradics	11000piani connectivity	Entrenchment Ratio	2.5	0.71	0.57	0.57	Tunctioning At Nisk				
	Large Woody Debris	LWD Index									
	targe woody bears	# Pieces									
		Erosion Rate (ft/yr)									
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00						
		Percent Streambank Erosion (%)									
		Left Canopy Coverage (%)									
		Right Canopy Coverage (%)									
		Left Buffer Width (ft)	50	0.72							
	Riparian Vegetation	Right Buffer Width (ft)	100	0.86	0.60	0.89 Functi					
Geomorphology		Left Basal Area (sq.ft/acre)			0.00		Functioning				
		Right Basal Area (sq.ft/acre)						0.38	Functioning At Risk		
		Left Stem Density (stems/acre)	210	0.4				0.50	r directioning remain		
		Right Stem Density (stems/acre)	210	0.4							
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.5	1	1.00						
		Pool Spacing Ratio									
	Bed Form Diversity	Pool Depth Ratio	1.8	1	1.00						
	Sed Form Swersky	Percent Riffle	70	1	1.00						
		Aggradation Ratio									
	Plan Form	Sinuosity	1.27	0.84	0.84						
	Temperature	Summer Daily Maximum (°F)									
	Bacteria	Fecal Coliform (Cfu/100 ml)									
Physicochemical	Organic Carbon	Leaf Litter Processing Rate									
		Percent Shredders									
	Nitrogen	Total Nitrogen (mg/L)									
	Phosphorus	Total Phosphorus (mg/L)									
	Macros	Biotic Index									
Biology		EPT Taxa Present									
	Fish	North Carolina Index of Biotic Integrity									

	PROPOSED CONDITION ASSESSMENT					Roll Up Scoring												
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall									
	Catchment Hydrology	Curve Number	65	0.45	0.45													
Hydrology	Reach Runoff	Curve Number	65	0.45	0.45	0.45	Functioning At Risk											
nyarology		Concentrated Flow Points				0.43	T directioning / te mak											
		Soil Compaction																
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.1	0.84	0.67	0.67	Functioning At Risk											
nyaraanes	1 loodplain connectivity	Entrenchment Ratio	2.2	0.5	0.07	0.07	Tunctioning / tertisk											
	Large Woody Debris	LWD Index																
	8	# Pieces																
		Erosion Rate (ft/yr)																
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00													
		Percent Streambank Erosion (%)					i											
		Left Canopy Coverage (%)	100	1				i i										
		Right Canopy Coverage (%)	100	1		0.92 Functioning	i i											
		Left Buffer Width (ft)	50	0.72					Functioning At Risk									
	Riparian Vegetation	Right Buffer Width (ft)	100	0.86	0.73													
Geomorphology	The state of the s	Left Basal Area (sq.ft/acre)			0.75		Functioning											
		Right Basal Area (sq.ft/acre)																
		Left Stem Density (stems/acre)	210	0.4														
		Right Stem Density (stems/acre)	210	0.4														
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00	1.00	1.00	1.00									l .	
		Pool Spacing Ratio																
	Bed Form Diversity	Pool Depth Ratio	2	1	1.00													
	,	Percent Riffle	60	1														
		Aggradation Ratio																
	Plan Form	Sinuosity	1.3	0.88	0.88													
	Temperature	Summer Daily Maximum (°F)																
	Bacteria	Fecal Coliform (Cfu/100 ml)																
Physicochemical	Organic Carbon	Leaf Litter Processing Rate																
,	Organic carbon	Percent Shredders																
	Nitrogen	Total Nitrogen (mg/L)																
	Phosphorus	Total Phosphorus (mg/L)																
	Macros	Biotic Index																
Biology	****	EPT Taxa Present																
	Fish	North Carolina Index of Biotic Integrity																

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F
Restoration Potential	Level 3 - Geomorphology

		CAICH	MENT ASSESSMENT		
	Categories		Description of Catchment Condition		Rating
	Categories	Poor	Fair	Good	(P/F/G
1	Concentrated Flow (Hydrology)	Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources	No potential for concentrated flow/impairments from adjacent land use	G
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%	G
3	Land Use Change (Hydrology)	Rapidly urbanizing/urban	Single family homes/suburban	Rural communities/slow growth or primarily forested	G
4	Distance to Roads (Hydrology)	Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans	No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.	No roads in or adjacent to project reach. No proposed roads in 10 year DOT plans.	G
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%	G
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width	G
7	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff	Moderate sediment supply from upstream bank erosion and surface runoff	Low sediment supply. Upstream bank erosion and surface runoff is minimal	G
8	Located on or downstream of a 303(d) listed stream TMDL list (Physicochemical)	On, upstream, or downstream of 303(d) and no TMDL/WS Mgmt plan to address deficiencies	On, upstream, or downstream of 303(d) and TMDL/WS Mgmt plan addressing deficiencies	Not on 303(d) list	G
9	Agricultural Land Use (Physicochemical)	Livestock access to stream and/or intensive cropland immediately upstream of project reach.	Livestock access to stream and/or intensive cropland upstream of project reach. A sufficient reach of stream is between Ag. land use and project reach.	There is little to no agricultural land uses or the livestock or cropland is far enough away from project reach to cause no impact to water quality or biology.	Р
10	NPDES Permits (Physicochemical)	Many NPDES permits within catchment or some within one mile of project reach	A few NPDES permits within catchment and none within one mile of project reach	No NPDES permits within catchment and none within one mile of project reach	G
11	Specific Conductance (uS/cm at 25oC) (Physicochemical)	Piedmont = >229; Blue Ridge = >66	Piedmont = 78-229; Blue Ridge = 41-66	Piedmont = <78; Blue Ridge = <41	-
12	Watershed impoundments (Biology)	Impoundment(s) located within 1 mile upstream or downstream of project area and/or has a negative effect on project area and fish passage	No impoundment within 1 mile upstream or downstream of project area OR impoundment does not adversely affect project area but a blockage could exist outside of 1 mile and impact fish passage	No impoundment upstream or downstream of project area OR impoundment provides beneficial effect on project area and allows for fish passage	G
13	Organism Recruitment (Biology)	Channel immediately upstream or downstream of project reach is concrete, piped, or hardened.	Channel immediately upstream or downstream of project reach has native bed and bank material, but is impaired.	Channel immediately upstream or downstream of project reach has native bed and bank material.	G
	Percent of Catchment being Enhanced or Restored	Less than 40% of the total catchment area is draining to the project reach.	40 to 60% of the total catchment area is draining to the project reach.	Greater than 60% of the total catchment area is draining to the project reach.	G
5	Other				

Site Information and				
Performance Standard Stratification				
Project Name:	Banner Branch			
Reach ID:	UT1-R2			
Restoration Potential:	Level 3 - Geomorphology			
Existing Stream Type:	F			
Proposed Stream Type:	С			
Region: Piedmont				
Drainage Area (sqmi):	0.14			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	1917			
Proposed Stream Length (ft):	1917			
Stream Slope (%):	1.5			
Flow Type:	Perennial			
River Basin:	Roanoke			
Stream Temperature:	Warmwater			
Data Collection Season:	Fall			
Valley Type:	Confined Alluvial			

Notes
Users input values that are highlighted based on restoration potential
2. Users select values from a pull-down menu
Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY		
Exisiting Condition Score (ECS)	0.44	
Proposed Condition Score (PCS)	0.45	
Change in Functional Condition (PCS - ECS)	0.01	
Percent Condition Change	2%	
Existing Stream Length (ft)	1917	
Proposed Stream Length (ft)	1917	
Additional Stream Length (ft)	0	
Existing Functional Foot Score (FFS)	843	
Proposed Functional Foot Score (FFS)	863	
Proposed FFS - Existing FFS	19	
Functional Change (%)	2%	

BMP FUNCTIONAL CHANGE SUMMARY				
Existing BMP Functional Feet Score (FFS)	0			
Proposed BMP Functional Feet Score (FFS)	0			
Proposed BMP FFS - Existing BMP FFS	0			
Functional Change (%)				

FUNCTIONAL FEET (FF) SUMMARY				
Existing Stream FFS + Existing BMP FFS	843			
Proposed Stream FFS + Proposed BMP FFS	863			
Total Proposed FFS - Total Existing FFS	20			
Functional Change (%)	2%			

FUNCTION BASED PARAMETERS SUMMARY				
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter	
Hydrology	Catchment Hydrology	0.58	0.58	
Tiyarology	Reach Runoff	0.58	0.58	
Hydraulics	Floodplain Connectivity	0.77	0.77	
	Large Woody Debris			
	Lateral Stability	1.00	1.00	
Geomorphology	Riparian Vegetation	0.49	0.66	
Geomorphology	Bed Material	1.00	1.00	
	Bed Form Diversity	1.00	1.00	
	Plan Form	0.88	0.88	
	Temperature			
	Bacteria			
Physicochemical	Organic Matter			
	Nitrogen			
	Phosphorus			
Biology	Macros			
вююду	Fish			

FUNCTIONAL CATEGORY REPORT CARD					
Functional Category	ECS	PCS	Functional Change		
Hydrology	0.58	0.58	0.00		
Hydraulics	0.77	0.77	0.00		
Geomorphology	0.87	0.91	0.04		
Physicochemical					
Biology					

	EXISTING CON	DITION ASSESSMENT					Roll Up Scoring					
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall			
	Catchment Hydrology	Curve Number	60	0.58	0.58							
Hydrology		Curve Number	60	0.58		0.58 Function	Functioning At Risk					
11741.01067	Reach Runoff	Concentrated Flow Points			0.58	I directioning Activisk						
		Soil Compaction										
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.1	0.84	0.77	0.77	7 0.77	0.77	0.77 0.77	Functioning		
Tryandanes	поварил солиссиясу	Entrenchment Ratio	2.4	0.7	0.77	0.77	Tunctioning					
	Large Woody Debris	LWD Index										
	Earge Woody Debris	# Pieces										
		Erosion Rate (ft/yr)										
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00							
		Percent Streambank Erosion (%)										
		Left Canopy Coverage (%)										
		Right Canopy Coverage (%)						4				
		Left Buffer Width (ft)	30	0.3								
Geomorphology	Riparian Vegetation	Right Buffer Width (ft)	100	0.86	0.49							
	The same of the sa	Left Basal Area (sq.ft/acre)			0.43	0.87	Functioning					
		Right Basal Area (sq.ft/acre)						0.44	Functioning At Risk			
		Left Stem Density (stems/acre)	210	0.4								
		Right Stem Density (stems/acre)	210	0.4								
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.5	1	1.00							
		Pool Spacing Ratio										
	Bed Form Diversity	Pool Depth Ratio	1.8	1	1.00							
		Percent Riffle	70	1								
		Aggradation Ratio										
	Plan Form	Sinuosity	1.3	0.88	0.88							
	Temperature	Summer Daily Maximum (°F)										
	Bacteria	Fecal Coliform (Cfu/100 ml)										
Physicochemical	Organic Carbon	Leaf Litter Processing Rate										
		Percent Shredders										
	Nitrogen	Total Nitrogen (mg/L)										
	Phosphorus	Total Phosphorus (mg/L)										
	Macros	Biotic Index										
Biology		EPT Taxa Present										
	Fish	North Carolina Index of Biotic Integrity										

PROPOSED CONDITION ASSESSMENT					Roll Up Scoring						
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall		
	Catchment Hydrology	Curve Number	60	0.58	0.58						
Hydrology		Curve Number	60	0.58		0.58	Functioning At Risk				
,	Reach Runoff	Concentrated Flow Points			0.58						
		Soil Compaction									
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.1	0.84	0.77	0.77	Functioning				
*****	,	Entrenchment Ratio	2.4	0.7							
	Large Woody Debris	LWD Index									
		# Pieces									
		Erosion Rate (ft/yr)									
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00						
		Percent Streambank Erosion (%)									
		Left Canopy Coverage (%)	100	1							
		Right Canopy Coverage (%)	100	1							
		Left Buffer Width (ft)	30	0.3							
	Riparian Vegetation	Right Buffer Width (ft)	100	0.86	0.66						
Geomorphology	Thiparian vegetation	Left Basal Area (sq.ft/acre)			0.00	0.91	Functioning				
		Right Basal Area (sq.ft/acre)						0.45	Functioning At Risk		
		Left Stem Density (stems/acre)	210	0.4				0.45	r directioning rat triba		
		Right Stem Density (stems/acre)	210	0.4							
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00						
		Pool Spacing Ratio									
	Bed Form Diversity	Pool Depth Ratio	2	1	1.00						
	bed Form biversity	Percent Riffle	60	1	1.00						
		Aggradation Ratio									
	Plan Form	Sinuosity	1.3	0.88	0.88						
	Temperature	Summer Daily Maximum (°F)									
	Bacteria	Fecal Coliform (Cfu/100 ml)									
Physicochemical	Organic Carbon	Leaf Litter Processing Rate									
,		Percent Shredders									
	Nitrogen	Total Nitrogen (mg/L)									
	Phosphorus	Total Phosphorus (mg/L)									
	Macros	Biotic Index									
Biology		EPT Taxa Present						1			
	Fish	North Carolina Index of Biotic Integrity									

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	G		
Restoration Potential	Level 3 - Geomorphology		

Purpose: This form is used to determine the project's restoration potential.

CATCHMENT ASSESSMENT **Description of Catchment Condition** Rating Categories Fair (P/F/G) Poor Good Potential for concentrated flow/impairments Some potential for concentrated flow/impairments No potential for concentrated flow/impairments from G 1 Concentrated Flow (Hydrology) immediately upstream of the project and no to reach restoration site, however, measures are in adjacent land use treatments are in place place to protect resources Between 10% and 25% 2 Impervious cover (Hydrology) Greater than 25% Less than 10% G 3 Land Use Change (Hydrology) Rapidly urbanizing/urban Single family homes/suburban Rural communities/slow growth or primarily forested G No roads in or adjacent to project reach. No more Roads located in or adjacent to project reach No roads in or adjacent to project reach. No 4 Distance to Roads (Hydrology) than one major road proposed in 10 year DOT G and/or major roads proposed in 10 year DOT plans proposed roads in 10 year DOT plans. plans. 5 Percent Forested (Hydrology) >20% and <70% <= 20% >=70% G <50% of contributing stream length has > 25 ft 50-80% of contributing stream length has > 25 ft >80% of contributing stream length has > 25 ft 6 Riparian Vegetation (Geomorphology) G corridor width corridor width corridor width High sediment supply from upstream bank erosion Moderate sediment supply from upstream bank Low sediment supply. Upstream bank erosion and G 7 Sediment Supply (Geomorphology) surface runoff is minimal and surface runoff erosion and surface runoff Located on or downstream of a 303(d) On, upstream, or downstream of 303(d) and no On, upstream, or downstream of 303(d) and G Not on 303(d) list listed stream TMDL list (Physicochemical) TMDL/WS Mgmt plan to address deficiencies TMDL/WS Mgmt plan addressing deficiencies Livestock access to stream and/or intensive There is little to no agricultural land uses or the Livestock access to stream and/or intensive livestock or cropland is far enough away from cropland upstream of project reach. A sufficient 9 Agricultural Land Use (Physicochemical) F cropland immediately upstream of project reach. reach of stream is between Aq. land use and project reach to cause no impact to water quality or project reach. biology. Many NPDES permits within catchment or some A few NPDES permits within catchment and none No NPDES permits within catchment and none 10 NPDES Permits (Physicochemical) G within one mile of project reach within one mile of project reach within one mile of project reach Specific Conductance (uS/cm at 25oC) Piedmont = >229: Blue Ridge = >66 Piedmont = 78-229: Blue Ridge = 41-66 Piedmont = <78: Blue Ridge = <41 (Physicochemical) No impoundment within 1 mile upstream or Impoundment(s) located within 1 mile upstream or downstream of project area OR impoundment does No impoundment upstream or downstream of 12 Watershed impoundments (Biology) downstream of project area and/or has a negative not adversely affect project area but a blockage project area OR impoundment provides beneficial G could exist outside of 1 mile and impact fish effect on project area and allows for fish passage effect on project area and fish passage passage Channel immediately upstream or downstream of Channel immediately upstream or downstream of Channel immediately upstream or downstream of 13 Organism Recruitment (Biology) project reach has native bed and bank material, but G project reach is concrete, piped, or hardened. project reach has native bed and bank material. is impaired. Percent of Catchment being Enhanced or Less than 40% of the total catchment area is 40 to 60% of the total catchment area is draining to Greater than 60% of the total catchment area is G Restored draining to the project reach. the project reach. draining to the project reach. 15 Other

Site Information and				
Performance Standard Stratification				
Project Name: Banner Branch				
Reach ID:	UT1-R3			
Restoration Potential:	Level 3 - Geomorphology			
Existing Stream Type:	С			
Proposed Stream Type: C				
Region: Piedmont				
Drainage Area (sqmi):	0.26			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	861			
Proposed Stream Length (ft):	861			
Stream Slope (%):	1.1			
Flow Type:	Perennial			
River Basin:	Roanoke			
Stream Temperature:	Warmwater			
Data Collection Season:	Fall			
Valley Type:	Confined Alluvial			

Notes	
Users input values that are highlighted based on restoration potential	
Users select values from a pull-down menu	
Leave values blank for field values that were not measured	

FUNCTIONAL CHANGE SUMMARY			
Exisiting Condition Score (ECS)	0.50		
Proposed Condition Score (PCS)	0.50		
Change in Functional Condition (PCS - ECS)	0.00		
Percent Condition Change	0%		
Existing Stream Length (ft)	861		
Proposed Stream Length (ft)	861		
Additional Stream Length (ft)	0		
Existing Functional Foot Score (FFS)	431		
Proposed Functional Foot Score (FFS)	431		
Proposed FFS - Existing FFS	0		
Functional Change (%)	0%		

BMP FUNCTIONAL CHANGE SUMMARY				
Existing BMP Functional Feet Score (FFS)	0			
Proposed BMP Functional Feet Score (FFS)	0			
Proposed BMP FFS - Existing BMP FFS	0			
Functional Change (%)				

FUNCTIONAL FEET (FF) SUMMARY				
Existing Stream FFS + Existing BMP FFS	431			
Proposed Stream FFS + Proposed BMP FFS	431			
Total Proposed FFS - Total Existing FFS 0				
Functional Change (%) 0%				

FUNCTION BASED PARAMETERS SUMMARY				
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter	
Hydrology	Catchment Hydrology	0.80	0.80	
TiyuTology	Reach Runoff	0.80	0.80	
Hydraulics	Floodplain Connectivity	0.77	0.77	
Geomorphology	Large Woody Debris			
	Lateral Stability	1.00	1.00	
	Riparian Vegetation	0.66	0.76	
Geomorphology	Bed Material	1.00	1.00	
	Bed Form Diversity	1.00	1.00	
	Plan Form	0.88	0.88	
	Temperature			
	Bacteria			
Physicochemical	Organic Matter			
	Nitrogen			
	Phosphorus			
Biology	Macros			
	Fish			

FUNCTIONAL CATEGORY REPORT CARD					
Functional Category	ECS	PCS	Functional Change		
Hydrology	0.80	0.80	0.00		
Hydraulics	0.77	0.77	0.00		
Geomorphology	0.91	0.93	0.02		
Physicochemical					
Biology					

	EXISTING COND	DITION ASSESSMENT					Roll Up Scoring	3				
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall			
	Catchment Hydrology	Curve Number	50	8.0	0.80							
Hydrology		Curve Number	50	8.0		0.80	Functioning					
Trydrology	Reach Runoff	Concentrated Flow Points			0.80	0.80	runctioning					
		Soil Compaction										
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.1	0.84	0.77	0.77	0.77	0.77	0.77	Functioning		
	1 loodplain connectivity	Entrenchment Ratio	2.4	0.7	0.77	0.,,	runctioning					
	Large Woody Debris	LWD Index										
	Large Woody Debris	# Pieces										
		Erosion Rate (ft/yr)										
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00							
		Percent Streambank Erosion (%)										
		Left Canopy Coverage (%)										
		Right Canopy Coverage (%)										
	Riparian Vegetation	Left Buffer Width (ft)	100	0.86		0.91	Functioning	0.50	Functioning At Risk			
		Right Buffer Width (ft)	70	0.77	0.66							
Geomorphology		Left Basal Area (sq.ft/acre)			0.00							
		Right Basal Area (sq.ft/acre)										
		Left Stem Density (stems/acre)	400	0.5								
		Right Stem Density (stems/acre)	400	0.5								
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.5	1	1.00							
		Pool Spacing Ratio										
	Bed Form Diversity	Pool Depth Ratio	1.8	1	1.00							
	bed Form biversity	Percent Riffle	70	1	1.00							
		Aggradation Ratio										
	Plan Form	Sinuosity	1.3	0.88	0.88							
	Temperature	Summer Daily Maximum (°F)										
	Bacteria	Fecal Coliform (Cfu/100 ml)										
Physicochemical	Organic Carbon	Leaf Litter Processing Rate										
,		Percent Shredders										
	Nitrogen	Total Nitrogen (mg/L)										
	Phosphorus	Total Phosphorus (mg/L)										
	Macros	Biotic Index										
Biology		EPT Taxa Present										
	Fish	North Carolina Index of Biotic Integrity										

	PROPOSED COM	IDITION ASSESSMENT					Roll Up Scoring	g	
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
	Catchment Hydrology	Curve Number	50	0.8	0.80				
Hydrology		Curve Number	50	0.8		0.80	Functioning	4	
nyaralagy	Reach Runoff	Concentrated Flow Points			0.80	0.00	runctioning		
		Soil Compaction							
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.1	0.84	0.77	0.77	Functioning		
*	,	Entrenchment Ratio	2.4	0.7					
	Large Woody Debris	LWD Index							
		# Pieces							
		Erosion Rate (ft/yr)							
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00				
		Percent Streambank Erosion (%)							
		Left Canopy Coverage (%)	100	1					
		Right Canopy Coverage (%)	100	1					
		Left Buffer Width (ft)	100	0.86					
	Riparian Vegetation	Right Buffer Width (ft)	50	0.72	0.76				
Geomorphology		Left Basal Area (sq.ft/acre)				0.93	Functioning		
		Right Basal Area (sq.ft/acre)						0.50	Functioning At Risk
		Left Stem Density (stems/acre)	400	0.5					. E.
		Right Stem Density (stems/acre)	400	0.5					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00				
		Pool Spacing Ratio							
	Bed Form Diversity	Pool Depth Ratio	1.8	1	1.00				
		Percent Riffle	70	1					
		Aggradation Ratio							
	Plan Form	Sinuosity	1.3	0.88	0.88				
	Temperature	Summer Daily Maximum (°F)							
	Bacteria	Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate							
	-	Percent Shredders							
	Nitrogen	Total Nitrogen (mg/L)							
	Phosphorus	Total Phosphorus (mg/L)						4	
	Macros	Biotic Index							
Biology		EPT Taxa Present							
	Fish	North Carolina Index of Biotic Integrity							

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F
Restoration Potential	Level 3 - Geomorphology

CATCHMENT ASSESSMENT								
	Categories		Description of Catchment Condition		Rating			
	Categories	Poor	Fair	Good	(P/F/G			
1	Concentrated Flow (Hydrology)	Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources	No potential for concentrated flow/impairments from adjacent land use	F			
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%	G			
3	Land Use Change (Hydrology)	Rapidly urbanizing/urban	Single family homes/suburban	Rural communities/slow growth or primarily forested	G			
4	Distance to Roads (Hydrology)	Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans	No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.	No roads in or adjacent to project reach. No proposed roads in 10 year DOT plans.	G			
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%	F			
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width	F			
7	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff	Moderate sediment supply from upstream bank erosion and surface runoff	Low sediment supply. Upstream bank erosion and surface runoff is minimal	F			
8	Located on or downstream of a 303(d) listed stream TMDL list (Physicochemical)	On, upstream, or downstream of 303(d) and no TMDL/WS Mgmt plan to address deficiencies	On, upstream, or downstream of 303(d) and TMDL/WS Mgmt plan addressing deficiencies	Not on 303(d) list	G			
9	Agricultural Land Use (Physicochemical)	Livestock access to stream and/or intensive cropland immediately upstream of project reach.	Livestock access to stream and/or intensive cropland upstream of project reach. A sufficient reach of stream is between Ag. land use and project reach.	There is little to no agricultural land uses or the livestock or cropland is far enough away from project reach to cause no impact to water quality or biology.	Р			
10	NPDES Permits (Physicochemical)	Many NPDES permits within catchment or some within one mile of project reach	A few NPDES permits within catchment and none within one mile of project reach	No NPDES permits within catchment and none within one mile of project reach	G			
11	Specific Conductance (uS/cm at 25oC) (Physicochemical)	Piedmont = >229; Blue Ridge = >66	Piedmont = 78-229; Blue Ridge = 41-66	Piedmont = <78; Blue Ridge = <41	-			
12	Watershed impoundments (Biology)	Impoundment(s) located within 1 mile upstream or downstream of project area and/or has a negative effect on project area and fish passage	No impoundment within 1 mile upstream or downstream of project area OR impoundment does not adversely affect project area but a blockage could exist outside of 1 mile and impact fish passage	No impoundment upstream or downstream of project area OR impoundment provides beneficial effect on project area and allows for fish passage	G			
13	Organism Recruitment (Biology)	Channel immediately upstream or downstream of project reach is concrete, piped, or hardened.	Channel immediately upstream or downstream of project reach has native bed and bank material, but is impaired.	Channel immediately upstream or downstream of project reach has native bed and bank material.	G			
	Percent of Catchment being Enhanced or Restored	Less than 40% of the total catchment area is draining to the project reach.	40 to 60% of the total catchment area is draining to the project reach.	Greater than 60% of the total catchment area is draining to the project reach.	G			
5	Other							

Site Information and				
Performance Stan	dard Stratification			
Project Name:	Banner Branch			
Reach ID:	UT2			
Restoration Potential:	Level 3 - Geomorphology			
Existing Stream Type:	F			
Proposed Stream Type:	В			
Region:	Piedmont			
Drainage Area (sqmi):	0.044			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	1347			
Proposed Stream Length (ft):	1347			
Stream Slope (%):	3.4			
Flow Type:	Perennial			
River Basin:	Roanoke			
Stream Temperature:	Warmwater			
Data Collection Season:	Fall			
Valley Type:	Confined Alluvial			

Notes
Users input values that are highlighted based on restoration potential
2. Users select values from a pull-down menu
Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY						
Exisiting Condition Score (ECS)	0.30					
Proposed Condition Score (PCS)	0.44					
Change in Functional Condition (PCS - ECS)	0.14					
Percent Condition Change	47%					
Existing Stream Length (ft)	1347					
Proposed Stream Length (ft)	1347					
Additional Stream Length (ft)	0					
Existing Functional Foot Score (FFS)	404					
Proposed Functional Foot Score (FFS)	593					
Proposed FFS - Existing FFS	189					
Functional Change (%)	47%					

BMP FUNCTIONAL CHANGE SUMMARY					
Existing BMP Functional Feet Score (FFS)	0				
Proposed BMP Functional Feet Score (FFS)	0				
Proposed BMP FFS - Existing BMP FFS	0				
Functional Change (%)					

FUNCTIONAL FEET (FF) SUMMARY					
Existing Stream FFS + Existing BMP FFS 404					
Proposed Stream FFS + Proposed BMP FFS	593				
Total Proposed FFS - Total Existing FFS	189				
Functional Change (%)	47%				

FUNCTION BASED PARAMETERS SUMMARY							
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter				
Hydrology	Catchment Hydrology	0.45	0.45				
-	Reach Runoff	0.45	0.45				
Hydraulics	Floodplain Connectivity	0.57	1.00				
	Large Woody Debris						
	Lateral Stability	0.50	1.00				
Geomorphology	Riparian Vegetation	0.33	0.70				
Geomorphology	Bed Material	1.00	1.00				
	Bed Form Diversity	0.65	1.00				
	Plan Form	0.00	0.00				
	Temperature						
	Bacteria						
Physicochemical	Organic Matter						
	Nitrogen						
	Phosphorus						
Biology	Macros						
biology	Fish						

FUNCTIONAL CATEGORY REPORT CARD							
Functional Category	ECS	PCS	Functional Change				
Hydrology	0.45	0.45	0.00				
Hydraulics	0.57	1.00	0.43				
Geomorphology	0.50	0.74	0.24				
Physicochemical							
Biology							

	EXISTING CONDITION ASSESSMENT						Roll Up Scoring		
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
	Catchment Hydrology	Curve Number	65	0.45	0.45		-		
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk		
,8,	Reach Runoff	Concentrated Flow Points			0.45				
		Soil Compaction							
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.1	0.84	0.57	0.57	Functioning At Risk		
	· · ·	Entrenchment Ratio	1.2	0.3		*	-		
	Large Woody Debris	LWD Index						l l	
		# Pieces							
	Lateral Stability	Erosion Rate (ft/yr)			0.50				
	Lateral Stability	Dominant BEHI/NBS	M/M	0.5	0.50	_			
		Percent Streambank Erosion (%)						4	
		Left Canopy Coverage (%)							
		Right Canopy Coverage (%)							
	Riparian Vegetation	Left Buffer Width (ft)	20	0.47		0.50 Function	Functioning At Risk	0.30	Functioning At Risk
Geomorphology		Right Buffer Width (ft)	20	0.47	0.33				
Geomorphology		Left Basal Area (sq.ft/acre)							
		Right Basal Area (sq.ft/acre)							
		Left Stem Density (stems/acre)	100	0.19					
		Right Stem Density (stems/acre)	100	0.19					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.5	1	1.00				
		Pool Spacing Ratio							
	Bed Form Diversity	Pool Depth Ratio	1.8	1	0.65				
		Percent Riffle	70	0.3					
	Plan Form	Aggradation Ratio		0					
	Temperature	Sinuosity	1.14	0	0.00				
	Bacteria	Summer Daily Maximum (°F)							
		Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate Percent Shredders							
	Nitrogen	Total Nitrogen (mg/L)				4			
	Phosphorus	Total Phosphorus (mg/L)							
	·	Biotic Index							
Biology	Macros	EPT Taxa Present							
	Fish	North Carolina Index of Biotic Integrity							
	11311	North Carolina muck of Biotic integrity							

PROPOSED CONDITION ASSESSMENT			Roll Up Scoring							
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall	
Hydrology	Catchment Hydrology	Curve Number	65	0.45	0.45					
		Curve Number	65	0.45		0.45	Functioning At Risk			
	Reach Runoff	Concentrated Flow Points			0.45		T directioning the resid	1		
		Soil Compaction								
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1	1	1.00 1.00	1.00 1.00	Functioning	i i		
** ** **	,	Entrenchment Ratio	2.4	1						
	Large Woody Debris	LWD Index								
		# Pieces								
		Erosion Rate (ft/yr)								
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00					
		Percent Streambank Erosion (%)								
		Left Canopy Coverage (%)	100	1						
		Right Canopy Coverage (%)	100	1						
		Left Buffer Width (ft)	30	0.7				4		
	Riparian Vegetation	Right Buffer Width (ft)	30	0.7	0.70					
Geomorphology	,	Left Basal Area (sq.ft/acre)				0.74	Functioning			
		Right Basal Area (sq.ft/acre)						0.44	Functioning At Risk	
		Left Stem Density (stems/acre)	210	0.4						
		Right Stem Density (stems/acre)	210	0.4				4		
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.6	1	1.00					
		Pool Spacing Ratio								
	Bed Form Diversity	Pool Depth Ratio	1.8	1	1.00			1		
	· ·	Percent Riffle	60	1						
		Aggradation Ratio								
	Plan Form	Sinuosity	1.1	0	0.00					
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	Fecal Coliform (Cfu/100 ml)								
Physicochemical	Organic Carbon	Leaf Litter Processing Rate								
		Percent Shredders								
	Nitrogen	Total Nitrogen (mg/L)						1		
	Phosphorus	Total Phosphorus (mg/L)								
Pieles	Macros	Biotic Index								
Biology		EPT Taxa Present								
	Fish	North Carolina Index of Biotic Integrity								

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F
Restoration Potential	Level 3 - Geomorphology

CATCHMENT ASSESSMENT							
	Categories		Description of Catchment Condition		Rating		
	Categories	Poor	Fair	Good	(P/F/G		
1	Concentrated Flow (Hydrology)	Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources	No potential for concentrated flow/impairments from adjacent land use	F		
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%	G		
3	Land Use Change (Hydrology)	Rapidly urbanizing/urban	Single family homes/suburban	Rural communities/slow growth or primarily forested	G		
4	Distance to Roads (Hydrology)	Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans	No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.	No roads in or adjacent to project reach. No proposed roads in 10 year DOT plans.	G		
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%	F		
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width	F		
7	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff	Moderate sediment supply from upstream bank erosion and surface runoff	Low sediment supply. Upstream bank erosion and surface runoff is minimal	F		
8	Located on or downstream of a 303(d) listed stream TMDL list (Physicochemical)	On, upstream, or downstream of 303(d) and no TMDL/WS Mgmt plan to address deficiencies	On, upstream, or downstream of 303(d) and TMDL/WS Mgmt plan addressing deficiencies	Not on 303(d) list	G		
9	Agricultural Land Use (Physicochemical)	Livestock access to stream and/or intensive cropland immediately upstream of project reach.	Livestock access to stream and/or intensive cropland upstream of project reach. A sufficient reach of stream is between Ag. land use and project reach.	There is little to no agricultural land uses or the livestock or cropland is far enough away from project reach to cause no impact to water quality or biology.	Р		
10	NPDES Permits (Physicochemical)	Many NPDES permits within catchment or some within one mile of project reach	A few NPDES permits within catchment and none within one mile of project reach	No NPDES permits within catchment and none within one mile of project reach	G		
11	Specific Conductance (uS/cm at 25oC) (Physicochemical)	Piedmont = >229; Blue Ridge = >66	Piedmont = 78-229; Blue Ridge = 41-66	Piedmont = <78; Blue Ridge = <41	-		
12	Watershed impoundments (Biology)	Impoundment(s) located within 1 mile upstream or downstream of project area and/or has a negative effect on project area and fish passage	No impoundment within 1 mile upstream or downstream of project area OR impoundment does not adversely affect project area but a blockage could exist outside of 1 mile and impact fish passage	No impoundment upstream or downstream of project area OR impoundment provides beneficial effect on project area and allows for fish passage	G		
13	Organism Recruitment (Biology)	Channel immediately upstream or downstream of project reach is concrete, piped, or hardened.	Channel immediately upstream or downstream of project reach has native bed and bank material, but is impaired.	Channel immediately upstream or downstream of project reach has native bed and bank material.	G		
	Percent of Catchment being Enhanced or Restored	Less than 40% of the total catchment area is draining to the project reach.	40 to 60% of the total catchment area is draining to the project reach.	Greater than 60% of the total catchment area is draining to the project reach.	G		
5	Other						

Site Information and				
Performance Standard Stratification				
Project Name:	Banner Branch			
Reach ID:	UT2A			
Restoration Potential:	Level 3 - Geomorphology			
Existing Stream Type:	E			
Proposed Stream Type:	В			
Region:	Piedmont			
Drainage Area (sqmi):	0.005			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	289			
Proposed Stream Length (ft):	289			
Stream Slope (%):	4.5			
Flow Type:	Perennial			
River Basin:	Roanoke			
Stream Temperature:	Warmwater			
Data Collection Season:	Fall			
Valley Type:	Confined Alluvial			

Notes	
 Users input values that are highlighted based on restoration potential 	
2. Users select values from a pull-down menu	
Leave values blank for field values that were not measured	

FUNCTIONAL CHANGE SUMMARY					
Exisiting Condition Score (ECS)	0.31				
Proposed Condition Score (PCS)	0.47				
Change in Functional Condition (PCS - ECS)	0.16				
Percent Condition Change	52%				
Existing Stream Length (ft)	289				
Proposed Stream Length (ft)	289				
Additional Stream Length (ft)	0				
Existing Functional Foot Score (FFS)	90				
Proposed Functional Foot Score (FFS)	136				
Proposed FFS - Existing FFS	46				
Functional Change (%)	52%				

0
0
0

FUNCTIONAL FEET (FF) SUMMARY					
Existing Stream FFS + Existing BMP FFS	90				
Proposed Stream FFS + Proposed BMP FFS	136				
Total Proposed FFS - Total Existing FFS	46				
Functional Change (%)	51%				

FUNCTION BASED PARAMETERS SUMMARY						
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter			
Hydrology	Catchment Hydrology	0.45	0.45			
Trydrology	Reach Runoff	0.45	0.45			
Hydraulics	Floodplain Connectivity	0.67	1.00			
	Large Woody Debris					
	Lateral Stability	0.50	1.00			
Geomorphology	Riparian Vegetation	0.33	0.70			
Geomorphology	Bed Material	1.00	1.00			
	Bed Form Diversity	0.43	1.00			
	Plan Form	0.00	0.70			
	Temperature					
	Bacteria					
Physicochemical	Organic Matter					
	Nitrogen					
	Phosphorus					
Dialogy	Macros					
Biology	Fish					

FUNCTIONAL CATEGORY REPORT CARD						
Functional Category	ECS PCS		Functional Change			
Hydrology	0.45	0.45	0.00			
Hydraulics	0.67	1.00	0.33			
Geomorphology	0.45	0.88	0.43			
Physicochemical						
Biology						

	EXISTING CONDITION ASSESSMENT					Roll Up Scoring			
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
	Catchment Hydrology	Curve Number	65	0.45	0.45				
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk		
	Reach Runoff	Concentrated Flow Points			0.45		Turictioning At Risk		
		Soil Compaction							
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.1	0.84	0.67 0.67	0.67 0.67	0.67 Functioning At Risk		
Trydraulies	Tioodplain connectivity	Entrenchment Ratio	1.3	0.5		0.07	T directorning 7 te fullsk		
	Large Woody Debris	LWD Index							
	Earge Woody Bebris	# Pieces							
		Erosion Rate (ft/yr)							
	Lateral Stability	Dominant BEHI/NBS	M/M	0.5	0.50				
		Percent Streambank Erosion (%)				-			
		Left Canopy Coverage (%)					<u> </u>		
		Right Canopy Coverage (%)							
	Riparian Vegetation	Left Buffer Width (ft)	20	0.47					
Geomorphology		Right Buffer Width (ft)	20	0.47	0.33				
		Left Basal Area (sq.ft/acre)			0.33	0.45 Functioning	.45 Functioning At Risk		Functioning At Risk
		Right Basal Area (sq.ft/acre)							
		Left Stem Density (stems/acre)	100	0.19					
		Right Stem Density (stems/acre)	100	0.19					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.5	1	1.00				
		Pool Spacing Ratio							
	Bed Form Diversity	Pool Depth Ratio	1.4	0.56	0.43			<mark>/</mark> /	
	Dea Form Diversity	Percent Riffle	70	0.3	0.43				
		Aggradation Ratio						<mark>-</mark>	
	Plan Form	Sinuosity	1.13	0	0.00				
	Temperature	Summer Daily Maximum (°F)							
	Bacteria	Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate							
i nysicochemica:	Organic carbon	Percent Shredders							
	Nitrogen	Total Nitrogen (mg/L)							
	Phosphorus	Total Phosphorus (mg/L)							
	Macros	Biotic Index							
Biology		EPT Taxa Present						l	
	Fish	North Carolina Index of Biotic Integrity						l	

Catchment Assessment Form

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F
Restoration Potential	Level 3 - Geomorphology

Purpose: This form is used to determine the project's restoration potential.

CATCHMENT ASSESSMENT							
	Categories		Description of Catchment Condition		Rating		
	Categories	Poor	Fair	Good	(P/F/G)		
1	Concentrated Flow (Hydrology)	Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources	No potential for concentrated flow/impairments from adjacent land use	F		
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%	G		
3	Land Use Change (Hydrology)	Rapidly urbanizing/urban	Single family homes/suburban	Rural communities/slow growth or primarily forested	G		
4	Distance to Roads (Hydrology) Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans. No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans. No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.			G			
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%	F		
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width	F		
7	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff	Moderate sediment supply from upstream bank erosion and surface runoff	Low sediment supply. Upstream bank erosion and surface runoff is minimal	F		
8	Located on or downstream of a 303(d) listed stream TMDL list (Physicochemical)	On, upstream, or downstream of 303(d) and no TMDL/WS Mgmt plan to address deficiencies	On, upstream, or downstream of 303(d) and TMDL/WS Mgmt plan addressing deficiencies	Not on 303(d) list	G		
9	Agricultural Land Use (Physicochemical)	Livestock access to stream and/or intensive cropland immediately upstream of project reach.	Livestock access to stream and/or intensive cropland upstream of project reach. A sufficient reach of stream is between Ag. land use and project reach.	There is little to no agricultural land uses or the livestock or cropland is far enough away from project reach to cause no impact to water quality or biology.	Р		
10	NPDES Permits (Physicochemical)	Many NPDES permits within catchment or some within one mile of project reach	A few NPDES permits within catchment and none within one mile of project reach	No NPDES permits within catchment and none within one mile of project reach	G		
11	Specific Conductance (uS/cm at 25oC) (Physicochemical)	Piedmont = >229; Blue Ridge = >66	Piedmont = 78-229; Blue Ridge = 41-66	Piedmont = <78; Blue Ridge = <41	G		
12	Watershed impoundments (Biology)	Impoundment(s) located within 1 mile upstream or downstream of project area and/or has a negative effect on project area and fish passage	No impoundment within 1 mile upstream or downstream of project area OR impoundment does not adversely affect project area but a blockage could exist outside of 1 mile and impact fish passage	No impoundment upstream or downstream of project area OR impoundment provides beneficial effect on project area and allows for fish passage	G		
13	Organism Recruitment (Biology)	Channel immediately upstream or downstream of project reach is concrete, piped, or hardened.	Channel immediately upstream or downstream of project reach has native bed and bank material, but is impaired.	Channel immediately upstream or downstream of project reach has native bed and bank material.	G		
14	Percent of Catchment being Enhanced or Restored	Less than 40% of the total catchment area is draining to the project reach.	40 to 60% of the total catchment area is draining to the project reach.	Greater than 60% of the total catchment area is draining to the project reach.	G		
15	Other						

Site Information and				
Performance Standard Stratification				
Project Name:	Banner Branch			
Reach ID:	UT4-R1			
Restoration Potential:	Level 3 - Geomorphology			
Existing Stream Type:	F			
Proposed Stream Type:	Bc			
Region:	Piedmont			
Drainage Area (sqmi):	0.24			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	4634			
Proposed Stream Length (ft):	4374			
Stream Slope (%):	2			
Flow Type:	Perennial			
River Basin:	Roanoke			
Stream Temperature:	Warmwater			
Data Collection Season:	Fall			
Valley Type:	Confined Alluvial			

Notes
Users input values that are highlighted based on restoration potential
Users select values from a pull-down menu
Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY				
Exisiting Condition Score (ECS)	0.29			
Proposed Condition Score (PCS)	0.47			
Change in Functional Condition (PCS - ECS)	0.18			
Percent Condition Change	62%			
Existing Stream Length (ft)	4634			
Proposed Stream Length (ft)	4374			
Additional Stream Length (ft)	-260			
Existing Functional Foot Score (FFS)	1344			
Proposed Functional Foot Score (FFS)	2056			
Proposed FFS - Existing FFS	712			
Functional Change (%)	53%			

BMP FUNCTIONAL CHANGE SUMMARY				
Existing BMP Functional Feet Score (FFS)	0			
Proposed BMP Functional Feet Score (FFS)	0			
Proposed BMP FFS - Existing BMP FFS	0			
Functional Change (%)				

FUNCTIONAL FEET (FF) SUMMARY					
Existing Stream FFS + Existing BMP FFS	1344				
Proposed Stream FFS + Proposed BMP FFS	2056				
Total Proposed FFS - Total Existing FFS	712				
Functional Change (%)	53%				

1	FUNCTION BASED PARAMETERS SUMMARY						
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter				
Hydrology	Catchment Hydrology	0.45	0.45				
rrydrology	Reach Runoff	0.45	0.45				
Hydraulics	Floodplain Connectivity	0.41	0.97				
	Large Woody Debris						
Geomorphology	Lateral Stability	0.50	1.00				
	Riparian Vegetation	0.38	0.80				
	Bed Material	0.65	1.00				
	Bed Form Diversity	0.63	1.00				
	Plan Form	0.76	0.76				
	Temperature						
	Bacteria						
Physicochemical	Organic Matter						
	Nitrogen						
	Phosphorus						
Biology	Macros						
Biology	Fish						

FUNCTIONAL CATEGORY REPORT CARD							
Functional Category	ECS	PCS	Functional Change				
Hydrology	0.45	0.45	0.00				
Hydraulics	0.41	0.97	0.56				
Geomorphology	0.58	0.91	0.33				
Physicochemical							
Biology							

EXISTING CONDITION ASSESSMENT					Roll Up Scoring				
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
	Catchment Hydrology	Curve Number	65	0.45	0.45				
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk		
,8,	Reach Runoff	Concentrated Flow Points			0.45				
		Soil Compaction							
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.7	0	0.41	0.41	Functioning At Risk		
***************************************		Entrenchment Ratio	1.7	0.81					
	Large Woody Debris	LWD Index							
		# Pieces							
		Erosion Rate (ft/yr)							
	Lateral Stability	Dominant BEHI/NBS	M/M	0.5	0.50				
		Percent Streambank Erosion (%)							
		Left Canopy Coverage (%)							
		Right Canopy Coverage (%)							
	Riparian Vegetation	Left Buffer Width (ft)	15	0.35					
		Right Buffer Width (ft)	30	0.7	0.38				
Geomorphology		Left Basal Area (sq.ft/acre)			0.58	Functioning At Risk			
		Right Basal Area (sq.ft/acre)						0.29	Not Functioning
		Left Stem Density (stems/acre)	120	0.23					
		Right Stem Density (stems/acre)	120	0.23					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.1	0.65	0.65				
		Pool Spacing Ratio							
	Bed Form Diversity	Pool Depth Ratio	1.4	0.56	0.63				
	,	Percent Riffle	75	0.69					
		Aggradation Ratio							
	Plan Form	Sinuosity	1.2	0.76	0.76				
	Temperature	Summer Daily Maximum (°F)							
	Bacteria	Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate							
		Percent Shredders							
	Nitrogen	Total Nitrogen (mg/L)							
	Phosphorus	Total Phosphorus (mg/L)							
	Macros	Biotic Index							
Biology		EPT Taxa Present							
	Fish	North Carolina Index of Biotic Integrity							

	PROPOSED CONDITION ASSESSMENT					Roll Up Scoring								
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall					
	Catchment Hydrology	Curve Number	65	0.45	0.45									
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk							
,	Reach Runoff	Concentrated Flow Points			0.45									
		Soil Compaction												
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1	1	0.97	0.97	Functioning							
** ** **	,	Entrenchment Ratio	2	0.93										
	Large Woody Debris	LWD Index												
		# Pieces												
		Erosion Rate (ft/yr)												
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00									
		Percent Streambank Erosion (%)												
		Left Canopy Coverage (%)	100	1										
		Right Canopy Coverage (%)	100	1										
		Left Buffer Width (ft)	50	1										
	Riparian Vegetation	Right Buffer Width (ft)	50	1	0.80	0.80 0.91	Functioning							
Geomorphology		Left Basal Area (sq.ft/acre)												
		Right Basal Area (sq.ft/acre)						0.47	Functioning At Risk					
		Left Stem Density (stems/acre)	210	0.4										
		Right Stem Density (stems/acre)	210	0.4								1		
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.2	1	1.00			_		4 .				
		Pool Spacing Ratio												
	Bed Form Diversity	Pool Depth Ratio	1.8	1	1.00									
	· ·	Percent Riffle	60	1										
		Aggradation Ratio												
	Plan Form	Sinuosity	1.2	0.76	0.76									
	Temperature	Summer Daily Maximum (°F)												
	Bacteria	Fecal Coliform (Cfu/100 ml)												
Physicochemical	Organic Carbon	Leaf Litter Processing Rate												
		Percent Shredders												
	Nitrogen	Total Nitrogen (mg/L)						1						
	Phosphorus	Total Phosphorus (mg/L)												
Pieles	Macros	Biotic Index												
Biology		EPT Taxa Present												
	Fish	North Carolina Index of Biotic Integrity												

Catchment Assessment Form

Rater(s): KMV

Date: 10/9/19

Overall Catchment Condition	F
Restoration Potential	Level 5 - Biology

Purpose: This form is used to determine the project's restoration potential.

CATCHMENT ASSESSMENT									
	Categories		Description of Catchment Condition		Rating				
		Poor	Fair	Good	(P/F/G				
1 Concentrated Flow (Hydrology)		Potential for concentrated flow/impairments immediately upstream of the project and no treatments are in place	Some potential for concentrated flow/impairments to reach restoration site, however, measures are in place to protect resources						
2	Impervious cover (Hydrology)	Greater than 25%	Between 10% and 25%	Less than 10%	G				
3	Land Use Change (Hydrology)	Rapidly urbanizing/urban	Single family homes/suburban	Rural communities/slow growth or primarily forested	G				
4	Distance to Roads (Hydrology)	Roads located in or adjacent to project reach and/or major roads proposed in 10 year DOT plans	No roads in or adjacent to project reach. No more than one major road proposed in 10 year DOT plans.	No roads in or adjacent to project reach. No proposed roads in 10 year DOT plans.	G				
5	Percent Forested (Hydrology)	<= 20%	>20% and <70%	>=70%	F				
6	Riparian Vegetation (Geomorphology)	<50% of contributing stream length has > 25 ft corridor width	50-80% of contributing stream length has > 25 ft corridor width	>80% of contributing stream length has > 25 ft corridor width	F				
7	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff	Moderate sediment supply from upstream bank erosion and surface runoff	Low sediment supply. Upstream bank erosion and surface runoff is minimal	F				
8	Located on or downstream of a 303(d) listed stream TMDL list (Physicochemical)	On, upstream, or downstream of 303(d) and no TMDL/WS Mgmt plan to address deficiencies	On, upstream, or downstream of 303(d) and TMDL/WS Mgmt plan addressing deficiencies	Not on 303(d) list	G				
9	Agricultural Land Use (Physicochemical)	Livestock access to stream and/or intensive cropland immediately upstream of project reach.	Livestock access to stream and/or intensive cropland upstream of project reach. A sufficient reach of stream is between Ag. land use and project reach.	There is little to no agricultural land uses or the livestock or cropland is far enough away from project reach to cause no impact to water quality or biology.	Р				
10	NPDES Permits (Physicochemical)	Many NPDES permits within catchment or some within one mile of project reach	A few NPDES permits within catchment and none within one mile of project reach	No NPDES permits within catchment and none within one mile of project reach	G				
11	Specific Conductance (uS/cm at 25oC) (Physicochemical)	Piedmont = >229; Blue Ridge = >66	Piedmont = 78-229; Blue Ridge = 41-66	Piedmont = <78; Blue Ridge = <41	G				
12	Watershed impoundments (Biology)	Impoundment(s) located within 1 mile upstream or downstream of project area and/or has a negative effect on project area and fish passage	No impoundment within 1 mile upstream or downstream of project area OR impoundment does not adversely affect project area but a blockage could exist outside of 1 mile and impact fish passage	No impoundment upstream or downstream of project area OR impoundment provides beneficial effect on project area and allows for fish passage	G				
13	Organism Recruitment (Biology)	Channel immediately upstream or downstream of project reach is concrete, piped, or hardened.	Channel immediately upstream or downstream of project reach has native bed and bank material, but is impaired.	Channel immediately upstream or downstream of project reach has native bed and bank material.	G				
	Percent of Catchment being Enhanced or Restored	Less than 40% of the total catchment area is draining to the project reach.	40 to 60% of the total catchment area is draining to the project reach.	Greater than 60% of the total catchment area is draining to the project reach.	G				
15	Other								

Site Information and					
Performance Stan	dard Stratification				
Project Name:	Banner Branch				
Reach ID:	UT4-R2				
Restoration Potential:	Level 5 - Biology				
Existing Stream Type:	E				
Proposed Stream Type:	С				
Region:	Piedmont				
Drainage Area (sqmi):	0.35				
Proposed Bed Material:	Gravel				
Existing Stream Length (ft):	1787				
Proposed Stream Length (ft):	1787				
Stream Slope (%):	1.1				
Flow Type:	Perennial				
River Basin:	Roanoke				
Stream Temperature:	Warmwater				
Data Collection Season:	Fall				
Valley Type:	Unconfined Alluvial				

Notes
Users input values that are highlighted based on restoration potential
Users select values from a pull-down menu
Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY						
Exisiting Condition Score (ECS)	0.36					
Proposed Condition Score (PCS)	0.62					
Change in Functional Condition (PCS - ECS)	0.26					
Percent Condition Change	72%					
Existing Stream Length (ft)	1787					
Proposed Stream Length (ft)	1787					
Additional Stream Length (ft)	0					
Existing Functional Foot Score (FFS)	643					
Proposed Functional Foot Score (FFS)	1108					
Proposed FFS - Existing FFS	465					
Functional Change (%)	72%					

BMP FUNCTIONAL CHANGE SUMMARY						
Existing BMP Functional Feet Score (FFS)	0					
Proposed BMP Functional Feet Score (FFS)	0					
Proposed BMP FFS - Existing BMP FFS	0					
Functional Change (%)						

FUNCTIONAL FEET (FF) SUMMARY						
Existing Stream FFS + Existing BMP FFS	643					
Proposed Stream FFS + Proposed BMP FFS	1108					
Total Proposed FFS - Total Existing FFS	465					
Functional Change (%) 72%						

FUNCTION BASED PARAMETERS SUMMARY							
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter				
Hydrology	Catchment Hydrology	0.45	0.45				
TiyuTology	Reach Runoff	0.45	0.45				
Hydraulics	Floodplain Connectivity	0.64	0.64				
	Large Woody Debris						
	Lateral Stability	0.70	1.00				
Geomorphology	Riparian Vegetation	0.21	0.71				
Geomorphology	Bed Material	0.65	1.00				
	Bed Form Diversity	0.78	1.00				
	Plan Form	1.00	1.00				
	Temperature						
	Bacteria						
Physicochemical	Organic Matter	0.00	0.36				
	Nitrogen						
	Phosphorus						
Biology	Macros	0.04	0.71				
ыоюду	Fish						

FUN	ICTIONAL CA	TEGORY REPORT	CARD
Functional Category	ECS	PCS	Functional Change
Hydrology	0.45	0.45	0.00
Hydraulics	0.64	0.64	0.00
Geomorphology	0.67	0.94	0.27
Physicochemical	0.00	0.36	0.36
Biology	0.04	0.71	0.67

	EXISTING CONDITION ASSESSMENT						Roll Up Scoring		
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
	Catchment Hydrology	Curve Number	65	0.45	0.45				
Hydrology		Curve Number	65	0.45	0.45		0.45 Functioning At Risk		
- i yai ology	Reach Runoff	Concentrated Flow Points			0.45	0.43		l l	
		Soil Compaction							
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.4	0.43	0.64	0.64	Functioning At Risk		
.,	,	Entrenchment Ratio	3.7	0.85			8		
	Large Woody Debris	LWD Index							
	. 5 ,	# Pieces							
		Erosion Rate (ft/yr)							
	Lateral Stability	Dominant BEHI/NBS	L/M	0.7	0.70				
		Percent Streambank Erosion (%)							
		Left Canopy Coverage (%)							
	Riparian Vegetation	Right Canopy Coverage (%)					Functioning At Risk		Functioning At Risk
		Left Buffer Width (ft)	15	0.07					
		Right Buffer Width (ft)	30	0.3	0.21				
Geomorphology		Left Basal Area (sq.ft/acre)			-	0.67			
		Right Basal Area (sq.ft/acre)							
		Left Stem Density (stems/acre)	120	0.23					
		Right Stem Density (stems/acre)	120	0.23					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.1	0.65	0.65				
		Pool Spacing Ratio							
	Bed Form Diversity	Pool Depth Ratio	1.4	0.56	0.78				
	· ·	Percent Riffle	70	1					
		Aggradation Ratio							
	Plan Form	Sinuosity	1.2	1	1.00				
	Temperature	Summer Daily Maximum (°F)							
	Bacteria	Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate			0.00	0.00	Not Functioning		
		Percent Shredders	0	0					
	Nitrogen	Total Nitrogen (mg/L)							
	Phosphorus	Total Phosphorus (mg/L)							
Biology	Macros	Biotic Index	6.65	0.08	0.04	0.04	Not Functioning	l	
biology	Fish	EPT Taxa Present	0	0		0.04	Not Functioning		
	FISH	North Carolina Index of Biotic Integrity							

	PROPOSED CONDITION ASSESSMENT						Roll Up Scoring		
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	Overall	Overall
	Catchment Hydrology	Curve Number	65	0.45	0.45				
Hydrology		Curve Number	65	0.45		0.45	Functioning At Risk		
Tryat ology	Reach Runoff	Concentrated Flow Points			0.45	0.45	Tunctioning / te trisk		
		Soil Compaction							
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.4	0.43	0.64	0.64	0.64 Functioning At Risk		
.,	,	Entrenchment Ratio	3.7	0.85		****			
	Large Woody Debris	LWD Index							
		# Pieces							
		Erosion Rate (ft/yr)							Functioning At Risk
	Lateral Stability	Dominant BEHI/NBS	L/L	1	1.00				
		Percent Streambank Erosion (%)						0.62	
		Left Canopy Coverage (%)	100	1					
	Riparian Vegetation	Right Canopy Coverage (%)	100	1			Functioning		
		Left Buffer Width (ft)	50	0.72					
		Right Buffer Width (ft)	50	0.72	0.71				
Geomorphology		Left Basal Area (sq.ft/acre)			0.71	0.94			
		Right Basal Area (sq.ft/acre)							
		Left Stem Density (stems/acre)	210	0.4					
		Right Stem Density (stems/acre)	210	0.4					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	0.2	1	1.00				
		Pool Spacing Ratio							
	Bed Form Diversity	Pool Depth Ratio	1.8	1	1.00			i I	
	bed Form biversity	Percent Riffle	70	1	1.00				
		Aggradation Ratio							
	Plan Form	Sinuosity	1.2	1	1.00				
	Temperature	Summer Daily Maximum (°F)							
	Bacteria	Fecal Coliform (Cfu/100 ml)							
Physicochemical	Organic Carbon	Leaf Litter Processing Rate			0.36	0.36	Functioning At Risk		
,		Percent Shredders	5	0.36					
	Nitrogen	Total Nitrogen (mg/L)							
	Phosphorus	Total Phosphorus (mg/L)							
	Macros	Biotic Index	5	0.78	0.71				
Biology		EPT Taxa Present	20	0.64	2.72	0.71	Functioning		
	Fish	North Carolina Index of Biotic Integrity							

Banner Branch BB-R1	Existing Stream Cross Se		Composite Re	eference Values	Proposed Stream Values (Restoration)		
Parameter	MIN	MAX	MIN	MAX	MIN	MAX	
Stream Length (ft)	98	36			8	08	
Drainage Area, DA (sq mi)	0.6	400			0.6	400	
Stream Type (Rosgen)	B4	4c	(C4	C	C4	
Bankfull Discharge, Qbkf (cfs)	55	5.0			55	5.00	
Bankfull Riffle XSEC Area, Abkf (sq ft)	16	6.1			14	.00	
Bankfull Mean Velocity, Vbkf (ft/s)	3	.4			3.	.93	
Bankfull Riffle Width, Wbkf (ft)	14	ł.8				3.00	
Bankfull Mean Depth, Dbkf (ft)	1.	.1			1.	.08	
Width to Depth Ratio, W/D (ft/ft)	13	3.6	10	14	12	2.07	
Width of Floodprone Area, Wfpa (ft)	26	6.4			35.00	75.00	
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	1.	.8			2.69	5.77	
Riffle Max Depth @ bkf, Dmax (ft)	1.	.6			1.	.40	
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1.	.4	1.1	1.3	1.	.30	
Max Depth @ tob, Dmaxtob (ft)	2	.0			1.40		
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	1.	.2	1.0	1.1	1.	.00	
Meander Wavelength, Lm (ft)	56.00	83.00			91.00	156.00	
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	3.78	5.61	7.00	12.00	7.00	12.00	
Radius of Curvature, Rc (ft)	7.00	19.00			26.00	39.00	
Rc Ratio, Rc/Wbkf (ft/ft)	0.47	1.28	2.00	3.00	2.00	3.00	
Belt Width, Wblt (ft)	54.00	76.00			45.50	104.00	
Meander Width Ratio, Wblt/Wbkf (ft/ft)	3.65	5.14	3.50	8.00	3.50	8.00	
Sinuosity, K (Sval/Schan)		34	1.20	1.60		.15	
Valley Slope, Sval (ft/ft)	0.0		0.0050	0.0150		107	
Channel Slope, Schan (ft/ft)	0.0	080			0.0	093	
Riffle Slope, Sriff	0.0070	0.0370			0.0140	0.0187	
Riffle Slope Ratio, Sriff/Schan	0.8731	4.6148	1.50	2.00	1.50	2.00	
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0019	
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.20	0.00	0.20	
Pool Max Depth @ bkf, Dmaxpool (ft)	2.14	2.50			2.15	3.77	
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	1.96	2.29	2.00	3.50	2.00	3.50	
Pool Width, Wpool (ft)	9.17	20.47			16.90	22.10	
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.62	1.38	1.30	1.70	1.30	1.70	
Pool Spacing, Lps (ft)	44.00	227.00			52.00	91.00	
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	2.97	15.34	4.00	7.00	4.00	7.00	
d16/ d35/ d50/ d84/ d95 (mm)	4.73, 8.00, 11.4	4, 25.38, 37.95					

Banner Branch BB-R2	Existing Stream Cross Se		Composite Re	eference Values	Proposed Stream Values (Restoration)		
Parameter	MIN	MAX	MIN	MAX	MIN	MAX	
Stream Length (ft)	20	80			18	335	
Drainage Area, DA (sq mi)	0.7	500			0.7	7500	
Stream Type (Rosgen)	E	4	(C4	(C4	
Bankfull Discharge, Qbkf (cfs)	60	0.0			60	0.00	
Bankfull Riffle XSEC Area, Abkf (sq ft)	21	1.0			15	5.95	
Bankfull Mean Velocity, Vbkf (ft/s)	2	.9			3.	.76	
Bankfull Riffle Width, Wbkf (ft)	13	3.7			14	.00	
Bankfull Mean Depth, Dbkf (ft)	1.	.5			1.	.14	
Width to Depth Ratio, W/D (ft/ft)	9	.0	10	14	12	29	
Width of Floodprone Area, Wfpa (ft)	93	3.1			65.00	155.00	
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	6	.8			4.64	11.07	
Riffle Max Depth @ bkf, Dmax (ft)	2	.1			1.	.45	
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1.	.4	1.1	1.3	1.	.27	
Max Depth @ tob, Dmaxtob (ft)		.3			1.	.45	
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	1.	.5	1.0	1.1	1.	.00	
Meander Wavelength, Lm (ft)	66.00	87.00			98.00	168.00	
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	4.81	6.34	7.00	12.00	7.00	12.00	
Radius of Curvature, Rc (ft)	7.00	18.00			28.00	42.00	
Rc Ratio, Rc/Wbkf (ft/ft)	0.51	1.31	2.00	3.00	2.00	3.00	
Belt Width, Wblt (ft)	60.00	119.00			49.00	112.00	
Meander Width Ratio, Wblt/Wbkf (ft/ft)	4.37	8.67	3.50	8.00	3.50	8.00	
Sinuosity, K (Sval/Schan)	1.3	31	1.20	1.60	1.	.24	
Valley Slope, Sval (ft/ft)	0.0		0.0050	0.0150		093	
Channel Slope, Schan (ft/ft)	0.0	071			0.0	075	
Riffle Slope, Sriff	0.0011	0.0950			0.0113	0.0151	
Riffle Slope Ratio, Sriff/Schan	0.1541	13.3098	1.50	2.00	1.50	2.00	
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0015	
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.20	0.00	0.20	
Pool Max Depth @ bkf, Dmaxpool (ft)	2.08	3.03			2.28	3.99	
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	1.36	1.98	2.00	3.50	2.00	3.50	
Pool Width, Wpool (ft)	6.30	22.80			18.20	23.80	
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.46	1.66	1.30	1.70	1.30	1.70	
Pool Spacing, Lps (ft)	12.00	303.00			56.00	98.00	
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	0.87	22.08	4.00	7.00	4.00	7.00	
d16/ d35/ d50/ d84/ d95 (mm)	4.73, 8.00, 11.4	14, 25.38, 37.95					

Banner Branch BB-R3	Existing Strear Cross Se		Composite Re	eference Values	•	tream Values eration)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	47	78			6	36
Drainage Area, DA (sq mi)	0.88	300			0.8	800
Stream Type (Rosgen)	E		(C4		24
Bankfull Discharge, Qbkf (cfs)	70					.00
Bankfull Riffle XSEC Area, Abkf (sq ft)	21	.9			17	.83
Bankfull Mean Velocity, Vbkf (ft/s)	3.	.2				93
Bankfull Riffle Width, Wbkf (ft)	14	6			15	.00
Bankfull Mean Depth, Dbkf (ft)	1.	.5			1.	.19
Width to Depth Ratio, W/D (ft/ft)	9.	.7	10	14	12	.62
Width of Floodprone Area, Wfpa (ft)	51	.0			50.00	120.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	3.	.5			3.33	8.00
Riffle Max Depth @ bkf, Dmax (ft)	2.	.7			1.	55
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1.	.8	1.1	1.3	1.30	
Max Depth @ tob, Dmaxtob (ft)	3.	.8			1.	55
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	1.	.4	1.0	1.1	1.00	
Meander Wavelength, Lm (ft)	67.00	69.00			105.00	180.00
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	4.60	4.74	7.00	12.00	7.00	12.00
Radius of Curvature, Rc (ft)	9.00	18.00			30.00	45.00
Rc Ratio, Rc/Wbkf (ft/ft)	0.62	1.24	2.00	3.00	2.00	3.00
Belt Width, Wblt (ft)	60.00	61.00			52.50	120.00
Meander Width Ratio, Wblt/Wbkf (ft/ft)	4.12	4.19	3.50	8.00	3.50	8.00
Sinuosity, K (Sval/Schan)	1.1		1.20	1.60		23
Valley Slope, Sval (ft/ft)	0.00		0.0050	0.0150		060
Channel Slope, Schan (ft/ft)	0.00	052			0.0	049
Riffle Slope, Sriff	0.0032	0.0336			0.0073	0.0098
Riffle Slope Ratio, Sriff/Schan	0.6101	6.4056	1.50	2.00	1.50	2.00
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0010
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.20	0.00	0.20
Pool Max Depth @ bkf, Dmaxpool (ft)	2.15	2.98			2.38	4.16
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	1.43	1.98	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	11.93	17.12			19.50	25.50
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.82	1.18	1.30	1.70	1.30	1.70
Pool Spacing, Lps (ft)	19.00	96.00			60.00	105.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	1.30	6.59	4.00	7.00	4.00	7.00
d16/ d35/ d50/ d84/ d95 (mm)	0.23, 9.51, 20.1	4, 40.17, 51.35				

Banner Branch UT1A	Existing Stream Values-Riffle Cross Section X8 Composite Reference Values		•	ream Values cement)		
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	4′	10			4	10
Drainage Area, DA (sq mi)	0.0	073			0.0	073
Stream Type (Rosgen)	G	55	E	B4	Е	34
Bankfull Discharge, Qbkf (cfs)	2	.0			2.	00
Bankfull Riffle XSEC Area, Abkf (sq ft)	0	.8			0.	83
Bankfull Mean Velocity, Vbkf (ft/s)	2	.5			2.	42
Bankfull Riffle Width, Wbkf (ft)	2	.8			3.	50
Bankfull Mean Depth, Dbkf (ft)	0	.3			0.	24
Width to Depth Ratio, W/D (ft/ft)	9	.5	12	18	14	.85
Width of Floodprone Area, Wfpa (ft)	3	.4			10.00	10.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	1	.2			2.86	2.86
Riffle Max Depth @ bkf, Dmax (ft)	0	.5			0.	30
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1	.6	1.2	1.4	1.27	
Max Depth @ tob, Dmaxtob (ft)	1	.6			0.30	
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	3	.5	1.0	1.1	1.00	
Meander Wavelength, Lm (ft)	NA	NA			N/A	N/A
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	NA	NA	N/A	N/A	N/A	N/A
Radius of Curvature, Rc (ft)	4.00	6.00			N/A	N/A
Rc Ratio, Rc/Wbkf (ft/ft)	1.45	2.17	N/A	N/A	N/A	N/A
Belt Width, Wblt (ft)	38.00	38.00			N/A	N/A
Meander Width Ratio, Wblt/Wbkf (ft/ft)	13.77	13.77	N/A	N/A	N/A	N/A
Sinuosity, K (Sval/Schan)	1.	15	1.10	1.20	1.	14
Valley Slope, Sval (ft/ft)		290	0.0200	0.0300	0.0	290
Channel Slope, Schan (ft/ft)	0.0	252			0.0	255
Riffle Slope, Sriff	0.0125	0.0313			0.0280	0.0458
Riffle Slope Ratio, Sriff/Schan	0.4955	1.2407	1.10	1.80	1.10	1.80
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0102
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.40	0.00	0.40
Pool Max Depth @ bkf, Dmaxpool (ft)	0.45	0.79			0.47	0.83
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	1.55	2.73	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	2.70	6.20			3.85	5.25
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.98	2.25	1.10	1.50	1.10	1.50
Pool Spacing, Lps (ft)	12.00	89.00			5.25	17.50
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	4.35	32.25	1.50	5.00	1.50	5.00
d16/ d35/ d50/ d84/ d95 (mm)					·	·

Banner Branch UT1B	•	m Values-Riffle ection X7	Composite Re	eference Values	•	tream Values oration)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	3	91	-		4	88
Drainage Area, DA (sq mi)	0.0	650	-		0.0	0650
Stream Type (Rosgen)	E	5b	E	34	E	34
Bankfull Discharge, Qbkf (cfs)	10	3.0			16	6.00
Bankfull Riffle XSEC Area, Abkf (sq ft)	3	.8			3	.03
Bankfull Mean Velocity, Vbkf (ft/s)	4	.2			5	.29
Bankfull Riffle Width, Wbkf (ft)	6	.5			7.	.00
Bankfull Mean Depth, Dbkf (ft)	C	.6			0	.43
Width to Depth Ratio, W/D (ft/ft)	1	1.1	12	18	16	5.20
Width of Floodprone Area, Wfpa (ft)	10	6.5			25.00	150.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	2	5			3.57	21.43
Riffle Max Depth @ bkf, Dmax (ft)	1	.1			0	.55
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1	.8	1.2	1.4	1.27	
Max Depth @ tob, Dmaxtob (ft)	1	.1			0	.55
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	1	.0	1.0	1.1	1	.00
Meander Wavelength, Lm (ft)	22.00	39.00			49.00	84.00
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	3.39	6.01	7.00	12.00	7.00	12.00
Radius of Curvature, Rc (ft)	3.00	6.00			14.00	21.00
Rc Ratio, Rc/Wbkf (ft/ft)	0.46	0.92	2.00	3.00	2.00	3.00
Belt Width, Wblt (ft)	27.58	31.51			24.50	56.00
Meander Width Ratio, Wblt/Wbkf (ft/ft)	4.25	4.86	3.50	8.00	3.50	8.00
Sinuosity, K (Sval/Schan)	1.	.18	1.10	1.20	1	.16
Valley Slope, Sval (ft/ft)	0.0	296	0.0200	0.0300	0.0	296
Channel Slope, Schan (ft/ft)	0.0	251			0.0	256
Riffle Slope, Sriff	0.0091	0.0289			0.0282	0.0461
Riffle Slope Ratio, Sriff/Schan	0.3623	1.1506	1.10	1.80	1.10	1.80
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0102
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.40	0.00	0.40
Pool Max Depth @ bkf, Dmaxpool (ft)	0.76	1.14			0.86	1.51
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	1.30	1.95	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	4.28	11.61			7.70	10.50
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.66	1.79	1.10	1.50	1.10	1.50
Pool Spacing, Lps (ft)	21.00	129.00			10.50	35.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	3.24	19.88	1.50	5.00	1.50	5.00
d16/ d35/ d50/ d84/ d95 (mm)						

Banner Branch UT1C Upper	Banner Branch UT1C Upper Existing Stream Valu		Composite Re	eference Values	•	tream Values rvation)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	6	9			6	9
Drainage Area, DA (sq mi)	0.0	247			0.0	247
Stream Type (Rosgen)	B ₄	4a	В	34a	В	4a
Bankfull Discharge, Qbkf (cfs)	6	.0			6.	.00
Bankfull Riffle XSEC Area, Abkf (sq ft)	1	.2			1.	.18
Bankfull Mean Velocity, Vbkf (ft/s)	5	.1			5.	08
Bankfull Riffle Width, Wbkf (ft)	3	.7			3.	70
Bankfull Mean Depth, Dbkf (ft)	0	.3			0.	32
Width to Depth Ratio, W/D (ft/ft)	11	1.6	12	18	11	.60
Width of Floodprone Area, Wfpa (ft)	N	/A			N/A	N/A
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	N	/A			N/A	N/A
Riffle Max Depth @ bkf, Dmax (ft)	0	.6			0.	64
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	2	.0	1.2	1.4	2.01	
Max Depth @ tob, Dmaxtob (ft)	1	.3			1.	28
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	2	.0	1.0	1.1	2.	00
Meander Wavelength, Lm (ft)	N/A	N/A			N/A	N/A
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A
Radius of Curvature, Rc (ft)	N/A	N/A			N/A	N/A
Rc Ratio, Rc/Wbkf (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A
Belt Width, Wblt (ft)	N/A	N/A			N/A	N/A
Meander Width Ratio, Wblt/Wbkf (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A
Sinuosity, K (Sval/Schan)	1.	10	1.10	1.20	1.	.10
Valley Slope, Sval (ft/ft)	0.0	548	0.0200	0.0300	0.0	548
Channel Slope, Schan (ft/ft)	0.0	497			0.0	497
Riffle Slope, Sriff	N/A	N/A			N/A	N/A
Riffle Slope Ratio, Sriff/Schan	N/A	N/A	1.10	1.80	N/A	N/A
Pool Slope, Spool (ft/ft)	N/A	N/A			N/A	N/A
Pool Slope Ratio, Spool/Schan	N/A	N/A	0.00	0.40	N/A	N/A
Pool Max Depth @ bkf, Dmaxpool (ft)	N/A	N/A			N/A	N/A
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	N/A	N/A	2.00	3.50	N/A	N/A
Pool Width, Wpool (ft)	N/A	N/A			N/A	N/A
Pool Width Ratio, Wpool/Wbkf (ft/ft)	N/A	N/A	1.10	1.50	N/A	N/A
Pool Spacing, Lps (ft)	N/A	N/A			N/A	N/A
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	N/A	N/A	1.50	5.00	N/A	N/A
d16/ d35/ d50/ d84/ d95 (mm)						

Banner Branch UT1-R1	Existing Stream Cross Se	n Values-Riffle ection X9	Composite Re	eference Values	•	tream Values oration)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	53	35	-		5	09
Drainage Area, DA (sq mi)	0.0		-		0.0	644
Stream Type (Rosgen)	Incise	d E4b	E	B4	E	34
Bankfull Discharge, Qbkf (cfs)	17	7.0			17	['] .00
Bankfull Riffle XSEC Area, Abkf (sq ft)	4	.2			3.	.90
Bankfull Mean Velocity, Vbkf (ft/s)	4	.0			4.	.36
Bankfull Riffle Width, Wbkf (ft)	5	.9			8.	.00
Bankfull Mean Depth, Dbkf (ft)	0	.7			0.	.49
Width to Depth Ratio, W/D (ft/ft)	8.	.1	12	18	16	5.41
Width of Floodprone Area, Wfpa (ft)	14	l.7			16.00	26.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	2	.5			2.00	3.25
Riffle Max Depth @ bkf, Dmax (ft)	1	.0			0.	.60
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1.	.4	1.2	1.4	1.23	
Max Depth @ tob, Dmaxtob (ft)	1	.4			0.60	
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	1	.4	1.0	1.1	1.	.00
Meander Wavelength, Lm (ft)	30.00	33.00			56.00	96.00
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	5.12	5.63	7.00	12.00	7.00	12.00
Radius of Curvature, Rc (ft)	6.00	8.00			16.00	24.00
Rc Ratio, Rc/Wbkf (ft/ft)	1.02	1.37	2.00	3.00	2.00	3.00
Belt Width, Wblt (ft)	18.80	33.00			28.00	64.00
Meander Width Ratio, Wblt/Wbkf (ft/ft)	3.21	5.63	3.50	8.00	3.50	8.00
Sinuosity, K (Sval/Schan)	1.3	27	1.10	1.20	1.	.27
Valley Slope, Sval (ft/ft)	0.0	343	0.0200	0.0300	0.0	343
Channel Slope, Schan (ft/ft)	0.0	270			0.0	270
Riffle Slope, Sriff	0.0183	0.0916			0.0297	0.0487
Riffle Slope Ratio, Sriff/Schan	0.6767	3.3872	1.10	1.80	1.10	1.80
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0108
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.40	0.00	0.40
Pool Max Depth @ bkf, Dmaxpool (ft)	1.19	2.48			0.98	1.71
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	1.65	3.44	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	5.00	7.90			8.80	12.00
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.85	1.35	1.10	1.50	1.10	1.50
Pool Spacing, Lps (ft)	13.00	85.00			12.00	40.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	2.22	14.51	1.50	5.00	1.50	5.00
d16/ d35/ d50/ d84/ d95 (mm)	0.24, 4.35, 8.6	6, 19.93, 28.2				

Banner Branch UT1-R2		m Values-Riffle ection X6	Composite Re	eference Values	•	tream Values cement)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	18	327			17	783
Drainage Area, DA (sq mi)	0.2	109			0.2	109
Stream Type (Rosgen)	F	4		C4	(C4
Bankfull Discharge, Qbkf (cfs)	2	1.0			21	.00
Bankfull Riffle XSEC Area, Abkf (sq ft)	7	.0			5.	.25
Bankfull Mean Velocity, Vbkf (ft/s)	3	.0			4.	.00
Bankfull Riffle Width, Wbkf (ft)	1.	1.5			9.	.00
Bankfull Mean Depth, Dbkf (ft)	0	.6			0.	.58
Width to Depth Ratio, W/D (ft/ft)	18	3.8	10	14	15	5.43
Width of Floodprone Area, Wfpa (ft)	15	5.5			34.00	73.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	1	.3			3.78	8.11
Riffle Max Depth @ bkf, Dmax (ft)	0	.9			0.	.70
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1	.6	1.1	1.3	1.20	
Max Depth @ tob, Dmaxtob (ft)	1	.7			0.	.70
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	1	.8	1.0	1.1	1.00	
Meander Wavelength, Lm (ft)	30.00	45.00			63.00	108.00
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	2.62	3.92	7.00	12.00	7.00	12.00
Radius of Curvature, Rc (ft)	4.00	8.00			18.00	27.00
Rc Ratio, Rc/Wbkf (ft/ft)	0.35	0.70	2.00	3.00	2.00	3.00
Belt Width, Wblt (ft)	33.00	65.00			31.50	72.00
Meander Width Ratio, Wblt/Wbkf (ft/ft)	2.88	5.67	3.50	8.00	3.50	8.00
Sinuosity, K (Sval/Schan)	1.	56	1.20	1.60	1.	.34
Valley Slope, Sval (ft/ft)	0.0	207	0.0050	0.0150	0.0	207
Channel Slope, Schan (ft/ft)	0.0	133			0.0	155
Riffle Slope, Sriff	0.0037	0.0509			0.0170	0.0278
Riffle Slope Ratio, Sriff/Schan	0.2786	3.8326	1.10	1.80	1.10	1.80
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0062
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.40	0.00	0.40
Pool Max Depth @ bkf, Dmaxpool (ft)	1.21	2.38			1.17	2.04
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	1.99	3.91	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	3.82	12.08			9.90	13.50
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.33	1.05	1.10	1.50	1.10	1.50
Pool Spacing, Lps (ft)	19.00	189.00			13.50	45.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	1.66	16.48	1.50	5.00	1.50	5.00
d16/ d35/ d50/ d84/ d95 (mm)	0.50, 6.23, 11.8	36, 28.09, 45.00				

Banner Branch UT1-R3	•	m Values-Riffle on from CAD	Composite Re	ference Values	•	tream Values rvation)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	8	22	-		8	22
Drainage Area, DA (sq mi)	0.2	2600	-		0.2	2600
Stream Type (Rosgen)	(C4	(C4	(C4
Bankfull Discharge, Qbkf (cfs)	2	9.0			29	0.00
Bankfull Riffle XSEC Area, Abkf (sq ft)	7	7.8			7.	.78
Bankfull Mean Velocity, Vbkf (ft/s)	3	3.7			3	.73
Bankfull Riffle Width, Wbkf (ft)	3	3.5			8	.50
Bankfull Mean Depth, Dbkf (ft)	().9			0	.92
Width to Depth Ratio, W/D (ft/ft)	ξ	9.3	10	14	9	.29
Width of Floodprone Area, Wfpa (ft)	1	7.3			17.28	17.28
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	2	2.0			2.03	2.03
Riffle Max Depth @ bkf, Dmax (ft)	1	1.8			1	.81
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	2	2.0	1.1	1.3	1.98	
Max Depth @ tob, Dmaxtob (ft)	3	3.6			3.62	
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	2	2.0	1.0	1.1	2.00	
Meander Wavelength, Lm (ft)	45.00	48.00			45.00	48.00
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	5.29	5.65	7.00	12.00	5.29	5.65
Radius of Curvature, Rc (ft)	7.00	11.00			7.00	11.00
Rc Ratio, Rc/Wbkf (ft/ft)	0.82	1.29	2.00	3.00	0.82	1.29
Belt Width, Wblt (ft)	55.00	91.00			55.00	91.00
Meander Width Ratio, Wblt/Wbkf (ft/ft)	6.47	10.71	3.50	8.00	6.47	10.71
Sinuosity, K (Sval/Schan)	1	.31	1.20	1.60	1	.31
Valley Slope, Sval (ft/ft)	0.0)122	0.0050	0.0150	0.0	122
Channel Slope, Schan (ft/ft)	0.0	0093			0.0	093
Riffle Slope, Sriff	0.0180	0.0470			0.0180	0.0470
Riffle Slope Ratio, Sriff/Schan	1.9321	5.0448	1.50	2.00	1.93	5.04
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0000
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.20	0.00	0.00
Pool Max Depth @ bkf, Dmaxpool (ft)	2.40	3.50			2.40	3.50
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	2.62	3.82	2.00	3.50	2.62	3.82
Pool Width, Wpool (ft)	8.00	22.00			8.00	22.00
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.94	2.59	1.30	1.70	0.94	2.59
Pool Spacing, Lps (ft)	28.00	123.00			28.00	123.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	3.29	14.47	4.00	7.00	3.29	14.47
d16/ d35/ d50/ d84/ d95 (mm)						

Banner Branch UT2	Existing Stream Cross Se		Composite Re	ference Values	•	tream Values oration)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	13	15	-		12	287
Drainage Area, DA (sq mi)	0.0	442	-		0.0	1442
Stream Type (Rosgen)	F	4	E	34	E	34
Bankfull Discharge, Qbkf (cfs)	10	0.0			10	0.00
Bankfull Riffle XSEC Area, Abkf (sq ft)	4	.5			2.	.25
Bankfull Mean Velocity, Vbkf (ft/s)	2	.2			4.	.44
Bankfull Riffle Width, Wbkf (ft)	11	.8			6.	.00
Bankfull Mean Depth, Dbkf (ft)	0	.4			0.	.38
Width to Depth Ratio, W/D (ft/ft)	30).9	12	18	16	5.00
Width of Floodprone Area, Wfpa (ft)	14	1.0			9.00	15.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	1.	.2			1.50	2.50
Riffle Max Depth @ bkf, Dmax (ft)	0	.8			0.	.50
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	2	.1	1.2	1.4	1.33	
Max Depth @ tob, Dmaxtob (ft)	0.	.8			0.50	
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	1.	.0	1.0	1.1	1.00	
Meander Wavelength, Lm (ft)	28.00	41.00			N/A	N/A
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	2.37	3.47	N/A	N/A	N/A	N/A
Radius of Curvature, Rc (ft)	5.00	18.00			N/A	N/A
Rc Ratio, Rc/Wbkf (ft/ft)	0.42	1.52	N/A	N/A	N/A	N/A
Belt Width, Wblt (ft)	51.40	80.20			N/A	N/A
Meander Width Ratio, Wblt/Wbkf (ft/ft)	4.35	6.79	N/A	N/A	N/A	N/A
Sinuosity, K (Sval/Schan)	1.	14	1.10	1.20	1.	.10
Valley Slope, Sval (ft/ft)	0.0	389	0.0200	0.0300	0.0	389
Channel Slope, Schan (ft/ft)	0.0	341			0.0	352
Riffle Slope, Sriff	0.0094	0.0541			0.0387	0.0634
Riffle Slope Ratio, Sriff/Schan	0.2758	1.5872	1.10	1.80	1.10	1.80
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0141
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.40	0.00	0.40
Pool Max Depth @ bkf, Dmaxpool (ft)	0.86	2.90			0.75	1.31
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	2.25	7.58	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	5.40	15.56			6.60	9.00
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.46	1.32	1.10	1.50	1.10	1.50
Pool Spacing, Lps (ft)	18.00	387.00			9.00	30.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	1.52	32.77	1.50	5.00	1.50	5.00
d16/ d35/ d50/ d84/ d95 (mm)	11.00, 20.73, 32	.00, 53.67, 82.65				

Banner Branch UT2A		m Values-Riffle ection X2	Composite Re	eference Values	•	ream Values ration)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	2	89	-		2	39
Drainage Area, DA (sq mi)	0.0	049	-		0.0	049
Stream Type (Rosgen)	E	5b	В	84a	В	4a
Bankfull Discharge, Qbkf (cfs)	2	0			2.	00
Bankfull Riffle XSEC Area, Abkf (sq ft)	0	.7			0.	56
Bankfull Mean Velocity, Vbkf (ft/s)	2	9			3.	56
Bankfull Riffle Width, Wbkf (ft)		.0			3.	00
Bankfull Mean Depth, Dbkf (ft)	0	.2			0.	19
Width to Depth Ratio, W/D (ft/ft)	23	3.3	12	18	16	.00
Width of Floodprone Area, Wfpa (ft)	5	5.1			17.00	28.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	1	.3			5.67	9.33
Riffle Max Depth @ bkf, Dmax (ft)	0	.7			0.	25
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)		.1	1.2	1.4	1.33	
Max Depth @ tob, Dmaxtob (ft)		.5			0.25	
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	4	.9	1.0	1.1	1.00	
Meander Wavelength, Lm (ft)	47.00	81.00			N/A	N/A
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	11.63	20.05	N/A	N/A	N/A	N/A
Radius of Curvature, Rc (ft)	5.00	16.00			N/A	N/A
Rc Ratio, Rc/Wbkf (ft/ft)	1.24	3.96	N/A	N/A	N/A	N/A
Belt Width, Wblt (ft)	46.30	50.79			N/A	N/A
Meander Width Ratio, Wblt/Wbkf (ft/ft)	11.46	12.57	N/A	N/A	N/A	N/A
Sinuosity, K (Sval/Schan)		20	1.10	1.20		13
Valley Slope, Sval (ft/ft)		548	0.0200	0.0300		548
Channel Slope, Schan (ft/ft)	0.0	455			0.0	486
Riffle Slope, Sriff	0.0111	0.0421			0.0534	0.0874
Riffle Slope Ratio, Sriff/Schan	0.2438	0.9247	1.10	1.80	1.10	1.80
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0194
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.40	0.00	0.40
Pool Max Depth @ bkf, Dmaxpool (ft)	1.23	2.17			0.38	0.66
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	7.10	12.52	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	6.70	11.95			3.30	4.50
Pool Width Ratio, Wpool/Wbkf (ft/ft)	1.66	2.96	1.10	1.50	1.10	1.50
Pool Spacing, Lps (ft)	41.00	91.00			4.50	15.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	10.15	22.52	1.50	5.00	1.50	5.00
d16/ d35/ d50/ d84/ d95 (mm)						

Banner Branch UT3		m Values-Riffle ection X2	Composite Re	ference Values	•	tream Values oration)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	3:	38	-		5	89
Drainage Area, DA (sq mi)	0.1	200	-		0.1	200
Stream Type (Rosgen)	E	E 5	(C4	(C4
Bankfull Discharge, Qbkf (cfs)	24	4.0			24	.00
Bankfull Riffle XSEC Area, Abkf (sq ft)	6	5.2			4.	.55
Bankfull Mean Velocity, Vbkf (ft/s)	3	3.9			5.	.27
Bankfull Riffle Width, Wbkf (ft)	5	5.6			8.	.00
Bankfull Mean Depth, Dbkf (ft)	1	.1			0.	.57
Width to Depth Ratio, W/D (ft/ft)	5	5.1	10	14	14	.07
Width of Floodprone Area, Wfpa (ft)	32	2.0			20.00	40.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	5	5.7			2.50	5.00
Riffle Max Depth @ bkf, Dmax (ft)	1	.7			0.	.70
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1	.6	1.1	1.3	1.23	
Max Depth @ tob, Dmaxtob (ft)	2	2.4			0.70	
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	1	.4	1.0	1.1	1.00	
Meander Wavelength, Lm (ft)	0.00	0.00			56.00	96.00
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	0.00	0.00	7.00	12.00	7.00	12.00
Radius of Curvature, Rc (ft)	Ditched	Ditched			16.00	24.00
Rc Ratio, Rc/Wbkf (ft/ft)	0.00	0.00	2.00	3.00	2.00	3.00
Belt Width, Wblt (ft)	0.00	0.00			28.00	64.00
Meander Width Ratio, Wblt/Wbkf (ft/ft)	0.00	0.00	3.50	8.00	3.50	8.00
Sinuosity, K (Sval/Schan)	1.	.03	1.20	1.60	1.	.22
Valley Slope, Sval (ft/ft)	0.0	108	0.0050	0.0150	0.0	108
Channel Slope, Schan (ft/ft)	0.0	104			0.0	088
Riffle Slope, Sriff	0.0160	0.0351			0.0132	0.0176
Riffle Slope Ratio, Sriff/Schan	1.5326	3.3622	1.50	2.00	1.50	2.00
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0018
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.20	0.00	0.20
Pool Max Depth @ bkf, Dmaxpool (ft)	0.53	0.61			1.14	1.99
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	0.48	0.55	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	8.34	9.97			10.40	13.60
Pool Width Ratio, Wpool/Wbkf (ft/ft)	1.48	1.77	1.30	1.70	1.30	1.70
Pool Spacing, Lps (ft)	23.00	47.00			32.00	56.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	4.09	8.35	4.00	7.00	4.00	7.00
d16/ d35/ d50/ d84/ d95 (mm)					<u> </u>	

Banner Branch UT4-R1 Lower	•	m Values-Riffle	Composite Re	ference Values	•	m Values Lower eration)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	22	230	-		19	963
Drainage Area, DA (sq mi)	0.2	2400	-		0.2	400
Stream Type (Rosgen)	F	- 4	C	4b	C	4b
Bankfull Discharge, Qbkf (cfs)	3	4.0			30	0.0
Bankfull Riffle XSEC Area, Abkf (sq ft)	8	3.3			7	7.7
Bankfull Mean Velocity, Vbkf (ft/s)	4	l.1			3	.9
Bankfull Riffle Width, Wbkf (ft)	1:	2.2			1	1.0
Bankfull Mean Depth, Dbkf (ft)	C).7			0	.7
Width to Depth Ratio, W/D (ft/ft)	1	7.8	10	14	1:	5.8
Width of Floodprone Area, Wfpa (ft)	1:	5.3			37.00	70.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	1	1.3			3.36	6.36
Riffle Max Depth @ bkf, Dmax (ft)	1	1.0			0.	90
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1	1.4	1.1	1.3	1.29	
Max Depth @ tob, Dmaxtob (ft)	2	2.2			0.	90
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	2	2.3	1.0	1.1	1.00	
Meander Wavelength, Lm (ft)	42.00	85.00			77.00	132.00
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	3.45	6.99	7.00	12.00	7.00	12.00
Radius of Curvature, Rc (ft)	4.00	33.00			22.00	33.00
Rc Ratio, Rc/Wbkf (ft/ft)	0.33	2.71	2.00	3.00	2.00	3.00
Belt Width, Wblt (ft)	47.17	135.32			38.50	88.00
Meander Width Ratio, Wblt/Wbkf (ft/ft)	3.88	11.13	3.50	8.00	3.50	8.00
Sinuosity, K (Sval/Schan)	1	.23	1.20	1.60	1.	.18
Valley Slope, Sval (ft/ft)	0.0)228	0.0050	0.0150	0.	02
Channel Slope, Schan (ft/ft)	0.0)185			0.	01
Riffle Slope, Sriff	0.0071	0.0380			0.0218	0.0291
Riffle Slope Ratio, Sriff/Schan	0.3833	2.0514	1.50	2.00	1.50	2.00
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0029
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.20	0.00	0.20
Pool Max Depth @ bkf, Dmaxpool (ft)	1.17	3.54			1.39	2.43
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	1.71	5.19	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	5.06	34.41			14.30	18.70
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.42	2.83	1.30	1.70	1.30	1.70
Pool Spacing, Lps (ft)	12.00	465.00			44.00	77.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	0.99	38.24	4.00	7.00	4.00	7.00
d16/ d35/ d50/ d84/ d95 (mm)	0.20, 3.18, 4.7	73, 10.98, 28.50				

Banner Branch UT4-R1 Upper		m Values-Riffle	Composite Re	ference Values	•	m Values Upper eration)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	23	394	-		23	346
Drainage Area, DA (sq mi)	0.1	600	-		0.1	600
Stream Type (Rosgen)	В	4c	E	34	Е	34
Bankfull Discharge, Qbkf (cfs)	30	0.0			30	0.0
Bankfull Riffle XSEC Area, Abkf (sq ft)	8	.2			7	.7
Bankfull Mean Velocity, Vbkf (ft/s)	3	.6			3	.9
Bankfull Riffle Width, Wbkf (ft)	9	.9			11	1.0
Bankfull Mean Depth, Dbkf (ft)	0	.8			0	.7
Width to Depth Ratio, W/D (ft/ft)	11	1.8	10	14	15	5.8
Width of Floodprone Area, Wfpa (ft)	14	1.7			25.00	40.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	1	.5			2.27	3.64
Riffle Max Depth @ bkf, Dmax (ft)	1	.2			0.	90
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1	.4	1.2	1.4	1.29	
Max Depth @ tob, Dmaxtob (ft)	1	.8			0.90	
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	1	.5	1.0	1.1	1.00	
Meander Wavelength, Lm (ft)	42.00	85.00			N/A	N/A
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	4.26	8.62	N/A	N/A	N/A	N/A
Radius of Curvature, Rc (ft)	4.00	33.00			N/A	N/A
Rc Ratio, Rc/Wbkf (ft/ft)	0.41	3.35	N/A	N/A	N/A	N/A
Belt Width, Wblt (ft)	47.17	135.32			N/A	N/A
Meander Width Ratio, Wblt/Wbkf (ft/ft)	4.78	13.72	N/A	N/A	N/A	N/A
Sinuosity, K (Sval/Schan)		23	1.10	1.20		14
Valley Slope, Sval (ft/ft)		228	0.0200	0.0300	0.0	282
Channel Slope, Schan (ft/ft)	0.0	185			0.0	248
Riffle Slope, Sriff	0.0071	0.0380			0.0272	0.0446
Riffle Slope Ratio, Sriff/Schan	0.3833	2.0514	1.10	1.80	1.10	1.80
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0099
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.40	0.00	0.40
Pool Max Depth @ bkf, Dmaxpool (ft)	1.17	3.54			1.39	2.43
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	1.40	4.25	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	5.06	34.41			12.10	16.50
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.51	3.49	1.10	1.50	1.10	1.50
Pool Spacing, Lps (ft)	12.00	465.00			16.50	55.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	1.22	47.16	1.50	5.00	1.50	5.00
d16/ d35/ d50/ d84/ d95 (mm)	0.22, 4.47, 6.6	9, 37.95, 75.89				

Banner Branch UT4-R2		m Values-Riffle	Composite Reference Values		•	tream Values cement)
Parameter	MIN	MAX	MIN	MAX	MIN	MAX
Stream Length (ft)	17	'22	-		17	722
Drainage Area, DA (sq mi)	0.3	500	-		0.3	500
Stream Type (Rosgen)	Е	5	(C5	(C5
Bankfull Discharge, Qbkf (cfs)	4(0.0			40	0.00
Bankfull Riffle XSEC Area, Abkf (sq ft)	10	0.7			9.	.50
Bankfull Mean Velocity, Vbkf (ft/s)	3	.7			4.	.21
Bankfull Riffle Width, Wbkf (ft)	10	0.6			12	2.00
Bankfull Mean Depth, Dbkf (ft)	1	.0			0.	.79
Width to Depth Ratio, W/D (ft/ft)	10	0.5	10	14	15	5.16
Width of Floodprone Area, Wfpa (ft)	39	9.0			43.00	126.00
Entrenchment Ratio, Wfpa/Wbkf (ft/ft)	3	.7			3.58	10.50
Riffle Max Depth @ bkf, Dmax (ft)	1	.5			1.	.00
Riffle Max Depth Ratio, Dmax/Dbkf (ft/ft)	1	.4	1.1	1.3	1.	.26
Max Depth @ tob, Dmaxtob (ft)	1	.8			1.00	
Bank Height Ratio, Dmaxtob/Dmax (ft/ft)	1	.2	1.0	1.1	1.	.00
Meander Wavelength, Lm (ft)	49.00	93.00			84.00	144.00
Meander Wavelength Ratio, Lm/Wbkf (ft/ft)	4.61	8.75	7.00	12.00	7.00	12.00
Radius of Curvature, Rc (ft)	5.00	16.00			24.00	36.00
Rc Ratio, Rc/Wbkf (ft/ft)	0.47	1.51	2.00	3.00	2.00	3.00
Belt Width, Wblt (ft)	50.67	100.92			42.00	96.00
Meander Width Ratio, Wblt/Wbkf (ft/ft)	4.77	9.49	3.50	8.00	3.50	8.00
Sinuosity, K (Sval/Schan)	1.	21	1.20	1.60	1.	.28
Valley Slope, Sval (ft/ft)	0.0	136	0.0050	0.0150	0.0	136
Channel Slope, Schan (ft/ft)	0.0	112			0.0	106
Riffle Slope, Sriff	0.0031	0.0403			0.0159	0.0212
Riffle Slope Ratio, Sriff/Schan	0.2766	3.5961	1.50	2.00	1.50	2.00
Pool Slope, Spool (ft/ft)	0	0			0.0000	0.0021
Pool Slope Ratio, Spool/Schan	0	0	0.00	0.20	0.00	0.20
Pool Max Depth @ bkf, Dmaxpool (ft)	1.53	2.53			1.58	2.77
Pool Max Depth Ratio, Dmaxpool/Dbkf (ft/ft)	1.52	2.51	2.00	3.50	2.00	3.50
Pool Width, Wpool (ft)	6.86	16.04			15.60	20.40
Pool Width Ratio, Wpool/Wbkf (ft/ft)	0.65	1.51	1.30	1.70	1.30	1.70
Pool Spacing, Lps (ft)	6.00	126.00			48.00	84.00
Pool-Pool Spacing Ratio, Lps/Wbkf (ft/ft)	0.56	11.85	4.00	7.00	4.00	7.00
d16/ d35/ d50/ d84/ d95 (mm)	0.14, .16, 0.1	18, 0.22, 0.24			· · · · · · · · · · · · · · · · · · ·	<u> </u>

Reach BB-R1	Existing C	onditions X5	Propose	d Conditions
Dimensionless Shear Stress Analysis	SUBPAVMENT XS			
Bankfull Xsec Area, A _{bkf} (sq ft)	16.13			14.00
Bankfull Width, W _{bkf} (ft)	14.83			13.00
Bankfull Mean Depth, D _{bkf} (ft) = A _{bkf} /W _{bkf}	1.09			1.08
Wetted Perimeter, WP = W+2D _{bkf} (ft)	17.01			15.15
Hydraulic Radius, R (ft) = A _{bkf} /WP	0.95			0.92
S _{chan} (ft/ft)	0.0080			0.0080
Boundary/Bankfull Shear Stress, t (lb/sq ft) = 62.4*R*S _{chan}	0.47			0.46
d50 _{pave} - riffle 100 ct (mm)	1.26			1.26
d50 _{bar} - bar sample or subpavement (mm)	0.91			0.91
D100 (di) bar or subpavement (mm)	40			40
D100 (di) (ft) = D100*.0032808	0.13			0.13
ratio - d50 _{pave} /d50 _{bar} (3-7)	1.38			1.38
ratio - di/d50 _{pave} (1.3-3)	31.75			31.75
$tci_{eq1}(3-7) = 0.0834*(d50_{pave}/d50_{bar})^{-0.872}$	0.0628			0.0628
$tci_{eq2}(1.3-3) = 0.0384*(d50_{pave}/di)^{-0.887}$	0.0018			0.0018
D_{crit1} (ft) (3-7) = $tci_{eq1}*1.65*di/S_{chan}$	1.70			1.70
D_{crit2} (ft) (1.3-3) = $tci_{eq2}*1.65*di/S_{chan}$	0.05			0.05
S_{crit1} (3-7) = $tci_{eq1}^*1.65^*di/D_{bkf}$	0.01250			0.01263
S_{crit2} (1.3-3) = tci_{eq2} *1.65*di/ D_{bkf}	0.00036			0.00036
Largest moveable particle (Shields/CO curves), mm = 152.02*t ^{0.7355}	88.00			86.00
Largest moveable particle (Shields/CO curves), in = mm*0.0394	3.4672			3.3884
Bankfull Velocity (ft/s) (V _{bkf})	3.41			3.93
Unit Stream Power (watts/ sq meter) = 14.56*t*V _{bkf}	23.51			26.39
Dimensional Shear Stress Analysis	SHIELDS CURVE	ROSGEN CURVE	SHIELDS CURVE	ROSGEN CURVE
$t = 62.4*R*S_{chan}$	0.4	1735	0	.4612
152.02*t ^{0.7355}	36.00	88.00	35.00	86.00
Predicted Shear Stress to move Dmax (t _p);	0.5270	0.1628	0.5270	0.1628
$t_{p(Shields)} = (di/77.966)^{1/1.042}, t_{p(Rosgen)} = (di/152.02)^{1/0.7355}$	0.3270	0.1020	0.5270	0.1026
Predicted mean depth to move Dmax (Dp);	1.06	0.33	1.06	0.33
Shields = $t_{p(Sheilds)}/(62.4*S_{chan})$, Rosgen = $t_{p(Rosgen)}/(62.4*S_{chan})$	1.00	0.33	1.00	<u> </u>
Predicted slope required to initiate movement of Dmax (S _p);	0.0078	0.0024	0.0079	0.0024
Shields = $t_{p(Sheilds)}/(62.4*D_{bkf})$, Rosgen = $t_{p(Rosgen)}/(62.4*D_{bkf})$	0.0078	0.0024	0.0078	0.0024

AGGRADATIONAL DEGRADATIONAL DEGRADATIONAL

Reach BB-R2	Existing C	onditions X3	Proposed	d Conditions
Dimensionless Shear Stress Analysis	SUBPAVMENT XS		•	
Bankfull Xsec Area, A _{bkf} (sq ft)	20.95			15.95
Bankfull Width, W _{bkf} (ft)	13.70			14.00
Bankfull Mean Depth, D _{bkf} (ft) = A _{bkf} /W _{bkf}	1.53			1.14
Wetted Perimeter, WP = W+2D _{bkf} (ft)	16.76			16.28
Hydraulic Radius, R (ft) = A _{bkf} /WP	1.25			0.98
S _{chan} (ft/ft)	0.0071			0.0071
Boundary/Bankfull Shear Stress, t (lb/sq ft) = 62.4*R*S _{chan}	0.55			0.43
d50 _{pave} - riffle 100 ct (mm)	11.44			11.44
d50 _{bar} - bar sample or subpavement (mm)	0.91			0.91
D100 (di) bar or subpavement (mm)	40			40
D100 (di) (ft) = D100*.0032808	0.13			0.13
ratio - d50 _{pave} /d50 _{bar} (3-7)	12.57			12.57
ratio - di/d50 _{pave} (1.3-3)	3.50			3.50
$tci_{eq1}(3-7) = 0.0834*(d50_{pave}/d50_{bar})^{-0.872}$	0.0092			0.0092
$tci_{eq2} (1.3-3) = 0.0384*(d50_{pave}/di)^{-0.887}$	0.0127			0.0127
D_{crit1} (ft) (3-7) = $tci_{eq1}^*1.65*di/S_{chan}$	0.28			0.28
D_{crit2} (ft) (1.3-3) = $tci_{eq2}*1.65*di/S_{chan}$	0.39			0.39
S_{crit1} (3-7) = tci_{eq1} *1.65*di/ D_{bkf}	0.00130			0.00174
S_{crit2} (1.3-3) = tci_{eq2} *1.65*di/ D_{bkf}	0.00179			0.00240
Largest moveable particle (Shields/CO curves), mm = 152.02*t ^{0.7355}	98.00			82.00
Largest moveable particle (Shields/CO curves), in = mm*0.0394	3.8612			3.2308
Bankfull Velocity (ft/s) (V _{bkf})	2.86			3.76
Unit Stream Power (watts/ sq meter) = 14.56*t*V _{bkf}	23.06			23.76
Dimensional Shear Stress Analysis	SHIELDS CURVE	ROSGEN CURVE	SHIELDS CURVE	ROSGEN CURVE
t = 62.4*R*S _{chan}	0.0	5539	0.	.4341
Movable particle size (mm); Sheilds = 77.966*t ^{1.042} , Rosgen = 152.02*t ^{0.7355}	42.00	98.00	33.00	82.00
Predicted Shear Stress to move Dmax (t_p); $t_{p(Shields)} = (di/77.966)^{1/1.042}$, $t_{p(Rosgen)} = (di/152.02)^{1/0.7355}$	0.5270	0.1628	0.5270	0.1628
Predicted mean depth to move Dmax (D_p) ; Shields = $t_{p(Sheilds)}/(62.4*S_{chan})$, Rosgen = $t_{p(Rosgen)}/(62.4*S_{chan})$	1.19	0.37	1.19	0.37
Predicted slope required to initiate movement of Dmax (S_p) ; Shields = $t_{p(Sheilds)}/(62.4*D_{bkf})$, Rosgen = $t_{p(Rosgen)}/(62.4*D_{bkf})$	0.0055	0.0017	0.0074	0.0023

DEGRADATIONAL DEGRADATIONAL AGGRADATIONAL DEGRADATIONAL

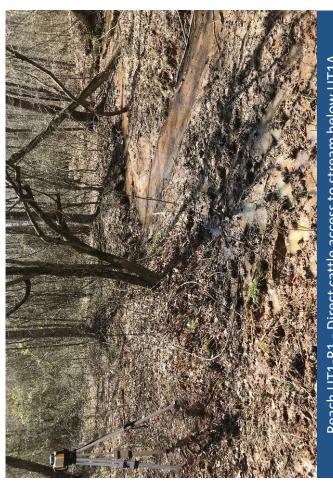
Reach BB-R3	Existing Co	onditions X3	Propose	d Conditions
Dimensionless Shear Stress Analysis	SUBPAVMENT XS			
Bankfull Xsec Area, A _{bkf} (sq ft)	21.86			17.83
Bankfull Width, W _{bkf} (ft)	14.56			15.00
Bankfull Mean Depth, D_{bkf} (ft) = A_{bkf}/W_{bkf}	1.50			1.19
Wetted Perimeter, WP = W+2D _{bkf} (ft)	17.56			17.38
Hydraulic Radius, R (ft) = A _{bkf} /WP	1.24			1.03
S _{chan} (ft/ft)	0.0053			0.0049
Boundary/Bankfull Shear Stress, τ (lb/sq ft) = 62.4*R*S _{chan}	0.41			0.31
d50 _{pave} - riffle 100 ct (mm)	20.14			20.14
d50 _{bar} - bar sample or subpavement (mm)	0.91			0.91
D100 (di) bar or subpavement (mm)	40			40
D100 (di) (ft) = D100*.0032808	0.13			0.13
ratio - d50 _{pave} /d50 _{bar} (3-7)	22.13			22.13
ratio - di/d50 _{pave} (1.3-3)	1.99			1.99
$tci_{eq1}(3-7) = 0.0834*(d50_{pave}/d50_{bar})^{-0.872}$	0.0056			0.0056
$tci_{eq2}(1.3-3) = 0.0384*(d50_{pave}/di)^{-0.887}$	0.0209			0.0209
D_{crit1} (ft) (3-7) = $tci_{eq1}^*1.65^*di/S_{chan}$	0.23			0.25
D_{crit2} (ft) (1.3-3) = tci_{eq2} *1.65*di/ S_{chan}	0.85			0.92
S_{crit1} (3-7) = $tci_{eq1}*1.65*di/D_{bkf}$	0.00081			0.00102
S_{crit2} (1.3-3) = tci_{eq2} *1.65*di/ D_{bkf}	0.00301			0.00381
Largest moveable particle (Shields/CO curves), mm = $152.02^* \tau^{0.7355}$	79.00			65.00
Largest moveable particle (Shields/CO curves), in = mm*0.0394	3.1126			2.561
Bankfull Velocity (ft/s) (V _{bkf})	3.20			3.93
Unit Stream Power (watts/ sq meter) = $14.56^*\tau^*V_{bkf}$	19.18			17.95
Dimensional Shear Stress Analysis	SHIELDS CURVE	ROSGEN CURVE	SHIELDS CURVE	ROSGEN CURVE
τ = 62.4*R*S _{chan}	0.4	1116	0	.3137
Movable particle size (mm); Sheilds = 77.966* $ au^{1.042}$, Rosgen = 152.02* $ au^{0.7355}$	31.00	79.00	23.00	65.00
Predicted Shear Stress to move Dmax (τ_p);	0.5050	2.4222	0.5050	0.4000
$\tau_{\text{p(Shields)}} = (\text{di/77.966})^{1/1.042}, \tau_{\text{p(Rosgen)}} = (\text{di/152.02})^{1/0.7355}$	0.5270	0.1628	0.5270	0.1628
Predicted mean depth to move Dmax (D _p);	1.59	0.49	1.72	0.53
Shields = $\tau_{p(Sheilds)}/(62.4*S_{chan})$, Rosgen = $\tau_{p(Rosgen)}/(62.4*S_{chan})$	1.00	0.43	1.12	0.00
Predicted slope required to initiate movement of Dmax (S _p); Shields = $\tau_{p(Sheilds)}/(62.4*D_{bkf})$, Rosgen = $\tau_{p(Rosgen)}/(62.4*D_{bkf})$	0.0056	0.0017	0.0071	0.0022

AGGRADATIONAL DEGRADATIONAL DEGRADATIONAL

UT2	Existing C	onditions X4	Proposed	d Conditions
Dimensionless Shear Stress Analysis	SUBPAVMENT XS		•	
Bankfull Xsec Area, A _{bkf} (sq ft)	4.52			2.25
Bankfull Width, W _{bkf} (ft)	11.81			6.00
Bankfull Mean Depth, D_{bkf} (ft) = A_{bkf}/W_{bkf}	0.38			0.38
Wetted Perimeter, WP = W+2D _{bkf} (ft)	12.58			6.75
Hydraulic Radius, R (ft) = A _{bkf} /WP	0.36			0.33
S _{chan} (ft/ft)	0.0341			0.0341
Boundary/Bankfull Shear Stress, t (lb/sq ft) = 62.4*R*S _{chan}	0.76			0.71
d50 _{pave} - riffle 100 ct (mm)	32			32
d50 _{bar} - bar sample or subpavement (mm)	27.5			2.75
D100 (di) bar or subpavement (mm)	55			55
D100 (di) (ft) = D100*.0032808	0.18			0.18
ratio - d50 _{pave} /d50 _{bar} (3-7)	1.16			11.64
ratio - di/d50 _{pave} (1.3-3)	1.72			1.72
$tci_{eq1}(3-7) = 0.0834*(d50_{pave}/d50_{bar})^{0.872}$	0.0731			0.0098
$tci_{eq2} (1.3-3) = 0.0384*(d50_{pave}/di)^{-0.887}$	0.0238			0.0238
D_{crit1} (ft) (3-7) = $tci_{eq1}^*1.65*di/S_{chan}$	0.64			0.09
D_{crit2} (ft) (1.3-3) = $tci_{eq2}*1.65*di/S_{chan}$	0.21			0.21
S_{crit1} (3-7) = tci_{eq1} *1.65*di/ D_{bkf}	0.05685			0.00779
S_{crit2} (1.3-3) = tci_{eq2} *1.65*di/ D_{bkf}	0.01848			0.01886
Largest moveable particle (Shields/CO curves), mm = 152.02*t ^{0.7355}	125.00			118.00
Largest moveable particle (Shields/CO curves), in = mm*0.0394	4.925			4.6492
Bankfull Velocity (ft/s) (V _{bkf})	2.21			4.44
Unit Stream Power (watts/ sq meter) = 14.56*t*V _{bkf}	24.61			45.85
Dimensional Shear Stress Analysis	SHIELDS CURVE	ROSGEN CURVE	SHIELDS CURVE	ROSGEN CURVE
t = 62.4*R*S _{chan}	0.7	7648	0.	7093
Movable particle size (mm); Sheilds = 77.966*t ^{1.042} , Rosgen = 152.02*t ^{0.7355}	59.00	125.00	55.00	118.00
Predicted Shear Stress to move Dmax (t_p); $t_{p(Shields)}$ = $(di/77.966)^{1/1.042}$, $t_{p(Rosgen)}$ = $(di/152.02)^{1/0.7355}$	0.7154	0.2510	0.7154	0.2510
Predicted mean depth to move Dmax (D_p) ; Shields = $t_{p(Sheilds)}/(62.4*S_{chan})$, Rosgen = $t_{p(Rosgen)}/(62.4*S_{chan})$	0.34	0.12	0.34	0.12
Predicted slope required to initiate movement of Dmax (S_p) ; Shields = $t_{p(Sheilds)}/(62.4*D_{bkf})$, Rosgen = $t_{p(Rosgen)}/(62.4*D_{bkf})$	0.0300	0.0105	0.0306	0.0107

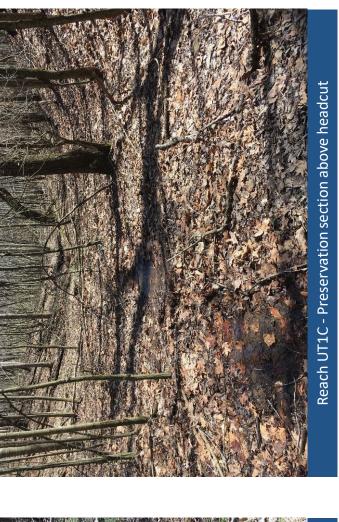
DEGRADATIONAL DEGRADATIONAL AGGRADATIONAL DEGRADATIONAL

UT1-R1	Existing Co	onditions X10	Propose	d Conditions
Dimensionless Shear Stress Analysis	SUBPAVMENT XS			
Bankfull Xsec Area, A _{bkf} (sq ft)	4.22			3.90
Bankfull Width, W _{bkf} (ft)	5.86			8.00
Bankfull Mean Depth, D _{bkf} (ft) = A _{bkf} /W _{bkf}	0.72			0.49
Wetted Perimeter, WP = W+2D _{bkf} (ft)	7.30			8.98
Hydraulic Radius, R (ft) = A _{bkf} /WP	0.58			0.43
S _{chan} (ft/ft)	0.0270			0.0270
Boundary/Bankfull Shear Stress, t (lb/sq ft) = 62.4*R*S _{chan}	0.97			0.73
d50 _{pave} - riffle 100 ct (mm)	8.66			8.66
d50 _{bar} - bar sample or subpavement (mm)	0.94			0.94
D100 (di) bar or subpavement (mm)	33			0.33
D100 (di) (ft) = D100*.0032808	0.11			0.00
ratio - d50 _{pave} /d50 _{bar} (3-7)	9.21			9.21
ratio - di/d50 _{pave} (1.3-3)	3.81			0.04
$tci_{eq1} (3-7) = 0.0834*(d50_{pave}/d50_{bar})^{-0.872}$	0.0120			0.0120
$tci_{eq2}(1.3-3) = 0.0384*(d50_{pave}/di)^{-0.887}$	0.0117			0.6966
D_{crit1} (ft) (3-7) = $tci_{eq1}^*1.65^*di/S_{chan}$	0.08			0.00
D _{crit2} (ft) (1.3-3) = tci _{eq2} *1.65*di/S _{chan}	0.08			0.05
S_{crit1} (3-7) = $tci_{eq1}*1.65*di/D_{bkf}$	0.00298			0.00004
S_{crit2} (1.3-3) = tci_{eq2} *1.65*di/ D_{bkf}	0.00291			0.00255
Largest moveable particle (Shields/CO curves), mm = 152.02*t ^{0.7355}	149.00			121.00
Largest moveable particle (Shields/CO curves), in = mm*0.0394	5.8706			4.7674
Bankfull Velocity (ft/s) (V _{bkf})	4.03			4.36
Unit Stream Power (watts/ sq meter) = 14.56*t*V _{bkf}	57.15			46.48
Dimensional Shear Stress Analysis	SHIELDS CURVE	ROSGEN CURVE	SHIELDS CURVE	ROSGEN CURVE
t = 62.4*R*S _{chan}	0.0	9739	0	.7321
Movable particle size (mm); Sheilds = 77.966*t ^{1.042} , Rosgen = 152.02*t ^{0.7355}	76.00	149.00	56.00	121.00
Predicted Shear Stress to move Dmax (t_p) ; $t_{p(Shields)} = (di/77.966)^{1/1.042}, \ t_{p(Rosgen)} = (di/152.02)^{1/0.7355}$	0.4382	0.1253	0.0053	0.0002
Predicted mean depth to move Dmax (D_p); Shields = $t_{p(Sheilds)}/(62.4*S_{chan})$, Rosgen = $t_{p(Rosgen)}/(62.4*S_{chan})$	0.26	0.07	0.00	0.00
Predicted slope required to initiate movement of Dmax (S_p); Shields = $t_{p(Sheilds)}/(62.4*D_{bkf})$, Rosgen = $t_{p(Rosgen)}/(62.4*D_{bkf})$	0.0098	0.0028	0.0002	0.0000

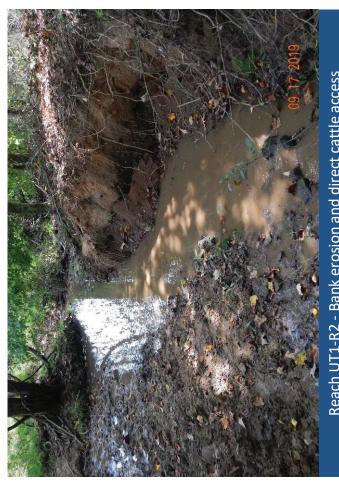

DEGRADATIONAL DEGRADATIONAL DEGRADATIONAL

UT4-R1	Existing Co	nditions X11	Proposed Co	nditions (UPPER)	Proposed Cor	nditions (LOWER)
Dimensionless Shear Stress Analysis	SUBPAVMENT XS		·	,	·	,
Bankfull Xsec Area, A _{bkf} (sq ft)	8.22			7.65		7.65
Bankfull Width, W _{bkf} (ft)	9.86			11.00		11.00
Bankfull Mean Depth, D _{kf} (ft) = A _{bkf} /W _{bkf}	0.83			0.70		0.70
Wetted Perimeter, WP = W+2D _{bkf} (ft)	11.53			12.39		12.39
Hydraulic Radius, R (ft) = A _{bkf} /WP	0.71			0.62		0.62
S _{chan} (ft/ft)	0.0185			0.0248		0.0145
Boundary/Bankfull Shear Stress, τ (lb/sq ft) = 62.4*R*S _{chan}	0.82			0.96		0.56
d50 _{pave} - riffle 100 ct (mm)	6.69			6.69		6.69
d50 _{bar} - bar sample or subpavement (mm)	4.36			4.36		4.36
D100 (di) bar or subpavement (mm)	80			80		80
D100 (di) (ft) = D100*.0032808	0.26			0.26		0.26
ratio - d50 _{pave} /d50 _{bar} (3-7)	1.53			1.53		1.53
ratio - di/d50 _{pave} (1.3-3)	11.96			11.96		11.96
$tci_{eq1}(3-7) = 0.0834*(d50_{pave}/d50_{bar})^{-0.872}$	0.0574			0.0574		0.0574
$tci_{eq2}(1.3-3) = 0.0384*(d50_{pave}/di)^{-0.887}$	0.0043			0.0043		0.0043
D_{crit1} (ft) (3-7) = $tci_{eq1}*1.65*di/S_{chan}$	1.34			1.00		1.71
D_{crit2} (ft) (1.3-3) = tci_{eq2} *1.65*di/ S_{chan}	0.10			0.07		0.13
S_{crit1} (3-7) = $tci_{eq1}*1.65*di/D_{bkf}$	0.02983			0.03575		0.03575
S_{crit2} (1.3-3) = tci_{eq2} *1.65*di/ D_{bkf}	0.00221			0.00265		0.00265
Largest moveable particle (Shields/CO curves), mm = 152.02* $\tau^{0.7355}$	132.00			147.00		147.00
Largest moveable particle (Shields/CO curves), in = mm*0.0394	5.2008			5.7918		5.7918
Bankfull Velocity (ft/s) (V _{bkf})	3.65			3.92		3.92
Unit Stream Power (watts/ sq meter) = $14.56^* \tau^* V_{bkf}$	43.75			54.53		31.88
Dimensional Shear Stress Analysis	SHIELDS CURVE	ROSGEN CURVE	SHIELDS CURVE	ROSGEN CURVE	SHIELDS CURVE	ROSGEN CURVE
τ = 62.4*R*S _{chan}	0.0	232	0	0.9554		.5586
152.02* $ au^{0.7355}$	64.00	132.00	74.00	147.00	74.00	147.00
Predicted Shear Stress to move Dmax (τ_p) ;						
$\tau_{p(Shields)} = (di/77.966)^{1/1.042}, \tau_{p(Rosgen)} = (di/152.02)^{1/0.7355}$	1.0250	0.4178	1.0250	0.4178	1.0250	0.4178
Predicted mean depth to move Dmax (D _p);	0.89	0.26	0.66	0.27	1.10	0.46
Shields = $\tau_{p(Sheilds)}/(62.4*S_{chan})$, Rosgen = $\tau_{p(Rosgen)}/(62.4*S_{chan})$	0.89	0.36	0.66	0.27	1.13	0.40
Predicted slope required to initiate movement of Dmax (\S_p); Shields = $\tau_{p(Sheilds)}$ (62.4*D _{bkf}), Rosgen = $\tau_{p(Rosgen)}$ (62.4*D _{bkf})	0.0197	0.0080	0.0236	0.0096	0.0236	0.0096

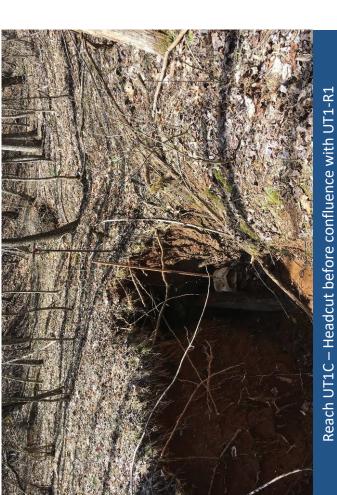
AGGRADATIONAL DEGRADATIONAL AGGRADATIONAL DEGRADATIONAL DEGRADATIONAL


UT4-R2	Existing Co	nditions X10	ditions X10 Proposed Conditions		
Dimensionless Shear Stress Analysis	SUBPAVMENT XS				
Bankfull Xsec Area, A _{bkf} (sq ft)	8.22			10.73	
Bankfull Width, W _{bkf} (ft)	9.86			10.63	
Bankfull Mean Depth, D_{bkf} (ft) = A_{bkf}/W_{bkf}	0.83			1.01	
Wetted Perimeter, WP = W+2D _{bkf} (ft)	11.53			12.65	
Hydraulic Radius, R (ft) = A _{bkf} /WP	0.71			0.85	
S _{chan} (ft/ft)	0.0185			0.0112	
Boundary/Bankfull Shear Stress, τ (lb/sq ft) = 62.4*R*S _{chan}	0.82			0.59	
d50 _{pave} - riffle 100 ct (mm)	6.69			0.18	
d50 _{bar} - bar sample or subpavement (mm)	4.36			4.36	
D100 (di) bar or subpavement (mm)	80			80	
D100 (di) (ft) = D100*.0032808	0.26			0.26	
ratio - d50 _{pave} /d50 _{bar} (3-7)	1.53			0.04	
ratio - di/d50 _{pave} (1.3-3)	11.96			444.44	
$tci_{eq1}(3-7) = 0.0834*(d50_{pave}/d50_{bar})^{-0.872}$	0.0574			1.3434	
$tci_{eq2}(1.3-3) = 0.0384*(d50_{pave}/di)^{-0.887}$	0.0043			0.0002	
D_{crit1} (ft) (3-7) = $tci_{eq1}^*1.65^*di/S_{chan}$	1.34			51.94	
D_{crit2} (ft) (1.3-3) = tci_{eq2}^* 1.65*di/ S_{chan}	0.10			0.01	
S_{crit1} (3-7) = $tci_{eq1}*1.65*di/D_{bkf}$	0.02983			0.57636	
S_{crit2} (1.3-3) = tci_{eq2} *1.65*di/ D_{bkf}	0.00221			0.00007	
Largest moveable particle (Shields/CO curves), mm = $152.02^* \tau^{0.7355}$	132.00			103.00	
Largest moveable particle (Shields/CO curves), in = mm*0.0394	5.2008			4.0582	
Bankfull Velocity (ft/s) (V _{bkf})	3.65			3.73	
Unit Stream Power (watts/ sq meter) = $14.56^*\tau^*V_{bkf}$	43.75			32.20	
Dimensional Shear Stress Analysis	SHIELDS CURVE	ROSGEN CURVE	SHIELDS CURVE	ROSGEN CURVE	
τ = 62.4*R*S _{chan}	3.0	3232	0	.5929	
Movable particle size (mm); Sheilds = 77.966* $ au^{1.042}$, Rosgen = 152.02* $ au^{0.7355}$	64.00	132.00	45.00	103.00	
Predicted Shear Stress to move Dmax (τ_p) ;	4.00=0	2.44=2	4.00=0	0.44=0	
$\tau_{\text{p(Shields)}} = (\text{di/77.966})^{1/1.042}, \ \tau_{\text{p(Rosgen)}} = (\text{di/152.02})^{1/0.7355}$	1.0250	0.4178	1.0250	0.4178	
Predicted mean depth to move Dmax (D _p);	0.89	0.36	1.47	0.60	
Shields = $\tau_{p(Sheilds)}/(62.4*S_{chan})$, Rosgen = $\tau_{p(Rosgen)}/(62.4*S_{chan})$	0.03	0.00	1.47	0.00	
Predicted slope required to initiate movement of Dmax (S _p); Shields = $\tau_{p(Sheilds)}/(62.4*D_{bkf})$, Rosgen = $\tau_{p(Rosgen)}/(62.4*D_{bkf})$	0.0197	0.0080	0.0163	0.0066	

AGGRADATIONAL DEGRADATIONAL DEGRADATIONAL

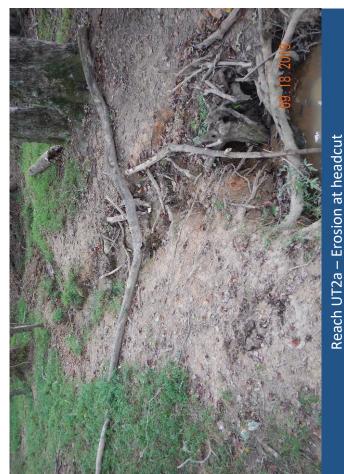


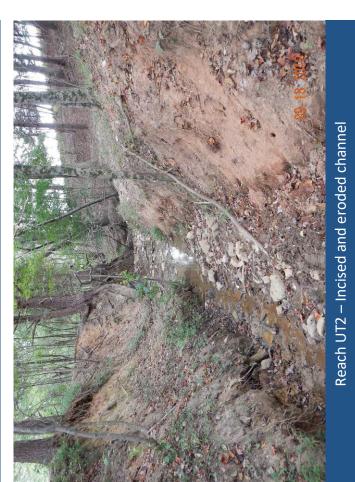
Reach UT1-R1 - Direct cattle access to stream below UT1A



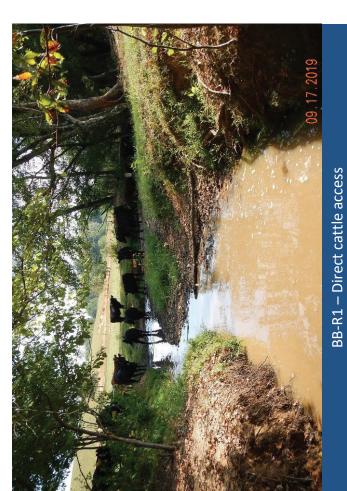
Reach UT1A - Bank erosion due to cattle access

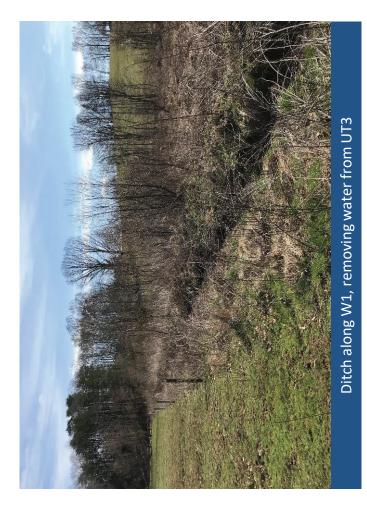
Reach UT1-R2 - Bank erosion and direct cattle access




Reach UT1-R2 – Perched/Plugged culvert at farm crossing

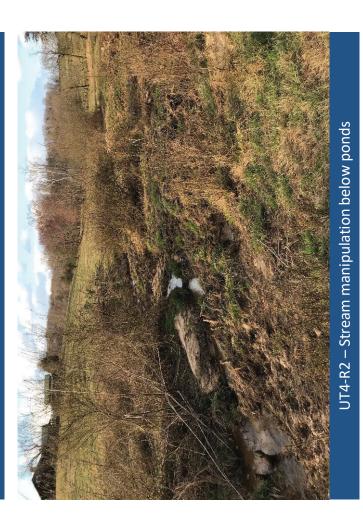

Reach UT1B – Erosion and direct cattle access





BB-R1 – Bank erosion and impaired buffer

BB-R2 – Stream incision and bank erosion



UT4-R1 – Excavation of channel at pond

UT4-R2 – Minor bank erosion through W4

Appendix 3 – Site Protection Instrument

WLS is in the process of obtaining a conservation easement from the current landowners for the project area. The easement deed and survey plat will be submitted to DMS and State Property Office (SPO) for approval and will be held by the State of North Carolina. Once recorded, the secured easement will allow WLS to proceed with the project development and protect the mitigation assets in perpetuity. The Table below includes the draft Site Protection Instrument information.

Table 3-1. Site Protection Instrument Information

Owner of Record N/F	PIN	County	Site Protection Instrument	Deed Book and Page Numbers	Acreage Protected
DTB Farms of Stokes County LLC, Anthony Boles	6041-74-9397, 6041-63-2233	Stokes	Conservation Easement	Book: 682 Page: 2370, 2367	13.72
Jason M. and April R. Pendleton	6041-51-6912, 6041-54-2358	Stokes	Conservation Easement	Book: 660 Page: 166 Book: 425 Page: 1541	16.55
Gene Young Farm, LLC (Jason and Greg Young)	6041-72-9563	Stokes	Conservation Easement	Book: 593 Page: 1738	2.40
Gilmer O'Neil Watkins	6041-42-1746	Stokes	Conservation Easement	Book: 690 Page: 2193	8.32

Appendix 4 – Credit Release Schedule

All credit releases will be based on the total credit generated as reported in the approved final mitigation plan, unless there are major discrepancies and then a mitigation plan addendum will be submitted. Under no circumstances shall any mitigation project be debited until the necessary Department of the Army (DA) authorization has been received for its construction or the District Engineer (DE) has otherwise provided written approval for the project in the case where no DA authorization is required for construction of the mitigation project. The DE, in consultation with the NC Interagency Review Team (NCIRT), will determine if performance standards have been satisfied sufficiently to meet the requirements of the release schedules below. In cases where some performance standards have not been met, credits may still be released depending on the specifics of the case. Monitoring may be required to restart or be extended, depending on the extent to which the site fails to meet the specified performance standard. The release of project credits will be subject to the criteria described in the Tables below.

Table 4-1. Credit Release Schedule – Stream Credits

Credit Release Milestone	Credit Release Activity	Interim Release	Total Release
1	Site Establishment (includes all required criteria stated above)	0%	0%
2	Completion of all initial physical and biological improvements made pursuant to the Mitigation Plan	30%	30%
3	Year 1 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	40%
4	Year 2 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	50%
5	Year 3 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	60%
6*	Year 4 monitoring report demonstrates that channels are stable and interim performance standards have been met	5%	65% (75%**)
7	Year 5 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	75% (85%**)
8*	Year 6 monitoring report demonstrates that channels are stable and interim performance standards have been met	5%	80% (90%**)
9	Year 7 monitoring report demonstrates that channels are stable and performance standards have been met	10%	90% (100%**)

^{*}Please note that vegetation and channel stability data may not be required with monitoring reports submitted during these monitoring years unless otherwise required by the Mitigation Plan or directed by the IRT.

^{**10%} reserve of credits to be held back until the bankfull event performance standard has been met.

Table 4-2. Credit Release Schedule – Wetland Credits

Credit Release Milestone	Credit Release Activity	Interim Release	Total Release
1	Site Establishment (includes all required criteria stated below)	0%	0%
2	Completion of all initial physical and biological improvement made pursuant to the Mitigation Plan	30%	30%
3	Year 1 monitoring report demonstrates that interim performance standards have been met	10%	40%
4	Year 2 monitoring report demonstrates that interim performance standards have been met	10%	50%
5	Year 3 monitoring report demonstrates that interim performance standards have been met	15%	65%
6*	Year 4 monitoring report demonstrates that interim performance standards have been met	5%	70%
7	Year 5 monitoring report demonstrates that interim performance standards have been met	15%	85%
8*	Year 6 monitoring report demonstrates that interim performance standards have been met	5%	90%
9	Year 7 monitoring report demonstrates that performance standards have been met	10%	100%

^{*}Please note that vegetation data may not be required with monitoring reports submitted during these monitoring years unless otherwise required by the Mitigation Plan or directed by the IRT.

Initial Allocation of Released Credits

The initial allocation of released credits, as specified in the mitigation plan can be released by the NCDEQ DMS without prior written approval of the DE upon satisfactory completion of the following activities:

- a. Approval of the Final Mitigation Plan
- b. Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property.
- c. Completion of project construction (the initial physical and biological improvements to the mitigation site) pursuant to the mitigation plan; Per the NCDEQ DMS Instrument, construction means that a mitigation site has been constructed in its entirety, to include planting, and an as- built report has been produced. As-built reports must be sealed by an engineer prior to project closeout, if appropriate but not prior to the initial allocation of released credits.
- d. Receipt of necessary DA permit authorization or written DA approval for projects where DA permit issuance is not required.

Subsequent Credit Releases

All subsequent credit releases must be approved by the DE, in consultation with the IRT, based on a determination that required performance standards have been achieved. For stream projects a reserve of 10% of a site's total stream credits shall be released after four bankfull events have occurred, in separate years, provided the channel is stable and all other performance standards are met. In the event that less than four bankfull events occur during the monitoring period, release of these reserve credits shall be at the discretion of the IRT. As projects approach milestones associated with credit release, DMS will submit a request for credit release to the DE along with documentation substantiating achievement of criteria required for release to occur. This documentation will be included with the annual monitoring report.

Appendix 5 – Financial Assurance

Pursuant to Section IV H and Appendix III of the NCDEQ DMS (formerly Ecosystem Enhancement Program) In-Lieu Fee Instrument dated July 28, 2010, the North Carolina Department of Environmental Quality (NCDEQ) has provided the USACE-Wilmington District with a formal commitment to fund projects to satisfy mitigation requirements assumed by NCDEQ DMS. This commitment provides financial assurance for all mitigation projects implemented by the program.

Appendix 6 – Maintenance Plan

The site will be monitored on a regular basis and a physical inspection of the site will take place at least once a year throughout the post-construction monitoring period until performance standards are met. These site inspections may identify site components and features that require routine maintenance. Routine maintenance should be expected most often in the first two years following site construction and may include the following:

Routine Maintenance Components Banner Branch Mitigation Project – NCDEQ DMS Project No. 100080					
Component/Feature	Maintenance through project close-out				
Stream	Routine channel maintenance and repair activities may include modifying in-stream structures to prevent piping, securing loose coir matting, and supplemental installations of live stakes and other target vegetation along the project reaches. Areas of concentrated stormwater and floodplain flows that intercept the channel may also require maintenance to prevent bank failures and head-cutting. Stream maintenance activities will be documented and reported in annual monitoring reports.				
Wetland	Routine wetland maintenance and repair activities may include supplemental installations of target vegetation within the wetland. Areas where stormwater and floodplain flows intercept the wetland may also require maintenance to prevent scour that adversely and persistently threatens wetland habitat or function.				
Vegetation	Vegetation will be maintained to ensure the health and vigor of the targeted plant community. Routine vegetation maintenance and repair activities may include supplemental planting, pruning, and fertilizing. Exotic invasive plant species will be treated by mechanical and/or chemical methods. Any vegetation requiring herbicide application will be performed in accordance with NC Department of Agriculture (NCDA) rules and regulations. Vegetation maintenance activities will be documented and reported in annual monitoring reports.				
Site Boundary	Site boundaries will be demarcated in the field to ensure clear distinction between the mitigation site and adjacent properties. Boundaries may be identified by fence, marker, bollard, post, or other means as allowed by site conditions and/or conservation easement. Boundary markers disturbed, damaged, or destroyed will be repaired and/or replaced on an as needed basis. Easement monitoring and staking/signage maintenance will continue in perpetuity as a stewardship activity.				
Stream Crossing	The stream crossing(s) within the site may be maintained only as allowed by the recorded Conservation Easement, deed restrictions, rights of way, or corridor agreements. Crossings in easement breaks are the responsibility of the landowner to maintain.				
Beaver Management	Routine maintenance and repair activities caused by beaver activity may include supplemental planting, pruning, and dewatering/dam removal. Beaver management will be implemented using accepted trapping and removal methods only within the recorded Conservation Easement.				
Livestock Fencing	Livestock fencing is to be placed outside the easement limits. Maintenance of fencing is the responsibility of the landowner.				

Appendix 7 – DWR Stream Identification Forms

The streams at the project site were categorized into fourteen reaches (UT1-R1, UT1-R2, UT1-R3, UT1B,UT1C, UT1D, UT2, UT2A, UT3, BB-R1, BB-R2, BB-R3, UT4-R1, UT4-R2) totaling approximately 16,044 linear feet of jurisdictional streams within the project area. Reach breaks were based on drainage area breaks at confluences, changes in restoration/enhancement approaches, and/or changes in intermittent/perennial stream status. Field evaluations conducted at the proposal stage and during existing conditions assessments determined that Reaches UT1-R1, UT1-R2, UT1-R3, UT3, BB-R1, BB-R2, BB-R3, UT4-R2 are perennial streams and project Reaches UT1A, UT1B, UT1C, UT2, UT2A, and UT4-R1 were determined to be intermittent streams. Determinations were based on NCDWQ's Methodology for Identification of Intermittent and Perennial Streams and Their Origins, (v4.11, Effective Date: September 1, 2010) stream assessment protocols. Copies of the supporting field forms are included herein.

Table 7-1. Summary of Field Investigations to Determine Intermittent/Perennial Status

Project Reach Designation	Existing Project Reach Length (ft)	NCDWQ Stream Classification Form Score ¹	Watershed Drainage Area (acres) ¹	Stream Status Based on Field Analyses
UT1-R1	535	30	41.2	Perennial
UT1-R2	1,827	39.0	135.0	Perennial
UT1-R3	822	40.0	166.4	Perennial
UT1A	410	29.5	4.6	Intermittent
UT1B	391	24.0	41.6	Intermittent
UT1C	227	23.0	15.8	Intermittent
UT2	1,315	26.0	28.3	Intermittent/Perennial
UT2A	289	25.5	3.1	Intermittent
UT3	338	32.5	76.8	Perennial
BB-R1	986	40.5	409.6	Perennial
BB-R2	2,080	43.5	480.0	Perennial
BB-R3	478	44.0	563.2	Perennial
UT4-R1	4,624	23.0	153.6	Intermittent/Perennial
UT4-R2	1,722	37.5	224.0	Perennial

Note 1: Watershed drainage area was approximated based on topographic and LiDAR information and compared with USGS StreamStats at the downstream end of each reach.

Note 2: Indicates that the lower section of the reach was classified as perennial and upper stream reach was classified as intermittent.

NC DWQ Stream Identification Form Version 4.11 BAUNEP 6FARCE Date: 3.8.18 Latitude: 36 3/ Project/Site: K.VANSAL Longitude: -86 /2 7.53 11 Evaluator: County: Total Points: Other NETICENDE NE Stream Determination (circle one) Stream is at least intermittent Ephemeral Intermittent Perennial e.g. Quad Name: if ≥ 19 or perennial if ≥ 30° A. Geomorphology (Subtotal = 26.0) Absent Weak Moderate Strong 1ª Continuity of channel bed and bank 0 1 2 (3) 2. Sinuosity of channel along thalweg 3 0 1 2 3. In-channel structure: ex. riffle-pool, step-pool, 0 Ð 1 2 ripple-pool sequence 4. Particle size of stream substrate o 1 2 5. Active/relict floodplain 0 1 2 3 6. Depositional bars or benches 0 1 2 7. Recent alluvial deposits 0 1 2 3 8. Headcuts 0 2 9. Grade control 0 0.5. 1 1.5 10. Natural valley 0 1 0.5 (1.5) 11. Second or greater order channel No = 0(Yes = 3 artificial ditches are not rated; see discussions in manual 6.0 B. Hydrology (Subtotal = 12. Presence of Baseflow 0 1 \bigcirc 13. Iron oxidizing bacteria 0 (2) 3 14. Leaf litter 1.5 ,1 0.5 0 15. Sediment on plants or debris 0 0.5 1.5 16. Organic debris lines or piles 0 0.5 1.5 17. Soil-based evidence of high water table? No = 0 Yes = 3 C. Biology (Subtotal = 18. Fibrous roots in streambed 3 1 0 19. Rooted upland plants in streambed 3 1 0 20. Macrobenthos (note diversity and abundance) 0 2 3 21. Aquatic Mollusks 0 2 3 22. Fish ō 0.5 1 1.5 23. Crayfish 0.5 1 1.5 24. Amphibians 0.5 1 1.5 25. Algae 0 0.5 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual. Notes: Sketch:

NC DWQ Stream Identification Form Version 4.11 BANDER BRANCH Latitude: 36 3/ 25.62" Date: Project/Site: Longitude: 780 12/14.3/ IAN STELL **Evaluator:** County: 57 **Total Points:** NETTLEHOGE, NC Stream Determination (circle one) Other Stream is at least intermittent Ephemeral Intermittent Perennial e.g. Quad Name: if ≥ 19 or perennial if ≥ 30° A. Geomorphology (Subtotal = 27.6) Absent Weak Moderate Strong 1^a Continuity of channel bed and bank 0 1 2. Sinuosity of channel along thalweg 0 1 2 3. In-channel structure: ex. riffle-pool, step-pool. 0 1 2 3 ripple-pool sequence 4. Particle size of stream substrate 0 1 2 5. Active/relict floodplain 0 1 2 6. Depositional bars or benches 0 1 2 7. Recent alluvial deposits 0 1 2 8. Headcuts 0 2 1 9. Grade control 0 0.5 1 10. Natural valley 0 0.5 1 11. Second or greater order channel Yes = 8 No = 0artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 9.5 12. Presence of Baseflow 0 1 2 13. Iron oxidizing bacteria 0 1 2 14. Leaf litter 1.5 1 0.5 15. Sediment on plants or debris 0 0.5 1 1.5 16. Organic debris lines or piles 0 0.5 17. Soil-based evidence of high water table? No = 0 Yes = 3 C. Biology (Subtotal = 18. Fibrous roots in streambed 0 19. Rooted upland plants in streambed 3 1 0 20. Macrobenthos (note diversity and abundance) 0 2 3 21. Aquatic Mollusks 6 2 3 22. Fish 0.5 1 1.5 23. Crayfish 0 1.5 24. Amphibians 0 0.5 CT. 1.5 25. Algae 0 0.5 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual. Notes: Sketch:

NC DWQ Stream Identification Form Version 4.11 Latitude: 36°3/'13.93 Date: Project/Site: K. I IANSTELL **Evaluator:** County: Longitude: -80 /2/24.3 **Total Points:** Other NETLERIDGE Stream Determination (circle one) Stream is at least intermittent Ephemeral Intermittent Perennial e q. Quad Name: if ≥ 19 or perennial if ≥ 30° A. Geomorphology (Subtotal = 27.0) Absent Weak Moderate Strong 1^a Continuity of channel bed and bank 0 1 2 2. Sinuosity of channel along thalweg 0 1 3 2 3. In-channel structure: ex. riffle-pool, step-pool, 0 1 2 3 ripple-pool sequence 4. Particle size of stream substrate 0 1 2 5. Active/relict floodplain 0 1 2 6. Depositional bars or benches 0 1 2 7. Recent alluvial deposits 0 2 8. Headcuts <u>.1</u> 0 2 9. Grade control 0 0.5 1 10. Natural valley 0 0.5 1 11. Second or greater order channel No = 0Yes = 3 artificial ditches are not rated; see discussions in manual 9.0 B. Hydrology (Subtotal = 12. Presence of Baseflow 3 0 1 13. Iron oxidizing bacteria 0 2 1 3 0.5 14. Leaf litter 1.5 0.5 0 15. Sediment on plants or debris 0 1 16. Organic debris lines or piles 0 0.5 1 1.5 17. Soil-based evidence of high water table? No = 0 Yes = 3 C. Biology (Subtotal = 18. Fibrous roots in streambed 3 0 19. Rooted upland plants in streambed 3 0 20. Macrobenthos (note diversity and abundance) 0 3 21. Aquatic Mollusks O 3 22. Fish 0 0.5 1 1.5 23. Crayfish 0 0.5 1.5 24. Amphibians 0 1.5 25. Algae 0.5 0 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual. Notes: Sketch:

NC DWQ Stream Identification Form Version 4.11 BANNER BLANKS 3.22.18 Latitude: 36.05" Date: Project/Site: // Evaluator: Longitude: - 8012/4.16 County: **Total Points:** Other NETREPADGE A 39.0 Stream Determination (circle one) Stream is at least intermittent Ephemeral intermittent Perennia e.g. Quad Name: if ≥ 19 or perennial if ≥ 30° A. Geomorphology (Subtotal = **Absent** Weak Moderate Strong 1ª Continuity of channel bed and bank 0 2. Sinuosity of channel along thalweg 2 0 4 3. In-channel structure: ex. riffle-pool, step-pool, 2 0 1 3 ripple-pool sequence 4. Particle size of stream substrate 0 (3) 5. Active/relict floodplain 0 <u>(1)</u>-2 6. Depositional bars or benches 0 3 7. Recent alluvial deposits 0 1 3 6 8. Headcuts 1 2 3 9. Grade control <u></u> 0.5 1.5 10. Natural valley (5) 0 0.5 11. Second or greater order channel Yes 7(3) No = 0artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 12. Presence of Baseflow 1 3 13. Iron oxidizing bacteria <u>(1)</u> 1 14. Leaf litter €.5 0.5 0 15. Sediment on plants or debris 0.5 1) 1.5 16. Organic debris lines or piles 0 0.5 1.5 17. Soil-based evidence of high water table? No = 0Yes = 3 C. Biology (Subtotal = 18. Fibrous roots in streambed 2 1 0 19. Rooted upland plants in streambed **3** 2 1 0 20. Macrobenthos (note diversity and abundance) 1 2 21. Aquatic Mollusks **(0)** 2 1 3 22. Fish (D.5) 1 1,5 23. Crayfish 0 **6**.5 1 1.5 24. Amphibians <u>ത</u> 0.5 1 1.5 25. Algae (0) 0.5 1 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual. Notes: larvac Chionomids Banner Branch Proper Sketch: Branch

NC DWQ Stream Identification Form Version 4.11 BANER MANUAL Date: Latitude: 36 3/595 8.22 Project/Site: **Evaluator:** County: Longitude: - 86 12 2 46 **Total Points:** Other NETTLEPIOCE Stream Determination (circle one) Stream is at least intermittent 30.0 Ephemeral Intermittent Perennia if ≥ 19 or perennial if ≥ 30* e.g. Quad Name: A. Geomorphology (Subtotal = 13.5) Absent Weak Moderate Strong 1a. Continuity of channel bed and bank 0 3 2. Sinuosity of channel along thalweg 0 1 (2) 3 3. In-channel structure: ex. riffle-pool, step-pool, 0 1 2 3 ripple-pool sequence 4. Particle size of stream substrate 0 2 5. Active/relict floodplain 0 \odot 2 6. Depositional bars or benches **(1)** 0 2 3 7. Recent alluvial deposits 0 (1)2 3 8. Headcuts 0) 2 3 9. Grade control **(** 0.5 1 1.5 10. Natural valley 0 0.5 1 (1.5) 11. Second or greater order channel No 4-0 Yes = 3 artificial ditches are not rated; see discussions in manual 8.5 B. Hydrology (Subtotal = 12. Presence of Baseflow 0 1 2 3 13. Iron oxidizing bacteria 0 (I) 3 14. Leaf litter 1 1.5 0.5 0 15. Sediment on plants or debris 0 **V**.5) 1 1.5 16. Organic debris lines or piles 0 **(** 0.5 1.5 17. Soil-based evidence of high water table? No = 0Yes = 3 C. Biology (Subtotal = 18. Fibrous roots in streambed 2 0 19. Rooted upland plants in streambed 2 0 20. Macrobenthos (note diversity and abundance) 1 Ø 3 21. Aquatic Mollusks 1 2 3 22. Fish 0.5 1 1.5 23. Crayfish 0.5 1 1.5 24. Amphibians 0.5 1 1.5 25. Algae 0.5 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual. Notes: Opprote avac abundant Chironomids abundan Sketch: perennial to UTID

NC DWQ Stream Identification Form Version 4.11 BANKE BRANK Date: Latitude: 36 3/4 Project/Site: **Evaluator:** County: **Total Points:** Other NETKERIACE NE Stream Determination (circle one) Stream is at least intermittent 39.0 Ephemeral Intermittent Perennial if ≥ 19 or perennial if ≥ 30° e.g. Quad Name: A. Geomorphology (Subtotal = Absent Weak Moderate Strong 1ª Continuity of channel bed and bank 0 2. Sinuosity of channel along thalweg 0 1 2 3 3. In-channel structure: ex. riffle-pool, step-pool, (2) 0 1 ripple-pool sequence 3 4. Particle size of stream substrate 0 1 3 5. Active/relict floodplain 0 1 3 6. Depositional bars or benches 0 1 3 7. Recent alluvial deposits 1 3 8. Headcuts 0 3 9. Grade control (0.5)0 1 10. Natural valley 0 0.5 (1.5) 11. Second or greater order channel No = 0Yes =(3 artificial ditches are not rated; see discussions in manual 9.01 B. Hydrology (Subtotal = 12. Presence of Baseflow 0 (2)1 3 13. Iron oxidizing bacteria 0 (1) 3 14. Leaf litter (1.5) • 1 05 0 15. Sediment on plants or debris (6.5)0 1 1.5 16. Organic debris lines or piles 0 -0.5 **(1)** 1.5 17. Soil-based evidence of high water table? No = 0Yes 42 C. Biology (Subtotal = 18. Fibrous roots in streambed 2 0 19. Rooted upland plants in streambed (3 2 0 20. Macrobenthos (note diversity and abundance) 1 2 3 21. Aquatic Mollusks Q 1 3 22. Fish (0 1 1.5 23. Crayfish **(**0.3 1 1.5 24. Amphibians 9 0.5 1 1.5 25. Algae 40.5) 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual. Notes: larvae, may Hy larvae, chiranomids Sketch:

NC DWQ Stream Identification Form Version 4.11 Latitude: 36 3/39.38 1 Date: Project/Site: Longitude: 80 12 3.78 **Evaluator:** County: Other NETTLE RIVE IL **Total Points:** 40.0 Stream Determination (circle one) Stream is at least intermittent Ephemeral Intermittent Personial e q Quad Name: if ≥ 19 or perennial if ≥ 30° A. Geomorphology (Subtotal = 19.5) Absent Weak Moderate Strong 1ª Continuity of channel bed and bank 0 2 1 73 2. Sinuosity of channel along thalweg 0 (2) 1 3. In-channel structure: ex. riffle-pool, step-pool, 0 1 3 ripple-pool sequence 0 4. Particle size of stream substrate 0 5. Active/relict floodplain 0 (1)-2 3 (2) 6. Depositional bars or benches 0 1 3 7. Recent alluvial deposits 0 1 3 8. Headcuts 1 3 9. Grade control 0 0.5 1.5 10. Natural valley 0 0.5 (7.5) 11. Second or greater order channel Yes = (3) No = 0artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 12. Presence of Baseflow **(**3) 0 1 2 13. Iron oxidizing bacteria **(**0) 2 1 **7.5** 14. Leaf litter 0.5 0 15. Sediment on plants or debris **0.9** 1.5 0 1 16. Organic debris lines or piles 0 (1) 0.5 1.5 17. Soil-based evidence of high water table? No = 0Yes = 3 C. Biology (Subtotal = 18. Fibrous roots in streambed 2 0 19. Rooted upland plants in streambed 2 20. Macrobenthos (note diversity and abundance) 1 2 **(3)** 21. Aquatic Mollusks 0 1 3 22. Fish 1.5 0.5 23. Crayfish 0 0.5 1.5 24. Amphibians 0.5 1.5 25. Algae **70.**3 1.5 26. Wetland plants in streambed FACW = 0.75, OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual. Notes: せるん onescont UTI-R3 Sketch: TEXULE BRANCH

NC DWQ Stream Identification Form Date: 3-22/18	Project/Site:	UTA	Latitude: 34	3154.64°N	
Evaluator: C. Sheat's	County: 510		Longituder &	10'12'0.81	
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30° 29.5	Stream Determ Ephemeral int	STOKES Longituder 80°/2' Long		EMPLE NC	
A. Geomorphology (Subtotal = 120)	Absent	Weak	Moderate	Strong	
A. Geomorphology (Subtotal = (20)					
1ª Continuity of channel bed and bank	0	1	2	(3)	
Sinuosity of channel along thalweg In-channel structure: ex. riffle-pool, step-pool,	0	1	~ (2)	3	
ripple-pool sequence	0	0	2	3	
4. Particle size of stream substrate	0	1	(2)	3	
5. Active/relict floodplain	0	0	2	3	
6. Depositional bars or benches	0	Ď	2	3	
7. Recent alluviat deposits	0	ð	2	3	
8. Headcuts	(1)	1	2	3	
9. Grade control	1 8	0.5	1	15	
10. Natural valley	0	0.5	(1)	15	
11. Second or greater order channel		o 7 0	Yes		
anificial ditches are not rated; see discussions in manual	I IN	070	162	- 3	
B. Hydrology (Sublotal = 7.5)					
12. Presence of Baseflow	0	1 1	()	3	
13. Iron oxidizing bacteria	10)	1	2	3	
14. Leaf litter	1.5	·	0.5	0	
	1.5	30	1	1.5	
15. Sediment on plants or debris		(0.5			
16. Organic debris lines or piles 17. Soil-based evidence of high water table?	0	0.5	Yes	1.5	
	1 1	o = 0	res	<u> </u>	
C. Biology (Subtotal = 10.6)					
18. Fibrous roots in streambed	(3)	2	1	0	
19. Rooted upland plants in streambed	(3)	2	1	0	
20. Macrobenthos (note diversity and abundance)	0	1	(2)	3	
21. Aquatic Mollusks	-0	2>-	2	3	
22. Fish	(<u>0</u>)	9.5	1	15	
23. Crayfish	T G	(p.5)	1	1,5	
24. Amphibians	0	0.3	1	1.5	
25. Algae	0	0.5	1	1.5	
26. Welland plants in streambed		FACW = 0.75, OB	L = 1.5 Other = 0)	
"perennial streams may also be identified using other methods					
Notes:	V. ri	the stail above	250	smaffa li	
		con fisht sale	mader exactly	larvos	
		0	VT-1B	U	
Skelch:					
& UTI		2 3			

NC DWQ Stream Identification Form Version 4.11 BANKER FRANKS Latitude: 36 31 44. 41 N Date: Project/Site: Longitude:- 80 12 0.05 W **Evaluator:** County: 510 **Total Points:** Other NETVERIDGE 24.0 Stream Determination (circle one) Stream is at least intermittent Ephemeral Intermittent Perennial if ≥ 19 or perennial if ≥ 30° e a Quad Name: A. Geomorphology (Subtotal = Absent Weak Moderate Strong 1 Continuity of channel bed and bank 0 • 1 2 3 2. Sinuosity of channel along thalweg 0 1 (2) 3 3. In-channel structure, ex. riffle-pool, step-pool, (I) 0 ripple-pool sequence 2 3 4. Particle size of stream substrate **a** 0 2 3 5 Active/relict floodplain 0 1 2 3 6 Depositional bars or benches 0 O 2 3 7. Recent alluvial deposits (D) 1 2 3 8 Headcuts (0) 1 2 3 9 Grade control **回** 0.5 1 1.5 10. Natural valley 0 0.5 A) 1.5 11. Second or greater order channel No =(0 Yes = 3 artificial ditches are not rated; see discussions in manual B. Hydrology (Sublotal = 8.5 12. Presence of Baseflow (3) 13. Iron oxidizing bacteria D 3 14. Leaf litter 1.5 0.5Ð 15. Sediment on plants or debris **4**05 0 1 1.5 16. Organic debris lines or piles 0 (0.5) 1.5 17. Soil-based evidence of high water table? No = 0Yes (3) C. Biology (Sublotal = 18. Fibrous roots in streambed 3 Ø 1 0 19. Rooted upland plants in streambed (3) 1 0 20 Macrobenthos (note diversity and abundance) Œ Ō 2 3 21. Aquatic Mollusks **@** 2 3 22. Fish **(**0) 05 1 1.5 23. Crayfish 0 0.5 1 1.5 24 Amphibians **(**) 1.5 25 Algae o 1.5 26. Wetland plants in streambed FACW = 0.75, OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual Notes: Chironomide Sketch:

NC DWQ Stream Identification Form Version 4.11 BANER GUILL Date: Latitude: 36° 31 86, 29 1 Project/Site: Evaluator: Longitude: 80 12/50 County: Total Points: Other NETTLEPHOSE Stream Determination (circle one) Stream is at least intermittent Ephemeral intermittent Perennial 23.6if ≥ 19 or perennial if ≥ 30° e g ¡Quad Name: A. Geomorphology (Subtotal =_ Absent Weak Moderate Strong 1ª Continuity of channel bed and bank 0 3 2. Sinuosity of channel along thalweg 0 6 1 3 3. In-channel structure: ex. riffle-pool, step-pool, 0 1 2 3 ripple-pool sequence 4. Particle size of stream substrate 0 1 **(2)** 3 5. Active/relict floodplain 1 2 3 6. Depositional bars or benches **(**面) 1 2 3 7. Recent alluvial deposits 0 0 2 3 8. Headcuts 0 গ্ৰ 2 3 9. Grade control **(0)** 0.5 1.5 10. Natural valley 0.5 (5) 11. Second or greater order channel No =(0) Yes = 3 artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 5.0 1 12. Presence of Basellow 0 (1) 2 13. Iron oxidizing bacteria ((9) 2 1 3 14. Leaf litter 1.5 বের 1 0 15. Sediment on plants or debris €0) 0.5 1 1.5 16. Organic debris lines or piles 0 0.5 1 1.5 17. Soil-based evidence of high water table? No = 0 Yes # 3) C. Biology (Sublotal = 75 18. Fibrous roots in streambed <u>න</u> ③ 0 19. Rooted upland plants in streambed 2 1 0 20 Macrobenthos (note diversity and abundance) 0 1 2 3 21. Aqualic Mollusks @ 2 3 22 Fish <u>a</u> 0.5 1 1.5 23. Crayfish **(0)** 0.5 1 1.5 24. Amphibians (O) n 1 1.5 25. Algae <u>ত</u> 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = D *parennial streams may also be identified using other methods. See p. 35 of manual. Notes: Salamondes larvae. Odonate Icrva Sketch: Field

NC DWQ Stream Identification Form Version 4.11 BANNER BRANKH Latitude: 36 3/ 36.86 Date: Project/Site: Longitude: 80°/2'/4.62 **Evaluator:** County: **Total Points:** 26.0 Other NETLEPIDSE Stream Determination (circle one) Stream is at least intermittent Ephemeral Intermittent Perennial e.g. Quad Name: if ≥ 19 or perennial if ≥ 30° A. Geomorphology (Subtotal = 14.5 Absent Weak Moderate Strong 1a. Continuity of channel bed and bank 0 1 2 3 2. Sinuosity of channel along thalweg 0 2 1 3 3. In-channel structure: ex. riffle-pool, step-pool, 0 1 2 3 ripple-pool sequence 4. Particle size of stream substrate 0 2 3 5. Active/relict floodplain 0 2 3 6. Depositional bars or benches 0 2 3 7. Recent alluvial deposits 0 2 3 8. Headcuts 0 3 9. Grade control 0 0.5 (1) 1.5 10. Natural valley 0 0.5 1 1.5 11. Second or greater order channel No = 0 Yes = 3 artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 12. Presence of Baseflow 0 1 2 13. Iron oxidizing bacteria 0 2 14. Leaf litter 1.5 1 0.5 15. Sediment on plants or debris 0 (1) 1.5 16. Organic debris lines or piles 0 1.5 1 17. Soil-based evidence of high water table? No = 0Yes = 3C. Biology (Subtotal = 18. Fibrous roots in streambed **(**1 0 19. Rooted upland plants in streambed 2 1 0 20. Macrobenthos (note diversity and abundance) 0 1 2 3 21. Aquatic Mollusks 000 1 2 3 22. Fish 0.5 1 1.5 23. Crayfish 0.5 1 1.5 24. Amphibians 0.5 1 1.5 25. Algae 0.5 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual. Notes: Sketch:

NC DWQ Stream Identification Form Version 4.11 BANKEL BRANCH Date: 3.8.18 Latitude: 36 31 38 55 Project/Site: K. VANSTELL Longitude: 80°/2'/4.8/ Evaluator: County: **Total Points:** Stream Determination (circle one) Other Stream is at least intermittent Ephemeral Intermittent Perennial e.g. Quad Name: if ≥ 19 or perennial if ≥ 30° A. Geomorphology (Subtotal = 16.0) Absent Weak Moderate Strong 1ª Continuity of channel bed and bank 0 (2) 2. Sinuosity of channel along thalweg 0 1 3 3. In-channel structure: ex. riffle-pool, step-pool. 0 1 3 ripple-pool sequence 4. Particle size of stream substrate 0 3 5. Active/relict floodplain 0 1 3 6. Depositional bars or benches 1 0 2 3 7. Recent alluvial deposits 0 υ 2 3 8. Headcuts 0 2 /3_ 9. Grade control 0 0.5 1 10. Natural valley 0 0.5 1 1.5 11. Second or greater order channel No = 0 Yes = 3 artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 7.5 12. Presence of Baseflow 0 1 2 13. Iron oxidizing bacteria 0 1 3 14. Leaf litter 1.5 0.5 1 0 15. Sediment on plants or debris 0 0.5 1 1.5 16. Organic debris lines or piles 0 0.5 1 1.5 17. Soil-based evidence of high water table? No = 0Yes = 3 C. Biology (Subtotal = 18. Fibrous roots in streambed 3 2 0 19. Rooted upland plants in streambed 3 2 0 20. Macrobenthos (note diversity and abundance) 0, 1 2 3 21. Aquatic Mollusks 0 1 2 3 22. Fish 0.5 1 1.5 23. Crayfish 70 0.5 1.5 24. Amphibians 70 0.5 1 1.5 25. Algae 0 0.5 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 (Other = 0) *perennial streams may also be identified using other methods. See p. 35 of manual. Notes: Sketch:

NC DWQ Stream Identification Form Version 4.11 BALLER FRANCE Date: Project/Site: Latitude: 2 3-22-18 Longitude: -86 **Evaluator:** C. Sheats County: STOKES **Total Points:** Other NETTERID Stream Determination (circle one) Stream is at least intermittent 32.5 Ephemeral Intermittent Perennia e.q. Quad Name: if ≥ 19 or perennial if ≥ 30* 15.51 A. Geomorphology (Subtotal = Absent Weak Moderate Strong 1ª Continuity of channel bed and bank 0 2 €} 2. Sinuosity of channel along thalweg ō 1 (2) 3 3. In-channel structure; ex. riffle-pool, step-pool, 0 ◑ 2 3 ripple-pool sequence 4. Particle size of stream substrate 0 1 3 5. Active/relict floodplain 0 1 -{2 3 6. Depositional bars or benches 0 1 3 7. Recent alluvial deposits 0 1 3 8. Headcuts <u>_</u> 1 3 9. Grade control 0 0.5 1.5 10. Natural valley 0 0.5 1 (1.5) 11. Second or greater order channel No =(0) Yes = 3 ^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 12. Presence of Baseflow 2 0 3 13, Iron oxidizing bacteria 0 <u>(1)</u>. 2 3 14. Leaf litter 1.5 Ō 0.5 0 15. Sediment on plants or debris <u>(1,5)</u> 0 1 1.5 16. Organic debris lines or piles 10.5 0 1 1.5 17. Soil-based evidence of high water table? No = 0Yes € 3 C. Biology (Subtotal = 18. Fibrous roots in streambed 2 0 19. Rooted upland plants in streambed ত্ত 2 1 0 20. Macrobenthos (note diversity and abundance) 0 0 1 3 70 21. Aquatic Mollusks 1 2 3 22. Fish 0.5 1.5 23. Crayfish F₀ 0.5 1.5 24. Amphibians 0.5 1.5 25. Algae (O,B 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual. Chiromonids tructer bootner abundant Notes: Salemondes Isrual - Desmognatus sp. Banner Branch BB Sketch: M5- RZ UT-3 Efence - Severe cattle impacts
- ditabled UT 3 Form X

NS-73

Date: 3-22-18	Project/Site: ()	M4-81	Latitude:36	3/50.81°N
Evaluator: C. Sheats	mittent Stream Determination (circle one)		Determination (circle one) Other NETTEROSS NC.	
Total Points:				
A. Geomorphology (Subtotal = 8.5)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	4 d	(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	Strong
2. Sinuosity of channel along thalweg	0	(1)	2	3
b. In-channel structure: ex. riffle-pool, step-pool,				3
ripple-pool sequence	0	0	2	3
Particle size of stream substrate	0	Ð	2	3
5. Active/relict floodplain	0	(1)	2	3
Depositional bars or benches	0	1	2	3
Recent alluvial deposits	0	O -	2	3
. Headcuts	0	Ð	2	3
. Grade control	0	0.5	1	1.5
0. Natural valley	0	0.5	1	1.5
Second or greater order channel	N	0=(0)	Yes =	3
artificial ditches are not rated; see discussions in manual				
3. Hydrology (Subtotal =				
12. Presence of Baseflow	0	0	2	3
3. Iron oxidizing bacteria	0	1)	2	3
4. Leaf litter	1.5	1)-	0.5	0
5. Sediment on plants or debris	0	0.5	0	1.5
6. Organic debris lines or piles	0	0.5	A	1.5
7. Soil-based evidence of high water table?	No	0 = 0	Yes =	
C. Biology (Subtotal = 6.5)				
8. Fibrous roots in streambed	3	(2)	1	0
Rooted upland plants in streambed	(3)	2	1	0
O. Macrobenthos (note diversity and abundance)	0	0	2	3
1. Aquatic Mollusks	0	1	2	3
2. Fish	(0)	0.5	1 -	1.5
23. Crayfish	0	0.5	1	1.5
24. Amphibians	0	0.5	₂₀ 1	1.5
25. Algae	0	(0.5)	1	1.5
6. Wetland plants in streambed		FACW = 0.75; OBL	= 1.5 Other = 0	
perennial streams may also be identified using other methods.		ıl.	<u> </u>	
lotes:	Chironon	hids presenting	ter bootmen	
Sketch: UT-2-3	SEUT-2A		JT-2A	
UT4. PZ NG. PZ)			

NC DWQ Stream Identification Form Version 4.11

Date: 3-8-18	Project/Site:	174-PZ	Latitude: 36	3/17.48 /
Evaluator: K. VANSTEU		OKES	Longitude:-8	6°12'30.01"L
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30°	Stream Determ Ephemeral Inte	ination (circle one) ermittent Perennia	Other NETZE e.g. Quad Name	RIDGE NC,
A. Geomorphology (Subtotal = 2/5)	Absent	Weak	Moderate	Strong
1ª Continuity of channel bed and bank	0	1	2	
2. Sinuosity of channel along thalweg	0	1	2	3
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	(3)
Particle size of stream substrate	0	1	(2)	3
Active/relict floodplain	0	1	(E)	3
6. Depositional bars or benches	0	1	2	3
7. Recent alluvial deposits	0	1	(2)	3
8. Headcuts	0	(1)	2	3
9. Grade control	0	0.5	<u>(1)</u>	1.5
10. Natural valley	0	0.5	1	1.5
11. Second or greater order channel		0 = 0	Yes	
artificial ditches are not rated; see discussions in manual			100	
B. Hydrology (Subtotal = //L6)				
12. Presence of Baseflow	0	1	2	(3)
13. Iron oxidizing bacteria	0	- 1	2	/3
14. Leaf litter	1.5	1	(0.5)	(a)
15. Sediment on plants or debris	0	0.5	1	1.5
16. Organic debris lines or piles	0	0.5	12 -	1.5
17. Soil-based evidence of high water table?	N	o = 0	Yes	
C. Biology (Subtotal = 5.0)				
18. Fibrous roots in streambed	3	(2)	1	0
19. Rooted upland plants in streambed	3_	2	(1)	0
20. Macrobenthos (note diversity and abundance)		1	2	3
21. Aquatic Mollusks	70	1	2	3
22. Fish	6	0.5	\1	1,5
23. Crayfish	0	0.5	(F)	1.5
24. Amphibians	0	0.5	1	1.5
25. Algae	0	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75; OBL	= 1.5/ Other = 0	- 1.3
*perennial streams may also be identified using other metho	ods. See p. 35 of manua	al.	Tig Culci =	
Notes:				
Sketch: 074-P7 073 8B 073 MS-P3				

Appendix 8 – USACE District Assessment Methods/Forms

NC SAM

NC WAM

NC SAM FIELD ASSESSMENT RESULTS Accompanies User Manual Version 2.1

		ACC	onipanies osei w	iailuai veisioli 2.1	
USACE All	O #:			NCDWR #:	
INSTRUCT	IONS: Attach a sl	ketch of the assessment a	area and photogra	phs. Attach a copy of the USGS	7.5-minute topographic quadrangle,
and circle tl	ne location of the	stream reach under evalu	uation. If multiple	stream reaches will be evaluated	d on the same property, identify and
					ser Manual for detailed descriptions
					urements were performed. See the
		amples of additional meas			
NOTE EVID	DENCE OF STRE	SSORS AFFECTING TH	E ASSESSMENT	AREA (do not need to be within	n the assessment area).
	SITE INFORMAT				
	ame (if any):	Banner Branch Mitigation		2. Date of evaluation: 10-2-20	
	d/owner name:	Water & Land Solutions		4. Assessor name/organization:	Kyle Obermiller/WLS
5. County:		Stokes		6. Nearest named water body	
7. River bas		Roanoke	 :.	on USGS 7.5-minute quad:	Banner Branch
		degrees, at lower end of a		36.525886°, -80.202536°	
		lepth and width can be			700
	ber (show on atta			ength of assessment reach evalu	
	•	in riffle, if present) to top	· · · · · · · · · · · · · · · · · · ·		Jnable to assess channel depth.
	I width at top of ba			ssessment reach a swamp steam	I? Lifes Lino
	type: ⊠Perennia	al flow Intermittent flow	v 🔲 i idai iviarsh S	ouediii	
15. NC SAM			⊠ Diadmant (D) Inner Coastal Plain (I)	Outer Coastal Plain (O)
15. NC SAN	n ∠UH C .	☐ Mountains (M)	□ Piedmont (P)	, □ iiiilei Coasiai Piairi (I)	Uuter Coastai Piain (O)
				\	
		,		,	
	ed geomorphic	\boxtimes_{A}	$\overline{}$	□в	
	hape (skip for arsh Stream):	(more sinuous strear	m flatter valley ele		ream, steeper valley slope)
	,	•	•	• •	
	ned size: (skip a l Marsh Stream)	☐Size 1 (< 0.1 mi²)	☐Size 2 (0.1 to	$0 < 0.5 \text{ mi}^2$) \square Size 3 (0.5 to <	5 mi²)
	AL INFORMATIO				
			: □No If Yes ch	eck all that apply to the assessme	ent area
	on 10 water	Classified T			rshed (I I II III IV V)
_	ntial Fish Habitat	☐Primary Nur			s/Outstanding Resource Waters
	cly owned propert	-	parian buffer rule i		_
	romous fish	303(d) List			ronmental Concern (AEC)
□Docu	mented presence	of a federal and/or state	listed protected sp	pecies within the assessment are	a. , , , , , , , , , , , , , , , , , , ,
List s	species:				
	gnated Critical Hal				
19. Are add	itional stream info	rmation/supplementary m	neasurements incl	uded in "Notes/Sketch" section or	rattached? □Yes ⊠No
			o for Size 1 strear	ns and Tidal Marsh Streams)	
⊠A □B	No flow, water in	ut assessment reach.			
□c □c	No water in asse				
_			ab mat=!-		
		ction – assessment read		la paol coguenos is several: -#-	ated by a flaw root-intian or fill to the
□A					cted by a flow restriction or fill to the impoundment on flood or ebb within
	the assessment	reach (examples: under	sized or perched of	culverts, causeways that constrict	the channel, tidal gates, debris jams,
	beaver dams).	(,,	, , , , , , , , , , , , , , , , , , ,
⊠B	Not A				
3. Feature	Pattern – assess	sment reach metric			
			altered pattern (exa	amples: straightening, modificatio	n above or below culvert).
⊠B	Not A		San Parisin (oxe	,	
	Longitudinal Pr	nfila — accoccment reco	h metric		
 Feature ⊠A 	•	ofile – assessment reac		ream profile (evamples: channel	down-cutting, existing damming, over
			•		has not reformed from any of these
	disturbances).	Januaranon, anoughig,	Choaradon W	appropriate chainles prome	
□В	Not A				
		ty _ accoccment reach	motric		
		ty – assessment reach r		he stream has currently recove	ered. Examples of instability include
					uch as concrete, gabion, rip-rap).
□A	< 10% of channe		J, adiivo wii	g, a aranolal hardoning (5	35 555.5to, gasion, np 14p/.
□в	10 to 25% of cha				
⊠c	> 25% of channe	el unstable			

0.				Bank (LE	3) and the						
	LB	RB		•	•	_	, ,				
	□A □B	□A □B	Mod refe	derate evi erence inte	idence of deraction (ex	conditions xamples:	limited stream	berms, levenside area	ees, down access, di	teraction -cutting, aggradation, dredging) tha sruption of flood flows through strea ninor ditching [including mosquito di	mside area, leaky
	⊠C	⊠C	Extended Ext	ensive evi amples: c ood flows	idence of d auseways through st ching]) <u>or</u> f	conditions with flood reamside	s that adverse dplain and cha area] <u>or</u> too n	ly affect re innel consti nuch floodp	ference in riction, bul lain/interti	teraction (little to no floodplain/inter kheads, retaining walls, fill, stream in dal zone access [examples: impoun or assessment reach is a man-ma	rtidal zone access ncision, disruption ndments, intensive
7.	Water	Quality	Stresso	ors – ass	essment r	each/inte	ertidal zone r	netric			
	Checl	k all that		otor in otr	oom or inte	ortidal zan	oo (millar whit	a blua unn	otural wa	tor discoloration, all about atroom	foom)
	⊠B						m features or			ter discoloration, oil sheen, stream	ioaiii)
							s entering the	assessme	ent reach a	and causing a water quality problem	1
	⊠D □E				tural sulfide collected d		ating degrade	d water qu	ality in the	e assessment reach. Cite source	in "Notes/Sketch"
	⊠F	section		h access t	to stream o	or intertid:	al zone				
	□G	Exce	ssive al	gae in stre	eam or inte	rtidal zon	ne				
	□H □I						al zone (remo n in "Notes/Sk			nowing, destruction, etc)	
	□J		to no st			- \ '			,		
8.					•	•	lal Marsh Str	•	o 2 or 4 of	reams, D2 drought or higher is cons	sidered a drought
	\boxtimes A	Drou	ght cond	ditions <u>and</u>	d no rainfa	ll or rainfa	all not exceed	ng 1 inch v	vithin the l	ast 48 hours	sidered a drought.
	□B □C			ditions <u>and</u> onditions	<u>t</u> rainfall ex	xceeding	1 inch within t	he last 48 l	nours		
9.			_		assessme	ent reach	metric				
	□Yes							If Yes, sk	ip to Metri	c 13 (Streamside Area Ground Surf	face Condition).
10.		al In-stre ⊠Yes	eam Hal □No				each metric	rity of the	accaceme	ent reach (examples of stressors i	include evcessive
	ioa.	<u> </u>	Пио	sedime	entation, m	nining, ex	cavation, in-s	tream hard	lening [for	r example, rip-rap], recent dredgin to Metric 12)	
		Check a ☐A					e of assessm		skip for \$	Size 4 Coastal Plain streams) 5% oysters or other natural hard	hottoms
			(include	e liverwort	ts, lichens,	and alga	ıl mats)	Tida	□G	Submerged aquatic vegetation	
		⊠в	vegetat		nd/or lear	packs and	d/or emergen	t Stre	H	Low-tide refugia (pools) Sand bottom	
		□C □D			nd logs (in		ap trees) s and/or roots	Chec	□J □K	5% vertical bank along the marsl Little or no habitat	'n
			in bank	s extend	to the norn		d perimeter	, ,	. `	Entito of no natitat	
		□E	Little of	r no habita	λt						
****	*****	*****	*****	**REMAIN	ING QUE	STIONS	ARE NOT AF	PLICABLE	FOR TIE	OAL MARSH STREAMS********	*****
11.	Bedfo	rm and	Substra	ite – asse	ssment re	each met	ric (skip for	Size 4 Coa	stal Plain	streams and Tidal Marsh Stream	ıs)
	11a.	□Yes	⊠No	ls asses	sment rea	ch in a na	tural sand-be	d stream?	(skip for (Coastal Plain streams)	
		Bedform ⊠A			k the app		box(es).				
		⊟в	Pool-gl	ide sectio	n `(evaluat	e 11d)					
					•	-	tric 12, Aqua	•	r of the oo	accoment reach , whether or not ou	ibmorgad Chask
		at least of (R) = pre	one box esent bu	t in each i t <u><</u> 10%, (row (skip	for Size 4 (C) = > 10	4 Coastal Pla 0-40%, Abund	in streams	and Tida	sessment reach – whether or not su Il Marsh Streams). Not Present (N Predominant (P) = > 70%. Cumul	IP) = absent, Rare
		NP	<u>R</u>	<u>C</u>	<u>A</u>	<u>P</u>					
			H	H	H	H	Bedrock/sa Boulder (25		nm)		
							Cobble (64	256 mm)			
		H		H		H	Gravel (2 – Sand (.062				
							Silt/clay (<				
							Detritus Artificial (rip	-rap, conci	rete, etc.)		
	11d.	□Yes	□No	Are pool	s filled wit	h sedimer	nt? (skip for :	Size 4 Coa	stal Plain	streams and Tidal Marsh Stream	ıs)

12.			sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. No Water Other:
	12b. 🛚	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles
			Caddisfly larvae (T) Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp) Damselfly and dragonfly larvae Dipterans Mayfly larvae (E)
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i>
			Mussels/Clams (not <i>Corbicula</i>) Other fish Salamanders/tadpoles Snails
			Stonefly larvae (P) Tipulid larvae Worms/leeches
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	□A ⊠B □C	□a ⊠B □C	Little or no alteration to water storage capacity over a majority of the streamside area Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)
14.		r for the RB	Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted policy LB	r for the	 e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
	□Y ⊠N	□Y ⊠N	Are wetlands present in the streamside area?
16.		II contrib Streams Ponds (i Obstruct Evidence Stream I	autors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) utors within the assessment reach or within view of and draining to the assessment reach. and/or springs (jurisdictional discharges) nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) of bank seepage or sweating (iron in water indicates seepage) and or bank soil reduced (dig through deposited sediment if present) the above
17.	Check a ☐A	II that ap Evidenc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C □D □E ☑F	Urban st Evidence Assessn	ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed) that the streamside area has been modified resulting in accelerated drainage into the assessment reach tent reach relocated to valley edge the above
18.	Shading	aspect. Stream : Degrade	sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition. chading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees) chading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB □A □A □A ≥ 100 feet wide or extends to the edge of the watershed
	□ B □ B □ B From 50 to < 100 feet wide □ C □ C □ C From 30 to < 50 feet wide □ D
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB A Mature forest
	☑B ☑B Non-mature woody vegetation or modified vegetation structure ☐C ☐C Herbaceous vegetation with or without a strip of trees < 10 feet wide ☐D ☐D Maintained shrubs ☐E ☐E Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22:
	Abuts < 30 feet 30-50 feet LB RB LB RB LB RB A A A A A A A A A A A A A A A A A A A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB
	 ☑A Medium to high stem density ☐B ☐B Low stem density ☐C ☐C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB \[\Bar{A} \] The total length of buffer breaks is < 25 percent.
	 □A □A The total length of buffer breaks is < 25 percent. □B □B The total length of buffer breaks is between 25 and 50 percent. □C □C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	 □A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. □B □B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or
	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\Box A < 46 \qquad \Box B 46 \text{ to } < 67 \qquad \Box C 67 \text{ to } < 79 \qquad \Box D 79 \text{ to } < 230 \qquad \Box E \geq 230$
Note	es/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Banner Branch Mitigation	Date of Assessment	10-2-2019			
Stream Category	Pa3	Assessor Name/Organization	Kyle Obermiller/WLS			
Notes of Field Asses	ssment Form (Y/N)		NO			
Presence of regulator		NO				
Additional stream inf	NO					
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream) Perennial						

(pororimal, intermittent, fradi waren otroam)	- 1 010111110	<u>. </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	MEDIUM	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	MEDIUM	
(2) Stream/Intertidal Zone Interaction	NA NA	
(2) Longitudinal Tidal Flow	NA NA	
· · · · · · · · · · · · · · · · · · ·	NA NA	
(2) Tidal Marsh Stream Stability (3) Tidal Marsh Channel Stability		
. ,	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	LOW	
(3) Stream Stability	LOW	
(3) In-stream Habitat	LOW	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA NA	
(3) Tidal Marsh Stream Stability	NA NA	
(3) Fidal Marsh Stream Stability (4) Tidal Marsh Channel Stability	NA NA	
` ,	NA NA	
(4) Tidal Marsh Stream Geomorphology (3) Tidal Marsh In-stream Habitat	NA NA	
(3) Inda Maish In-stream nabitat (2) Intertidal Zone		
. ,	NA LOW	
Overall	LOW	

NC SAM FIELD ASSESSMENT RESULTS Accompanies User Manual Version 2.1

	7.000mpamoo 000						
USACE AID #:		NCDWR #:					
INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,							
	tion of the stream reach under evaluation. If multip						
	s on the attached map, and include a separate form						
	of requested information. Record in the "Notes/Ske		rements were performed. See the				
	nual for examples of additional measurements that	•					
NOTE EVIDENCE	OF STRESSORS AFFECTING THE ASSESSMEN	NT AREA (do not need to be within	the assessment area).				
PROJECT/SITE II	IFORMATION:						
 Project name (if 		2. Date of evaluation: 10-2-20					
3. Applicant/owne		4. Assessor name/organization:	Kyle Obermiller/WLS				
5. County:	Stokes	6. Nearest named water body					
7. River basin:	Roanoke	on USGS 7.5-minute quad:	Banner Branch				
8. Site coordinates	(decimal degrees, at lower end of assessment rea	ch): 36.523042°, -80.204167°					
	IATION: (depth and width can be approximation						
). Length of assessment reach evalua					
	from bed (in riffle, if present) to top of bank (feet):		nable to assess channel depth.				
		s assessment reach a swamp steam	? ∐Yes ∐No				
	☑Perennial flow ☐Intermittent flow ☐Tidal Mars	h Stream					
	ORY INFORMATION:						
15. NC SAM Zone	: ☐ Mountains (M) ☐ Piedmont	(P) Inner Coastal Plain (I)	Outer Coastal Plain (O)				
		\	/				
16. Estimated geo	morphic NA	\mathcal{L}					
valley shape (SKIP TOT —	□В					
Tidal Marsh S	tream): (more sinuous stream, flatter valley	slope) (less sinuous stre	eam, steeper valley slope)				
17. Watershed siz	e: (skip \square Size 1 (< 0.1 mi ²) \square Size 2 (0.	1 to < 0.5 mi ²) Size 3 (0.5 to <	5 mi²)				
for Tidal Mars	h Stream)						
ADDITIONAL INF							
	ry considerations evaluated? ⊠Yes □No If Yes,						
Section 10	_		shed (I II III IIV IV)				
☐Essential Fi	_ , ,	9 .	Outstanding Resource Waters				
Publicly own							
Anadromou	<u> </u>		onmental Concern (AEC)				
	d presence of a federal and/or state listed protected .	species within the assessment area	•				
List species	Critical Habitat (list species)						
_	stream information/supplementary measurements i	ncluded in "Notes/Sketch" section or	attached2 DVos MNo				
19. Ale additional	stream information/supplementary measurements in	ilcidded iii Notes/Sketcii Section of	attached? Tes Mino				
1. Channel Wate	r – assessment reach metric (skip for Size 1 stre	eams and Tidal Marsh Streams)					
	r throughout assessment reach.	, and and read march on carrie,					
	ow, water in pools only.						
☐C No w	ater in assessment reach.						
2. Evidence of F	low Restriction – assessment reach metric						
	ast 10% of assessment reach in-stream habitat or	riffle-pool sequence is severely affect	ted by a flow restriction or fill to the				
	of obstructing flow or a channel choked with aqual						
the a	ssessment reach (examples: undersized or perche	d culverts, causeways that constrict t	he channel, tidal gates, debris jams,				
	er dams).						
⊠B Not A							
3. Feature Patter	n – assessment reach metric						
□A A ma	jority of the assessment reach has altered pattern (examples: straightening, modification	above or below culvert).				
⊠B Not A		, 5	•				
4. Feature Longi	tudinal Profile – assessment reach metric						
	ity of assessment reach has a substantially altered	etream profile (evamples: channel d	own-cutting existing damming over				
	ning, active aggradation, dredging, and excavation						
	bances).	appropriate orialinor promo i	and the following arrows and the contractions are the contractions and the contractions are t				
☐B Not A	,						
	a Instability - associament reach matric						
_	e Instability – assessment reach metric current instability, not past events from which	the stream has currently receye	rad Evamples of instability include				
	ure, active channel down-cutting (head-cut), active						
_	% of channel unstable	g, and armidal hardoning (50	coc.c., gasieri, rip rap/.				
□B 10 to	25% of channel unstable						
	6 of channel unstable						

0.				Bank (LE	3) and the						
	LB	RB		•	•	_	, ,				
	□A □B	□A □B	Mod refe	derate evi erence inte	idence of deraction (ex	conditions xamples:	limited stream	berms, levenside area	ees, down access, di	teraction -cutting, aggradation, dredging) tha sruption of flood flows through strea ninor ditching [including mosquito di	mside area, leaky
	⊠C	⊠C	Extended Ext	ensive evi amples: c ood flows	idence of d auseways through st ching]) <u>or</u> f	conditions with flood reamside	s that adverse dplain and cha area] <u>or</u> too n	ly affect re innel consti nuch floodp	ference in riction, bul lain/interti	teraction (little to no floodplain/inter kheads, retaining walls, fill, stream in dal zone access [examples: impoun or assessment reach is a man-ma	rtidal zone access ncision, disruption ndments, intensive
7.	Water	Quality	Stresso	ors – ass	essment r	each/inte	ertidal zone r	netric			
	Checl	k all that		otor in otr	oom or inte	ortidal zan	oo (millar whit	a blua unn	otural wa	tor discoloration, all about atroom	foom)
	⊠B						m features or			ter discoloration, oil sheen, stream	ioaiii)
							s entering the	assessme	ent reach a	and causing a water quality problem	1
	⊠D □E				tural sulfide collected d		ating degrade	d water qu	ality in the	e assessment reach. Cite source	in "Notes/Sketch"
	⊠F	section		h access t	to stream o	or intertid:	al zone				
	□G	Exce	ssive al	gae in stre	eam or inte	rtidal zon	ne				
	□H □I						al zone (remo n in "Notes/Sk			nowing, destruction, etc)	
	□J		to no st			- \ '			,		
8.					•	•	lal Marsh Str	•	o 2 or 4 of	reams, D2 drought or higher is cons	sidered a drought
	\boxtimes A	Drou	ght cond	ditions <u>and</u>	d no rainfa	ll or rainfa	all not exceed	ng 1 inch v	vithin the l	ast 48 hours	sidered a drought.
	□B □C			ditions <u>and</u> onditions	<u>t</u> rainfall ex	xceeding	1 inch within t	he last 48 l	nours		
9.			_		assessme	ent reach	metric				
	□Yes							If Yes, sk	ip to Metri	c 13 (Streamside Area Ground Surf	face Condition).
10.		al In-stre ⊠Yes	eam Hal □No				each metric	rity of the	accaceme	ent reach (examples of stressors i	include evcessive
	ioa.	<u> </u>	Пио	sedime	entation, m	nining, ex	cavation, in-s	tream hard	lening [for	r example, rip-rap], recent dredgin to Metric 12)	
		Check a ☐A					e of assessm		skip for \$	Size 4 Coastal Plain streams) 5% oysters or other natural hard	hottoms
			(include	e liverwort	ts, lichens,	and alga	ıl mats)	Tida	□G	Submerged aquatic vegetation	
		⊠в	vegetat		nd/or lear	packs and	d/or emergen	t Stre	H	Low-tide refugia (pools) Sand bottom	
		□C □D			nd logs (in		ap trees) s and/or roots	Chec	□J □K	5% vertical bank along the marsl Little or no habitat	'n
			in bank	s extend	to the norn		d perimeter	, ,	. `	Entito of no natitat	
		□E	Little of	r no habita	λt						
****	*****	*****	*****	**REMAIN	ING QUE	STIONS	ARE NOT AF	PLICABLE	FOR TIE	OAL MARSH STREAMS********	*****
11.	Bedfo	rm and	Substra	ite – asse	ssment re	each met	ric (skip for	Size 4 Coa	stal Plain	streams and Tidal Marsh Stream	ıs)
	11a.	□Yes	⊠No	ls asses	sment rea	ch in a na	tural sand-be	d stream?	(skip for (Coastal Plain streams)	
		Bedform ⊠A			k the app		box(es).				
		⊟в	Pool-gl	ide sectio	n `(evaluat	e 11d)					
					•	-	tric 12, Aqua	•	r of the oc	accoment reach , whether or not ou	ibmorgad Chask
		at least of (R) = pre	one box esent bu	t in each i t <u><</u> 10%, (row (skip	for Size 4 (C) = > 10	4 Coastal Pla 0-40%, Abund	in streams	and Tida	sessment reach – whether or not su Il Marsh Streams). Not Present (N Predominant (P) = > 70%. Cumul	IP) = absent, Rare
		NP	<u>R</u>	<u>C</u>	<u>A</u>	<u>P</u>					
			H	H	H	H	Bedrock/sa Boulder (25		nm)		
							Cobble (64	256 mm)			
		H		H		H	Gravel (2 – Sand (.062				
							Silt/clay (<				
							Detritus Artificial (rip	-rap, conci	rete, etc.)		
	11d.	□Yes	□No	Are pool	s filled wit	h sedimer	nt? (skip for :	Size 4 Coa	stal Plain	streams and Tidal Marsh Stream	ıs)

12.			sessment reach metric (skip for Tidal Marsh Streams)
	12a. ☐ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
	12b.	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
			Beetles Caddisfly larvae (T)
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
			Damselfly and dragonfly larvae Dipterans
	Ë		Mayfly larvae (E)
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)
	Ä		Other fish Salamanders/tadpoles
			Snails
			Stonefly larvae (P) Tipulid larvae
	_		Worms/leeches
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	□A	\square A	Little or no alteration to water storage capacity over a majority of the streamside area
	□в ⊠с	□B ⊠C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted p	er for the erimeter	 e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
	LB □Y ⊠N	RB □Y ⊠N	Are wetlands present in the streamside area?
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
		II contrib	utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
	□В	Ponds (i	nclude wet detention basins; do not include sediment basins or dry detention basins)
	□C ⊠D	Evidenc	ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) e of bank seepage or sweating (iron in water indicates seepage)
	□E □F		ped or bank soil reduced (dig through deposited sediment if present) the above
17.		w Detrac	ors – assessment area metric (skip for Tidal Marsh Streams)
	□A □B	Evidenc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit)
	□C	Urban s	ream (≥ 24% impervious surface for watershed)
	□D □E		e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge
	⊠F	None of	the above
18.			sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	□A ⊠B	Stream	shading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees)
	□c		shading is gone or largely absent

19.	 Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB △A △A △A △A △A ≥ 100 feet wide or extends to the edge of the watershed 						
	□ B □ B □ B From 50 to < 100 feet wide □ C □ C □ C From 30 to < 50 feet wide □ D □ D □ D □ D From 10 to < 30 feet wide □ E □ E □ E □ E < 10 feet wide or no trees						
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB A Mature forest B Non-mature woody vegetation or modified vegetation structure						
	□ C Herbaceous vegetation with or without a strip of trees < 10 feet wide						
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22:						
	Abuts < 30 feet 30-50 feet LB RB LB RB LB RB A A A A Row crops B B B B B B B Maintained turf C C C C Pasture (no livestock)/commercial horticulture D D D D D D Pasture (active livestock use)						
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB						
	 ✓A Medium to high stem density ✓B ☐B Low stem density ✓C ☐C No wooded riparian buffer or predominantly herbaceous species or bare ground 						
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB \[\Bar{A} \] The total length of buffer breaks is < 25 percent.						
	 □A □A The total length of buffer breaks is < 25 percent. □B □B The total length of buffer breaks is between 25 and 50 percent. □C □C The total length of buffer breaks is > 50 percent. 						
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB						
	 □A						
	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.						
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. Yes No Was conductivity measurement recorded? If No, select one of the following reasons. No Water Other:						
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\Box A < 46$ $\Box B = 46$ to < 67 $\Box C = 67$ to < 79 $\Box D = 79$ to < 230 $\Box E = 230$						
Note	es/Sketch:						

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Banner Branch Mitigation	Date of Assessment	10-2-2019				
Stream Category	Pa3	Assessor Name/Organization	Kyle Obermiller/WLS				
Notes of Field Asses	Notes of Field Assessment Form (Y/N) NO						
Presence of regulator	NO						
Additional stream inf	dditional stream information/supplementary measurements included (Y/N) NO						
NC SAM feature type	e (perennial, intermittent, Tidal	Marsh Stream)	Perennial				

(perennial, intermittent, ridal marsh Stream)	- Ferennia	<u>' </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	MEDIUM	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	MEDIUM	
	NA	
(2) Stream/Intertidal Zone Interaction		
(2) Longitudinal Tidal Flow	NA NA	
(2) Tidal Marsh Stream Stability	NA NA	
(3) Tidal Marsh Channel Stability	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	OMITTED	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	LOW	
(3) Stream Stability	LOW	
(3) In-stream Habitat	LOW	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone	NA NA	
Overall	LOW	

NC SAM FIELD ASSESSMENT RESULTS Accompanies User Manual Version 2.1

		ACC	unipanies usei iv	iailuai veisioii 2.1	
USACE AII	O #:			NCDWR #:	
INSTRUCT	IONS: Attach a sl	ketch of the assessment a	area and photogra	phs. Attach a copy of the USGS	7.5-minute topographic quadrangle,
					d on the same property, identify and
					ser Manual for detailed descriptions
					urements were performed. See the
		amples of additional meas			
NOTE EVID	DENCE OF STRE	SSORS AFFECTING TH	E ASSESSMENT	AREA (do not need to be within	n the assessment area).
	SITE INFORMAT				
	ame (if any):	Banner Branch Mitigation		2. Date of evaluation: 10-2-20	
	d/owner name:	Water & Land Solutions		4. Assessor name/organization:	Kyle Obermiller/WLS
5. County:		Stokes		6. Nearest named water body	
7. River bas		Roanoke		on USGS 7.5-minute quad:	Banner Branch
		degrees, at lower end of a			
		lepth and width can be			700
	ber (show on atta			ength of assessment reach evalu	
	•	in riffle, if present) to top			Jnable to assess channel depth.
	I width at top of ba			ssessment reach a swamp steam	I? LIYES LINO
	type: ⊠Perennia	al flow Intermittent flow	v 🔲 i idai iviarsh S	ouedii	
15. NC SAN		Mountains (M)	□ Piedmont (Piedmont)) Inner Coastal Plain (I)	Outer Coastal Plain (O)
15. NC SAN	/i Zone.	☐ IVIOUTILAITIS (IVI)	M Pleamont (P) Inner Coastar Plain (I)	U Outer Coastai Plain (O)
		1		,	
	ed geomorphic	\bowtie_{A}	$\overline{}$	□в	
	hape (skip for arsh Stream):	(more sinuous strear	m flatter valley slo		ream, steeper valley slope)
	,	•	•	• •	
	ned size: (skip a l Marsh Stream)	☐Size 1 (< 0.1 mi²)	☐Size 2 (0.1 to	o < 0.5 mi ²) \square Size 3 (0.5 to <	: 5 mi²)
	AL INFORMATIO				
			: Mo If Yes ch	eck all that apply to the assessme	ent area
	on 10 water	Classified T			rshed (I I II III IV V)
_	ntial Fish Habitat	☐Primary Nur			s/Outstanding Resource Waters
_	cly owned propert	-	parian buffer rule i		_
	romous fish	☐303(d) List		_	ronmental Concern (AEC)
□Docu	mented presence	of a federal and/or state	listed protected sp	pecies within the assessment are	a.
	species:				
	gnated Critical Ha				
19. Are add	litional stream info	rmation/supplementary m	neasurements incl	uded in "Notes/Sketch" section or	r attached?
4 01	134/		. f O' 4 . t		
			o for Size 1 Stream	ms and Tidal Marsh Streams)	
□B	No flow, water in	ut assessment reach.			
⊟c	No water in asse				
_	o of Flour Bootsi	-4:	ab		
		ction – assessment read		le neel coguence is coverely offe	atad by a flaw rootriction or fill to the
□A					cted by a flow restriction or fill to the impoundment on flood or ebb within
	the assessment	reach (examples: under	sized or perched o	culverts, causeways that constrict	the channel, tidal gates, debris jams,
_	beaver dams).	, ,		,	. 3 , , , ,
⊠B	Not A				
3. Feature	Pattern - assess	sment reach metric			
			altered pattern (exa	amples: straightening, modificatio	n above or below culvert).
⊠B	Not A		1 /2/	, 5 3, 34	
	l ongitudinal Pr	ofile – assessment reac	h metric		
4. Feature ⊠A	•			ream profile (examples: chappel	down-cutting, existing damming, over
			•		has not reformed from any of these
	disturbances).	Januaranon, anoughig,	Choaradon W	sappopulate chainle prome	The first statement and of those
□В	Not A				
	f Active Instabili	ty – assessment reach r	metric		
				he stream has currently recove	ered. Examples of instability include
					uch as concrete, gabion, rip-rap).
□A	< 10% of channe		,,	2	2.2 2.2.2.2.0, gaz.e.,p (ap).
□в	10 to 25% of cha				
⊠c	> 25% of channe	el unstable			

6.	Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB). LB RB					
	□A ⊠B	∏A ⊠B	Little or no evidence of conditions that adversely affect reference interaction Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affe reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leak or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])			
	□C	□с	Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on a interstream divide	on ve		
7.		-	Stressors – assessment reach/intertidal zone metric			
	$\square A$		ored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)			
	□B □C		<u>sive</u> sedimentation (burying of stream features or intertidal zone) table evidence of pollutant discharges entering the assessment reach <u>and</u> causing a water quality problem			
	D DE	Odor ((not including natural sulfide odors) nt published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketc	h"		
		section	n.	"		
	□F □G		ock with access to stream or intertidal zone sive algae in stream or intertidal zone			
	□J □H	Other:	ded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc) (explain in "Notes/Sketch" section) o no stressors			
8.			er – watershed metric (skip for Tidal Marsh Streams)			
	For S ⊠A		streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drough ht conditions <u>and</u> no rainfall or rainfall not exceeding 1 inch within the last 48 hours	١t.		
	□B □C		ht conditions <u>and</u> rainfall exceeding 1 inch within the last 48 hours ought conditions			
9.		e or Dange	erous Stream – assessment reach metric Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).			
10.			am Habitat Types – assessment reach metric			
	10a.	□Yes	No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)			
	10b.		that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams) Multiple aguatic macrophytes and aquatic mosses [F 5% oysters or other natural hard bottoms			
			(include liverworts, lichens, and algal mats) $\frac{g}{\mu}$ $\frac{g}{g}$ Submerged aquatic vegetation			
		,	Multiple sticks and/or leaf packs and/or emergent 与素白 □H Low-tide refugia (pools) vegetation			
			Multiple snags and logs (including lap trees) y y y			
		i	in banks extend to the normal wetted perimeter Little or no habitat			
****	*****	*****	*********REMAINING QUESTIONS ARE NOT APPLICABLE FOR TIDAL MARSH STREAMS************************************			
			Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)			
		_	No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)			
	11b.		evaluated. Check the appropriate box(es).			
			Riffle-run section (evaluate 11c) Pool-glide section (evaluate 11d)			
			Natural bedform absent (skip to Metric 12, Aquatic Life)			
	11c.	at least o	ctions, check all that occur below the normal wetted perimeter of the assessment reach – whether or not submerged. Chec ne box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Raisent but \leq 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages	re		
			t exceed 100% for each assessment reach. R C A P			
			□ □ Bedrock/saprolite □ □ □ Boulder (256 – 4096 mm)			
		\exists	□ □ Cobble (64 – 256 mm) □ □ Gravel (2 – 64 mm) □ □ □ □ □ Sand (.062 – 2 mm) □ □ □ Silt/clay (< 0.062 mm)			
			□ □ Silt/clay (< 0.062 mm) □ □ Detritus			
		_	Artificial (rip-rap, concrete, etc.)			
	11d.	□Yes	□No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)			

12.	Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)							
	12a. ⊠ If N	_	No Was an in-stream aquatic life assessment performed as described in the User Manual? tone of the following reasons and skip to Metric 13. No Water Other:					
	12b. 🛚	Yes [No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all the apply. If No, skip to Metric 13.					
	1 ⊠ □		Adult frogs Aquatic reptiles					
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles Caddisfly larvae (T)					
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp) Damselfly and dragonfly larvae					
			Dipterans Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)					
			Midges/mosquito larvae Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>) Mussels/Clams (not <i>Corbicula</i>)					
			Other fish Salamanders/tadpoles Snails					
			Stonefly larvae (P) Tipulid larvae Worms/leeches					
13.			a Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runof					
	□A ⊠B □C	□A ⊠B □C	Little or no alteration to water storage capacity over a majority of the streamside area Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)					
14.			a Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.					
	□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep					
15.	Conside wetted p	r for the	ce – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.					
	□Y ⊠N	□Y ⊠N	Are wetlands present in the streamside area?					
16.		II contri Streams Ponds (Obstruc	butors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) butors within the assessment reach or within view of and draining to the assessment reach. s and/or springs (jurisdictional discharges) include wet detention basins; do not include sediment basins or dry detention basins) tion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir					
	□E □F	Stream	te of bank seepage or sweating (iron in water indicates seepage) bed or bank soil reduced (dig through deposited sediment if present) i the above					
17.	Check a	II that ap Evidend Obstruc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) tion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit)					
	□C □D □E ⊠F	Evidend Assess	tream (≥ 24% impervious surface for watershed) the that the streamside area has been modified resulting in accelerated drainage into the assessment reach ment reach relocated to valley edge the above					
18.	Consider A	r aspect. Stream	Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes)					
	□B □C		ed (example: scattered trees) shading is gone or largely absent					

19.	. Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.							
	egetated Wooded B RB LB RB A □ A □ A ≥ 100 feet wide or extends to the edge of the watershed B □ B □ B □ B From 50 to < 100 feet wide C □ C □ C □ C □ C From 30 to < 50 feet wide D □ D □ D □ D From 10 to < 30 feet wide C □ C □ C □ C □ C To From 10 to < 30 feet wide C □ C □ C □ C □ C To From 10 to < 30 feet wide C □ C □ C □ C To From 10 to < 30 feet wide C □ C □ C □ C To From 10 to < 30 feet wide							
20.	uffer Structure – streamside area metric (skip for Tidal Marsh Streams) onsider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).							
	B RB A Mature forest B Non-mature woody vegetation or modified vegetation structure C C Herbaceous vegetation with or without a strip of trees < 10 feet wide D Maintained shrubs E Little or no vegetation							
21.	suffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is citin 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet).							
	none of the following stressors occurs on either bank, check here and skip to Metric 22: buts < 30 feet 30-50 feet							
	B RB LB RB LB RB]A							
]B							
	D D D D Pasture (active livestock use)							
22.	tem Density – streamside area metric (skip for Tidal Marsh Streams) consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). B RB							
	 ☑A Medium to high stem density ☑B Low stem density ☑C No wooded riparian buffer or predominantly herbaceous species or bare ground 							
23.	continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. B RB							
	A							
24.	egetative Composition – streamside area metric (skip for Tidal Marsh Streams) valuate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to ssessment reach habitat.							
	B RB]A □A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species,							
	with non-native invasive species absent or sparse. B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or							
	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.							
25.	sonductivity – assessment reach metric (skip for all Coastal Plain streams) 5a. ☑Yes ☐No Was conductivity measurement recorded? If No, select one of the following reasons. ☐No Water ☐Other:							
	5b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230							
Note	/Sketch:							
	er Branch reaches 1 and 2 (upstream of BBR3) have direct cattle access and pollution issues draining directly into this reach.							

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name Stream Category	Banner Branch Mitigation Pa3	Date of Assessment Assessor Name/Organization	10-2-2019 Kyle Obermiller/WLS	S		
	Notes of Field Assessment Form (Y/N) Presence of regulatory considerations (Y/N) NO					
Additional stream inf NC SAM feature type	NO Perennial					

(pororimal, intermitterit, ridal maron otroam)	1 010111110	<u>-</u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	MEDIUM	
(2) Baseflow	HIGH	
(2) Flood Flow	MEDIUM	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	LOW	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	LOW	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	MEDIUM	
(2) Stream/Intertidal Zone Interaction	NA NA	
(2) Longitudinal Tidal Flow	NA NA	
. ,	NA NA	
(2) Tidal Marsh Stream Stability (3) Tidal Marsh Channel Stability	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	HIGH	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	HIGH	
(3) Stream Stability	LOW	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	MEDIUM	

NC SAM FIELD ASSESSMENT RESULTS Accompanies User Manual Version 2.1

USACE AID #:			NCDWR #:					
INSTRUCTIONS : Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,								
and circle the location of t	he stream reach under evalu	uation. If multiple s	tream reaches will be evaluated	on the same property, identify and				
number all reaches on the	attached map, and include a	a separate form for e	each reach. See the NC SAM U	ser Manual for detailed descriptions				
and explanations of reque	sted information. Record in	the "Notes/Sketch"	section if supplementary measurements	urements were performed. See the				
NC SAM User Manual for	examples of additional meas	surements that may	be relevant.					
NOTE EVIDENCE OF ST	RESSORS AFFECTING THE	E ASSESSMENT A	REA (do not need to be within	n the assessment area).				
PROJECT/SITE INFORM	ATION:							
Project name (if any):	Banner Branch Mitigation	on 2.	Date of evaluation: 10-2-20	019				
3. Applicant/owner name:	Water & Land Solutions		Assessor name/organization:	Kyle Obermiller/WLS				
5. County:	Stokes		. Nearest named water body	-				
7. River basin:	Roanoke		on USGS 7.5-minute quad:	Banner Branch				
	al degrees, at lower end of a	ssessment reach):	•					
•	: (depth and width can be a	•						
9. Site number (show on a			ngth of assessment reach evalu	ated (feet): 410				
	ed (in riffle, if present) to top of		=	Inable to assess channel depth.				
12. Channel width at top of			sessment reach a swamp steam	•				
	nnial flow Intermittent flow							
STREAM CATEGORY IN			· 					
15. NC SAM Zone:	☐ Mountains (M)	☐ Piedmont (P)	☐ Inner Coastal Plain (I)	Outer Coastal Plain (O)				
10.110 6/11/2010.	□ Modritaine (M)		inner codotar ram (i)	Gater Sousiar Flam (S)				
			_					
	•	,						
16. Estimated geomorphic			⊠B					
valley shape (skip for		m flatter valley alen	-	room stooper valley sleps)				
Tidal Marsh Stream):				ream, steeper valley slope)				
17. Watershed size: (skip	Size 1 (< 0.1 mi²)	∐Size 2 (0.1 to	< 0.5 mi ²) \square Size 3 (0.5 to <	5 mi²)				
for Tidal Marsh Strea	,							
ADDITIONAL INFORMAT			al all distance literature second					
			ck all that apply to the assessme					
Section 10 water	☐Classified Tr			shed (I II III IV V)				
Essential Fish Habi	_ ,		•	s/Outstanding Resource Waters				
Publicly owned prop		parian buffer rule in						
☐Anadromous fish	303(d) List	licted protected and	cies within the assessment area	ronmental Concern (AEC)				
List species:	ice of a federal and/or state i	iistea protectea spe	cies within the assessment area	1.				
Designated Critical	Habitat (list species)							
	· · · · · · —	accuramenta inclu	ded in "Notes/Sketch" section or	attachad? DVac MNa				
19. Are additional stream	mormation/supplementary m	leasurements includ	ded in Notes/Sketch Section of	attached? Tes Mino				
1. Channel Water – asse	seemant raach matric (ekin	for Size 1 stream	s and Tidal Marsh Streams)					
	hout assessment reach.	TOI SIZE I Stream	s and ridal marsh otteams,					
	er in pools only.							
<u> </u>	ssessment reach.							
_		-1						
	striction - assessment read		neel common is consent. offe	atad by a flavy reatriation or fill to the				
				cted by a flow restriction or fill to the				
				impoundment on flood or ebb within the channel, tidal gates, debris jams,				
beaver dams		sized of perefica cu	iverts, causeways that constitut	the chamier, tidal gates, debits jams,				
⊠B Not A	,-							
	essment reach metric			a abaya ar balayy ardyardy				
	the assessment reach has a	iitered pattern (exar	nples: straightening, modificatio	n above or below culvert).				
⊠B Not A								
4. Feature Longitudinal	Profile - assessment reach	h metric						
☐A Majority of as	sessment reach has a subst	tantially altered stre	am profile (examples: channel	down-cutting, existing damming, over				
		and excavation who	ere appropriate channel profile	has not reformed from any of these				
disturbances								
⊠B Not A								
5. Signs of Active Instal	oility – assessment reach n	netric						
_	-		stream has currently recove	ered. Examples of instability include				
				uch as concrete, gabion, rip-rap).				
<u> </u>	nnel unstable			,				
	channel unstable							
□C > 25% of cha	nnel unstable							

6.	Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB). LB RB				
	□A ⊠B	∏A ⊠B	Little or no evidence of conditions that adversely affect reference interaction Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affer reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leak or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])		
	□C	□с	Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone acces [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruptio of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on a interstream divide		
7. Water Quality Stressors – assessment reach/intertidal zone metric Check all that apply.					
	□A		арргу. ored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)		
	□B □C		<u>sive</u> sedimentation (burying of stream features or intertidal zone) table evidence of pollutant discharges entering the assessment reach <u>and</u> causing a water quality problem		
	\Box D	Odor (not including natural sulfide odors)		
	□E	Currer section	nt published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch n.		
	⊠F □G		ock with access to stream or intertidal zone sive algae in stream or intertidal zone		
	□н	Degra	ded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)		
	□J		ono stressors (explain in "Notes/Sketch" section)		
8.					
	For S ⊠A		streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drough ht conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours		
	□в	Droug	ht conditions and rainfall exceeding 1 inch within the last 48 hours		
0	□C		ought conditions		
	□Ye	rge or Dangerous Stream – assessment reach metric Yes No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).			
10.	Natural In-stream Habitat Types – assessment reach metric 10a. Yes No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excess sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)				
	10b.		that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)		
			Multiple aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Multiple sticks and/or leaf packs and/or emergent vegetation Multiple snags and logs (including lap trees)		
			Multiple sticks and/or leaf packs and/or emergent 与为为 □H Low-tide refugia (pools) vegetation Sand bottom		
		□C	Multiple snags and logs (including lap trees) J		
		į	in banks extend to the normal wetted perimeter		
		□E	Little or no habitat		
****	*****	*****	*********REMAINING QUESTIONS ARE NOT APPLICABLE FOR TIDAL MARSH STREAMS************************************		
11.	Bedfo	orm and S	Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)		
	11a.	□Yes	⊠No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)		
	11b.		evaluated. Check the appropriate box(es). Riffle-run section (evaluate 11c)		
		□В	Pool-glide section (evaluate 11d)		
	44.		Natural bedform absent (skip to Metric 12, Aquatic Life)		
	11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach – whether or not submer at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative				
		should no	t exceed 100% for each assessment reach.		
			□ □ □ Bedrock/saprolite		
			□ □ □ □ Boulder (256 – 4096 mm) □ □ □ □ Cobble (64 – 256 mm)		
			□ □ □ □ Gravel (2 – 64 mm)		
		\square	Detritus Artificial (rip-rap, concrete, etc.)		
	11d.	□Yes	□ No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)		

		sessment reach metric (skip for Tidal Marsh Streams)		
		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☑Other:		
12b. 🗌	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.		
1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles		
		Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)		
		Beetles Caddisfly larvae (T)		
		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)		
		Damselfly and dragonfly larvae Dipterans		
		Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)		
		Midges/mosquito larvae		
		Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)		
		Other fish Salamanders/tadpoles		
		Snails Stonefly larvae (P)		
Ä		Cipulid larvae Worms/leeches		
Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.				
LB □A	RB □A	Little or no alteration to water storage capacity over a majority of the streamside area		
⊠B □C	⊠B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)		
 Streamside Area Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area. LB RB 				
□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep		
Wetland Presence – streamside area metric (skip for Tidal Marsh Streams) Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach.				
\square Y	\boxtimes Y	Are wetlands present in the streamside area?		
	_	outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)		
Check all contributors within the assessment reach or within view of <u>and</u> draining to the assessment reach. Streams and/or springs (jurisdictional discharges)				
□B □C □D □E	Ponds (i Obstruct Evidence Stream I	nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) e of bank seepage or sweating (iron in water indicates seepage) bed or bank soil reduced (dig through deposited sediment if present)		
7. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)				
Check a A B C C	Evidence Obstruct	ply. e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)		
□D □E ⊠F	Evidence Assessn	e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge the above		
		sment reach metric (skip for Tidal Marsh Streams)		
□A □B □C	Stream s Degrade	consider lear-on condition. shading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees) shading is gone or largely absent		
	12a. If N 12b. If N 12c. If N	12a. Yes		

	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded
	LB RB LB RB \square A \square A \square A \square A ≥ 100 feet wide <u>or</u> extends to the edge of the watershed \square B \square B \square B \square B From 50 to < 100 feet wide \square C \square C \square C \square C \square C From 30 to < 50 feet wide \square D \square D \square D \square D \square D \square D From 10 to < 30 feet wide \square E \square E \square E \square E \square E \square E \square C 10 feet wide <u>or</u> no trees
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB □ A □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ E Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22:
	Abuts < 30 feet 30-50 feet LB RB LB RB
	□A □A □A □A □A Row crops □B □B □B □B □B Maintained turf
	□C □C □C □C □C Pasture (no livestock)/commercial horticulture □D □D □D □D □D Pasture (active livestock use)
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB
	 ✓A Medium to high stem density □B □B Low stem density □C □C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	LB RB □ A □ The total length of buffer breaks is < 25 percent. □ B □ B □ The total length of buffer breaks is between 25 and 50 percent. □ C □ C □ C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams)
	Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	□A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	☑B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Note	es/Sketch:

Stream Site Name	10-2-2019							
Stream Category	Kyle Obermiller/WLS							
Notes of Field Asses	ssment Form (Y/N)		NO					
Presence of regulator	ory considerations (Y/N)		NO					
Additional stream inf	formation/supplementary meas	urements included (Y/N)	NO					
NC SAM feature typ	C SAM feature type (perennial, intermittent, Tidal Marsh Stream) Perennial Perennial							

(poronnal, intermittent, ridal Maron Gudan)	1 010111110	<u>. </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	MEDIUM	
(4) Microtopography	NA NA	
(3) Stream Stability	HIGH	
•		
(4) Channel Stability	HIGH	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	OMITTED	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	LOW	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	LOW	
(2) Stream-side Habitat	MEDIUM	
(3) Stream-side Habitat	MEDIUM	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA NA	
• •	NA NA	
(3) Flow Restriction		
(3) Tidal Marsh Stream Stability	NA NA	
(4) Tidal Marsh Channel Stability	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone	NA	
Overall	LOW	

	7.000 inputito 0001 in		
USACE AID #:		NCDWR #:	
	ach a sketch of the assessment area and photograp		
	of the stream reach under evaluation. If multiple s		
	the attached map, and include a separate form for		
	equested information. Record in the "Notes/Sketch		urements were performed. See the
	for examples of additional measurements that may		
NOTE EVIDENCE OF	STRESSORS AFFECTING THE ASSESSMENT	AREA (do not need to be withir	the assessment area).
PROJECT/SITE INFO	RMATION:		
1. Project name (if any	/): Banner Branch Mitigation 2	2. Date of evaluation: 10-2-20	19
3. Applicant/owner nar	me: Water & Land Solutions	4. Assessor name/organization:	Kyle Obermiller/WLS
5. County:		6. Nearest named water body	
7. River basin:	Roanoke	on USGS 7.5-minute quad:	Banner Branch
8. Site coordinates (de	ecimal degrees, at lower end of assessment reach):	•	
· ·	ION: (depth and width can be approximations)	,	
9. Site number (show of		ength of assessment reach evalu	ated (feet): 390
,		_	Inable to assess channel depth.
12. Channel width at to		ssessment reach a swamp steam	·
	Perennial flow ⊠Intermittent flow ☐Tidal Marsh S	•	
STREAM CATEGORY			
15. NC SAM Zone:	☐ Mountains (M) ☐ Piedmont (P)	☐ Inner Coastal Plain (I)	Outer Coastal Plain (O)
10. NO 0/ WI ZONC.		Initial Coastair lain (i)	Guier Geastai Flaiii (G)
16. Estimated geomor		⊠B	مر
valley shape (skip			
Tidal Marsh Strea	,		ream, steeper valley slope)
17. Watershed size: (s	Skip \square Size 1 (< 0.1 mi ²) \square Size 2 (0.1 to	$0 < 0.5 \text{ mi}^2$) Size 3 (0.5 to <	5 mi²)
for Tidal Marsh S	,		
ADDITIONAL INFORM			
	onsiderations evaluated? \boxtimes Yes \square No If Yes, che		
Section 10 wate			shed (□I □II □III □IV □V)
☐Essential Fish H	_ , ,		s/Outstanding Resource Waters
Publicly owned	· · · · · · · · · · · · · · · · · · ·		
Anadromous fis	<u> </u>		onmental Concern (AEC)
	esence of a federal and/or state listed protected sp	ecies within the assessment area	1.
List species:	. · 		
	ical Habitat (list species)		
19. Are additional stream	am information/supplementary measurements inclu	uded in "Notes/Sketch" section or	attached?
	assessment reach metric (skip for Size 1 stream	ns and Tidal Marsh Streams)	
	roughout assessment reach.		
	water in pools only. in assessment reach.		
□C No water	in assessment reach.		
	Restriction – assessment reach metric		
□A At least 1	10% of assessment reach in-stream habitat or riffle	e-pool sequence is severely affe	cted by a flow restriction or fill to the
point of o	obstructing flow <u>or</u> a channel choked with aquatic r	nacrophytes <u>or</u> ponded water <u>or</u>	impoundment on flood or ebb within
	ssment reach (examples: undersized or perched co	ulverts, causeways that constrict	the channel, tidal gates, debris jams,
beaver da	ams).		
⊠B Not A			
3. Feature Pattern -	assessment reach metric		
□A A majority	y of the assessment reach has altered pattern (exa	mples: straightening, modification	n above or below culvert).
⊠B Not A			,
	inal Profile - assessment reach metric		
	inal Profile – assessment reach metric	nam profile (avamples), channel	down outting existing domming over
	of assessment reach has a substantially altered stre		
disturban	, active aggradation, dredging, and excavation whaces)	iere appropriate criatilier profile	nas not reformed from any or these
⊠B Not A	000).		
_	stability – assessment reach metric		
	rrent instability, not past events from which th		
	active channel down-cutting (head-cut), active wid	lening, and artificial hardening (su	uch as concrete, gabion, rip-rap).
_	channel unstable		
	6 of channel unstable channel unstable		
> 25 % OI	CHAINE UNSIANE		

Ο.				ank (LB) and the						
	LB	RB	io Loit Be	ank (LB) and the	ragin De	anic (icb).				
	⊠A □B	⊠a □B	Mode refere	nce interaction (e	conditions examples:	s (examples: be limited streams	erms, leve side area a	es, down- iccess, dis	eraction cutting, aggradation, dred cruption of flood flows throu inor ditching [including mos	gh streamside area, leaky
	□c	□c	Exten [exam of floo mosq	sive evidence of ples: causeways d flows through s	conditions with flood treamside	s that adversely dplain and chan e area] <u>or</u> too mu	affect refe nel constri och floodpl	erence into ction, bulk ain/intertic	eraction (little to no floodpl heads, retaining walls, fill, s lal zone access [examples: or assessment reach is a	ain/intertidal zone access stream incision, disruption impoundments, intensive
7.	Wate	er Quality	Stressors	s – assessment	reach/inte	ertidal zone me	etric			
	Chec □A	k all that		or in atroom or int	ortidal zau	no (milla) white	blue uppe	atural wat	or diagolaration, ail aboon	atroom foom)
	⊟B			mentation (buryin					er discoloration, oil sheen,	Stream toam)
						es entering the a	assessmer	nt reach <u>a</u>	nd causing a water quality	problem
	E			ding natural sulficed of collected of the collected of th		ating degraded	water qua	ality in the	assessment reach. Cite	source in "Notes/Sketch"
	⊠F	sectio		access to stream	or intertid	lal zone				
	□G	Exces	sive algae	e in stream or into	ertidal zon	ne				
	□H			h vegetation in th					nowing, destruction, etc)	
	Π̈́J		o no stres		_ (0xpiaii	THE PROCESS OF CITY	.011 0001101	,		
8.				shed metric (sk					D 0 1 1/ 1/1	
	For S			ons <u>and</u> no rainfa					eams, D2 drought or highe est 48 hours	er is considered a drought.
	□B □C		ht condition	ons <u>and</u> rainfall e	xceeding	1 inch within the	e last 48 h	ours		
9.			Ü	eam – assessm	ent reach	n metric				
	□Ye	s ⊠No	Is stre	am is too large o	r dangero	ous to assess?	lf Yes, skip	o to Metric	: 13 (Streamside Area Gro	und Surface Condition).
10.				at Types – asse Degraded in-stre			v of the a	ıssessmer	nt reach (examples of stre	essors include excessive
	rou.	Z 100			nining, ex	cavation, in-str	eam harde	ening [for	example, rip-rap], recent	
	10b.			ur (occurs if > 5% quatic macrophy				skip for S □F	ize 4 Coastal Plain stream 5% oysters or other natu	
			(include li	verworts, lichens	, and alga	al mats)	Tidal	□G	Submerged aquatic vege	
			Multiple s vegetation	ticks and/or leaf	packs an	ıd/or emergent	k for . Only	□H □I	Low-tide refugia (pools) Sand bottom	
		□c	Multiple s	nags and logs (ir			Check for Tidal Marsh Streams Only	□J	5% vertical bank along the	ne marsh
		_		cut banks and/o extend to the nor			1	□K	Little or no habitat	
		□E	Little or no	o habitat						
****	*****	*****	*********	REMAINING QUI	ESTIONS	ARE NOT APP	LICABLE	FOR TID	AL MARSH STREAMS***	******
11.	Bedf	orm and S	Substrate	- assessment r	each met	tric (skip for Si	ze 4 Coas	tal Plain	streams and Tidal Marsh	Streams)
	11a.	□Yes	⊠No Is	s assessment rea	ich in a na	atural sand-bed	stream? (skip for C	coastal Plain streams)	
	11b.			. Check the app section (evaluat		box(es).				
		□в	Pool-glide	e section (evalua	te 11d)					
				edform absent (s	•	, .	,			
	11c.	at least o	ne box ir sent but <	each row (skip 10%, Common	for Size 4 (C) = > 10	4 Coastal Plain 0-40%, Abunda	streams	and Tidal	essment reach – whether α Marsh Streams). Not Prepredominant (P) = > 70%.	esent (NP) = absent, Rare
				100% for each as C A	sessmen P	it reach.				
						Bedrock/sapr Boulder (256		m)		
						Cobble (64 –		iii <i>)</i>		
			R		\Box	Gravel (2 – 6 Sand (.062 –				
					Ĕ	Silt/clay (< 0.				
						Detritus Artificial (rip-r	ap, concre	ete, etc.)		
	11d.		_ □No A		h sedime	` '	•	,	streams and Tidal Marsh	Streams)

		sessment reach metric (skip for Tidal Marsh Streams)
		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☑Other:
12b. 🗌	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
		Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
		Beetles Caddisfly larvae (T)
		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
		Damselfly and dragonfly larvae Dipterans
		Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
		Midges/mosquito larvae
		Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)
		Other fish Salamanders/tadpoles
		Snails Stonefly larvae (P)
Ä		Cipulid larvae Worms/leeches
Streams Conside	ide Area	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
LB □A	RB □A	Little or no alteration to water storage capacity over a majority of the streamside area
⊠B □C	⊠B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)
		Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
Conside wetted p	er for the erimeter o	 e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
\square Y	\boxtimes Y	Are wetlands present in the streamside area?
	_	outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
		utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
□B □C □D □E	Ponds (i Obstruct Evidence Stream I	nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) e of bank seepage or sweating (iron in water indicates seepage) bed or bank soil reduced (dig through deposited sediment if present)
Baseflov	w Detract	ors – assessment area metric (skip for Tidal Marsh Streams)
Check a A B C C	Evidence Obstruct	ply. e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
□D □E ⊠F	Evidence Assessn	e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge the above
		sment reach metric (skip for Tidal Marsh Streams)
□A □B □C	Stream s Degrade	consider lear-on condition. shading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees) shading is gone or largely absent
	12a. If N 12b. If N 12c. If N	12a. Yes

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams)
	Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.
	Vegetated Wooded
	LB RB LB RB
	□A □A □A ≥ 100 feet wide or extends to the edge of the watershed
	□B □B □B From 50 to < 100 feet wide □C □C □C □C From 30 to < 50 feet wide
	\square D \square D \square D From 10 to < 30 feet wide
	□E □E □E < 10 feet wide <u>or</u> no trees
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams)
	Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB
	□A □A Mature forest □B □B Non-mature woody vegetation or modified vegetation structure
	□C □C Herbaceous vegetation with or without a strip of trees < 10 feet wide
	D D Maintained shrubs
	□E □E Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams)
	Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is
	within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22:
	Abuts < 30 feet 30-50 feet
	LB RB LB RB LB RB
	□A □A □A □A □A Row crops □B □B □B □B □B Maintained turf
	□B □B □B □B Maintained turf □C □C □C □C Pasture (no livestock)/commercial horticulture
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams)
	Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB
	☑A
	□C □C No wooded riparian buffer or predominantly herbaceous species or bare ground
23	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams)
23.	Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	LB RB
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	 □B □B The total length of buffer breaks is between 25 and 50 percent. □C □C The total length of buffer breaks is > 50 percent.
24	·
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to
	assessment reach habitat.
	LB RB
	☐A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	With non-native invasive species absent of sparse. □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	species. This may include communities of weedy native species that develop after clear-cutting or clearing or
	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. C C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities
	with non-native invasive species dominant over a large portion of expected strata or communities composed of planted
	stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams)
	25a. ☐Yes ☐No Was conductivity measurement recorded?
	If No, select one of the following reasons. ⊠No Water □Other:
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter).
	\square A < 46 \square B 46 to < 67 \square C 67 to < 79 \square D 79 to < 230 \square E \geq 230
Note	es/Sketch:

Stream Site Name	Banner Branch Mitigation	Date of Assessment	10-2-2019	1
Stream Category	Pb1	Assessor Name/Organization	Kyle Ober	miller/WLS
Notes of Field Asses			NO	
	ory considerations (Y/N)		NO	
	formation/supplementary measu		NO	
NC SAM feature typ	e (perennial, intermittent, Tidal	Marsh Stream)	Intermitter	<u>nt</u>
	Function Class Rating Sumi	mary /	USACE/ All Streams	NCDWR Intermittent
	(1) Hydrology	ilai y F	HIGH	HIGH
	(2) Baseflow		HIGH	HIGH
	(2) Flood Flow		HIGH	HIGH
	(3) Streamside A	rea Attenuation	HIGH	HIGH
	(4) Floodpl		HIGH	HIGH
		d Riparian Buffer	HIGH	HIGH
	(4) Microto		NA	NA NA
	(3) Stream Stabili	-	HIGH	HIGH
	(3) Stream Stability	·	HIGH	HIGH
		nt Transport	LOW	LOW
			HIGH	HIGH
		Geomorphology		
	` '	dal Zone Interaction	NA NA	NA NA
	(2) Longitudinal Ti		NA NA	NA NA
	(2) Tidal Marsh St		NA	NA NA
		arsh Channel Stability	NA	NA NA
		arsh Stream Geomorphology	NA	NA NA
	(1) Water Quality		LOW	LOW
	(2) Baseflow	<u> </u>	HIGH	HIGH
	(2) Streamside Area Ve	· -	LOW	LOW
	(3) Upland Polluta		LOW	LOW
	(3) Thermoregula		MEDIUM	MEDIUM
	(2) Indicators of Stresso		YES	YES
	(2) Aquatic Life Toleran		OMITTED	NA NA
	(2) Intertidal Zone Filtration	on	NA	NA
	(1) Habitat		LOW	MEDIUM
	(2) In-stream Habitat	<u> </u>	LOW	MEDIUM
	(3) Baseflow		HIGH	HIGH
	(3) Substrate		LOW	LOW
	(3) Stream Stabili		HIGH	HIGH
	(3) In-stream Hab	oitat	LOW	HIGH
	(2) Stream-side Habitat		MEDIUM	MEDIUM
	(3) Stream-side H	labitat	MEDIUM	MEDIUM
	(3) Thermoregula	tion	MEDIUM	MEDIUM
	(2) Tidal Marsh In-stream	n Habitat	NA	NA

(3) Flow Restriction

(2) Intertidal Zone

Overall

(3) Tidal Marsh Stream Stability

(3) Tidal Marsh In-stream Habitat

(4) Tidal Marsh Channel Stability

(4) Tidal Marsh Stream Geomorphology

NA

NA

NA

NA

NA

NA

LOW

NA

NA

NA

NA

NA

NA

MEDIUM

USACE AID #: INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topog and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same pronumber all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for details and include a separate form for each reach.	
and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same pronumber all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for de	
number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for de	
and explanations of requested information. Record in the "Notes/Sketch" section if supplementary measurements were p	erformed. See the
NC SAM User Manual for examples of additional measurements that may be relevant.	
NOTE EVIDENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment	nt area).
PROJECT/SITE INFORMATION:	
1. Project name (if any): Banner Branch Mitigation 2. Date of evaluation: 10-2-2019	
3. Applicant/owner name: Water & Land Solutions 4. Assessor name/organization: Kyle Obermill	ler/WLS
5. County: Stokes 6. Nearest named water body	
7. River basin: Roanoke on USGS 7.5-minute quad: Banner Branc	ch
8. Site coordinates (decimal degrees, at lower end of assessment reach): 36.532891°, -80.202525°	
STREAM INFORMATION: (depth and width can be approximations)	
	400
11. Channel depth from bed (in riffle, if present) to top of bank (feet): 0.7	channel depth.
12. Channel width at top of bank (feet): 6.7 13. Is assessment reach a swamp steam? Yes No	
14. Feature type: ☐Perennial flow ☐Intermittent flow ☐Tidal Marsh Stream	
STREAM CATEGORY INFORMATION:	
15. NC SAM Zone: ☐ Mountains (M) ☐ Piedmont (P) ☐ Inner Coastal Plain (I) ☐ Outer Coastal Plain (I)	stal Plain (O)
1	• •
16. Estimated geomorphic	
valley shape (skip for	
Tidal Marsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper val	llev slope)
	re 4 (≥ 5 mi²)
1 17 Watershed size: (ekin	
	.e 4 (≥ 5 mi-)
for Tidal Marsh Stream)	:e 4 (≥ 5 IIII ⁻)
for Tidal Marsh Stream) ADDITIONAL INFORMATION:	.e 4 (2 5 IIII ⁻)
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? ⊠Yes □No If Yes, check all that apply to the assessment area.	, ,
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? ⊠Yes □No If Yes, check all that apply to the assessment area. □ Section 10 water □ Classified Trout Waters □ Water Supply Watershed (□I □II	
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC)
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC)
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC)
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area. Section 10 water Classified Trout Waters Water Supply Watershed (I III Sessential Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Respublicly owned property NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters Anadromous fish 303(d) List CAMA Area of Environmental Conce Documented presence of a federal and/or state listed protected species within the assessment area. List species: Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) Water throughout assessment reach.	□III □IV □V) esource Waters ern (AEC)
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC)
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area. Section 10 water Classified Trout Waters Water Supply Watershed (I III High Quality Watershed (I III Marsh Streams) Publicly owned property NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters Anadromous fish 303(d) List CAMA Area of Environmental Conce Documented presence of a federal and/or state listed protected species within the assessment area. List species: Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes Channel Water — assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) Water throughout assessment reach.	□III □IV □V) esource Waters ern (AEC)
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC)
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) es ☑No
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) es ☑No
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) ess ☑No estriction or fill to the en flood or ebb within
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) ess ☑No estriction or fill to the en flood or ebb within
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) ess ☑No estriction or fill to the en flood or ebb within
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) ess ☑No estriction or fill to the en flood or ebb within
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	estriction or fill to the flood or ebb within all gates, debris jams,
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	estriction or fill to the flood or ebb within all gates, debris jams,
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	estriction or fill to the flood or ebb within all gates, debris jams,
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) es ☑No estriction or fill to the en flood or ebb within all gates, debris jams, or culvert).
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) es ☑No estriction or fill to the inflood or ebb within all gates, debris jams, or culvert).
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) es ☑No estriction or fill to the inflood or ebb within all gates, debris jams, or culvert).
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) es ☑No estriction or fill to the inflood or ebb within all gates, debris jams, or culvert).
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?	□III □IV □V) esource Waters ern (AEC) es ☑No estriction or fill to the inflood or ebb within all gates, debris jams, or culvert).
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area. Section 10 water Classified Trout Waters Water Supply Watershed (estriction or fill to the flood or ebb within all gates, debris jams, viculvert).
For Tidal Marsh Stream	estriction or fill to the flood or ebb within all gates, debris jams, over d from any of these of instability include
For Tidal Marsh Stream	estriction or fill to the flood or ebb within all gates, debris jams, over d from any of these of instability include
For Tidal Marsh Stream	estriction or fill to the flood or ebb within all gates, debris jams, over d from any of these of instability include

6.				n – streamsid						
	LB	sider for th RB	e Lett Bank	(LB) and the	kignt Bai	нк (КВ).				
	⊠A □B	⊠A □B	Moderate reference	evidence of c interaction (ex	onditions camples:	limited streams	erms, levee ide area ad	es, down- ccess, dis	eraction cutting, aggradation, dredging) that adversely affe cruption of flood flows through streamside area, leal inor ditching [including mosquito ditching])	ct
	С	□c	Extensive [examples of flood flo	e evidence of commerce of comm	conditions with flood reamside	that adversely plain and chanr area] or too mu	affect refe nel constric ch floodpla	rence inte tion, bulk iin/intertic	eraction (little to no floodplain/intertidal zone acces theads, retaining walls, fill, stream incision, disruptional dal zone access [examples: impoundments, intensived assessment reach is a man-made feature on a	n e
7.				assessment re	each/inte	ertidal zone me	tric			
	□A □B □C	Excess	ored water in <u>sive</u> sedimen	tation (burying	of strean	n features or int	tertidal zor	ne)	er discoloration, oil sheen, stream foam) nd causing a water quality problem	
	□D □E			natural sulfide or collected da		ting degraded	water qual	ity in the	assessment reach. Cite source in "Notes/Sketcl	า"
	□F	section Livesto	n. ock with acce	ess to stream o	or intertida	al zone	·	•		
	□H □I □J	Degrad Other:	ded marsh ve		e intertida				nowing, destruction, etc)	
8.					p for Tida	al Marsh Strea	ms)			
		Size 1 or 2 s Drough Drough	streams, D1 c ht conditions	Irought or high <u>and</u> no rainfall <u>and</u> rainfall ex	er is cons I or rainfal		nt; for Size g 1 inch wit	hin the la	eams, D2 drought or higher is considered a drough ist 48 hours	t.
9.	Larg e			n – assessme is too large or			f Yes, skip	to Metric	: 13 (Streamside Area Ground Surface Condition).	
10.				ypes – asses						
	10a.	⊠Yes [sed	imentation, mi	ining, exc		eam harde	ning [for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging to Metric 12)	
	10b.	□A !	Multiple aqua	occurs if > 5% tic macrophyte worts, lichens,	es and aq	quatic mosses	ams	∐F ∐G	ize 4 Coastal Plain streams) 5% oysters or other natural hard bottoms Submerged aquatic vegetation	
			Multiple stick vegetation	s and/or leaf p	acks and	I/or emergent	k for 1 th Stre Only	□H □I	Low-tide refugia (pools) Sand bottom	
				s and logs (inc banks and/or			Chec	∐J ∐K	5% vertical bank along the marsh Little or no habitat	
		_ i	n banks exte Little or no ha	nd to the normabitat	al wetted	perimeter	·			
****	*****	*****	**************************************	IAINING QUE	STIONS /	ARE NOT APP	LICABLE	FOR TID	AL MARSH STREAMS************************************	
11.	Bedf	orm and S	ubstrate – a	ssessment re	ach metr	ric (skip for Siz	ze 4 Coast	al Plain	streams and Tidal Marsh Streams)	
	11a.	□Yes [⊠No Is as	sessment read	h in a nat	tural sand-bed	stream? (s	kip for C	coastal Plain streams)	
	11b.	⊠A F □B F	Riffle-run sec Pool-glide se	heck the appr tion (evaluate ction (evaluate orm absent (sk	11c) e 11d)	oox(es). ric 12, Aquatio	: Life)			
	11c.	at least or (R) = pres should not	ne box in ea ent but < 10°	ch row (skip f	or Size 4 C) = > 10	Coastal Plain 1-40%, Abundar reach. Bedrock/sapre Boulder (256 Cobble (64 – Gravel (2 – 64	streams ant (A) = > 4 olite - 4096 mm) 4 mm)	ınd Tidal 40-70%, I	ressment reach – whether or not submerged. Chec Marsh Streams) . Not Present (NP) = absent, Rai Predominant (P) = > 70%. Cumulative percentage	re
						Sand (.062 – Silt/clay (< 0.0 Detritus Artificial (rip-ra	062 mm)	te, etc.)		
	11d.		No Are p	— oools filled with	sedimen	· ·	•	,	streams and Tidal Marsh Streams)	

12.	-		sessment reach metric (skip for Tidal Marsh Streams)
	12a. ☐ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ⊠No Water □Other:
	12b. 🛚	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic reptiles Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles
			Caddisfly larvae (T) Asian clam (<i>Corbicula</i>)
			Crustacean (isopod/amphipod/crayfish/shrimp) Damselfly and dragonfly larvae
			Dipterans Mayfly larvae (E)
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>) Mussels/Clams (not <i>Corbicula</i>)
			Other fish Salamanders/tadpoles
			Snails Stonefly larvae (P)
			Tipulid larvae Worms/leeches
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	⊠a □B	⊠A □B	Little or no alteration to water storage capacity over a majority of the streamside area Moderate alteration to water storage capacity over a majority of the streamside area
	□c □c	□c	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted p	er for the erimeter	 e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
	LB □Y ⊠N	RB □Y ⊠N	Are wetlands present in the streamside area?
16.	Baseflo	w Contril	outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	\boxtimes A	Streams	utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
	□B □C □D □E □F	Obstruc Evidenc Stream	nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) e of bank seepage or sweating (iron in water indicates seepage) ped or bank soil reduced (dig through deposited sediment if present) the above
17.	Baseflov	w Detrac	ors – assessment area metric (skip for Tidal Marsh Streams)
	Check a A B C C	Evidenc Obstruc	ply. e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
	□D □E ⊠F	Evidenc Assessr	e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge the above
18.			sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	⊠A □B □C	Stream Degrade	shading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees) shading is gone or largely absent

	Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB △A △A △A △A △A △A △ A △ A △ A △ A △ A								
	□E □E □E < 10 feet wide <u>or</u> no trees								
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB □ A □ Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation								
	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet LB RB LB RB LB RB A A A A A A A A A A A A B A B A B A B								
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB □ A □ Medium to high stem density □ B □ B Low stem density □ C □ C No wooded riparian buffer or predominantly herbaceous species or bare ground								
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB A The total length of buffer breaks is < 25 percent. B B B The total length of buffer breaks is between 25 and 50 percent. C C The total length of buffer breaks is > 50 percent.								
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB ☑A ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. □B Usertation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. □C □C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.								
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. ☐ Yes ☐ No Was conductivity measurement recorded? If No, select one of the following reasons. ☐ No Water ☐ Other: 25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). ☐ A < 46 ☐ B 46 to < 67 ☐ C 67 to < 79 ☐ D 79 to < 230 ☐ E ≥ 230								
	es/Sketch: alamander and caddis casing								

19. Buffer Width – streamside area metric (skip for Tidal Marsh Streams)

Stream Site Name	Banner Branch Mitigation Date of Asse	ssment	10-2-2019	
Stream Category	Pb1 Assessor Name/Organ	nization	Kyle Oberi	miller/WLS
			<u> </u>	
Notes of Field Asses	ssment Form (Y/N)		YES	
	ory considerations (Y/N)		NO	
-	formation/supplementary measurements included (Y/N)		NO	
	e (perennial, intermittent, Tidal Marsh Stream)		Intermitter	nt
7.	,		-	
	Function Class Rating Summary		USACE/ II Streams	NCDWR Intermittent
	(1) Hydrology		HIGH	HIGH
	(2) Baseflow		HIGH	HIGH
	(2) Flood Flow		HIGH	HIGH
	• •		HIGH	HIGH
	(3) Streamside Area Attenuation		HIGH	HIGH
	(4) Wooded Ringrian Buffer			
	(4) Wooded Riparian Buffer		HIGH	HIGH
	(4) Microtopography		NA	NA
	(3) Stream Stability		HIGH	HIGH
	(4) Channel Stability		HIGH	HIGH
	(4) Sediment Transport		MEDIUM	MEDIUM
	(4) Stream Geomorphology		HIGH	HIGH
	(2) Stream/Intertidal Zone Interaction		NA	NA
	(2) Longitudinal Tidal Flow		NA	NA
	(2) Tidal Marsh Stream Stability		NA	NA
	(3) Tidal Marsh Channel Stability		NA	NA
	(3) Tidal Marsh Stream Geomorpholo	gy	NA	NA
	(1) Water Quality		MEDIUM	MEDIUM
	(2) Baseflow		HIGH	HIGH
	(2) Streamside Area Vegetation		MEDIUM	MEDIUM
	(3) Upland Pollutant Filtration		MEDIUM	MEDIUM
	(3) Thermoregulation		HIGH	HIGH
	(2) Indicators of Stressors		NO	NO
	(2) Aquatic Life Tolerance		OMITTED	NA
	(2) Intertidal Zone Filtration	-	NA	NA
	(1) Habitat		HIGH	HIGH
	(2) In-stream Habitat		MEDIUM	HIGH
	(3) Baseflow		HIGH	HIGH
	(3) Substrate		MEDIUM	MEDIUM
	(3) Stream Stability		HIGH	HIGH
	(3) In-stream Habitat		MEDIUM	HIGH
	(2) Stream-side Habitat		HIGH	HIGH
	(3) Stream-side Habitat		HIGH	HIGH
	(3) Thermoregulation		HIGH	HIGH
	(2) Tidal Marsh In-stream Habitat		NA	NA
	(3) Flow Restriction		NA NA	NA NA
			NA NA	NA NA
	(3) Tidal Marsh Stream Stability (4) Tidal Marsh Channel Stability			NA NA
			NA NA	
	(4) Tidal Marsh Stream Geomorpholo	yy	NA NA	NA NA
	(3) Tidal Marsh In-stream Habitat (2) Intertidal Zone		NA NA	NA NA
	IZI IIIGIUQQI ZVIIC		INA	INA

HIGH

HIGH

Overall

		ACC	unipanies user w	iailuai veisioii 2. i	
USACE AII	O #:			NCDWR #:	
INSTRUCT	IONS: Attach a sl	cetch of the assessment a	area and photogra	phs. Attach a copy of the USG	S 7.5-minute topographic quadrangle,
					ted on the same property, identify and
					1 User Manual for detailed descriptions
					asurements were performed. See the
		amples of additional meas			
NOTE EVID	DENCE OF STRE	SSORS AFFECTING TH	E ASSESSMENT	AREA (do not need to be wit	hin the assessment area).
	SITE INFORMATI				
-	ame (if any):	Banner Branch Mitigation			-2019
	d/owner name:	Water & Land Solutions		Assessor name/organization	n: Kyle Obermiller/WLS
5. County:		Stokes		6. Nearest named water body	
7. River bas		Roanoke		on USGS 7.5-minute quad:	
		legrees, at lower end of a		36.532879°, -80.200907	0
		lepth and width can be			-1 -1 -1 ((- 1))
	ber (show on attac			ength of assessment reach eva	
		in riffle, if present) to top			Unable to assess channel depth.
	I width at top of ba			ssessment reach a swamp ste	am? Lives Lino
	type: ⊠Perennia	al flow Intermittent flow	v 🔲 i idai iviarsh S	ouedIII	
15. NC SAN		RMATION: Mountains (M)	□ Piedmont (P)	Inner Coastal Plain (I)	Outer Coastal Plain (O)
15. NC SAN	/i Zone.	☐ Mountains (M)	△ Pleamont (P	inner Coastai Plain (i)	Uniter Coastal Plain (O)
				\	
		,			
	ed geomorphic	\square A \frown	$\overline{}$	⊠B	
	hape (skip for arsh Stream):	(more sinuous strear	n flatter valley ele	_	stream, steeper valley slope)
	,	,	•	• '	
	ned size: (skip a l Marsh Stream)	☐Size 1 (< 0.1 mi²)	☐Size 2 (0.1 to	$0 < 0.5 \text{ mi}^2$) \square Size 3 (0.5 to	o < 5 mi²)
	AL INFORMATIO	N•			
			: □No If Yes ch	eck all that apply to the assess	ment area
	on 10 water	Classified T			tershed (I II III IV V)
_	ntial Fish Habitat	☐Primary Nur			ters/Outstanding Resource Waters
_	cly owned propert	-	parian buffer rule i		•
	romous fish	303(d) List			nvironmental Concern (AEC)
□Docu	mented presence	of a federal and/or state	listed protected sp	pecies within the assessment a	rea.
	species:				
	gnated Critical Hal				
19. Are add	litional stream info	rmation/supplementary m	neasurements incl	uded in "Notes/Sketch" section	or attached? ☐Yes
4	I.Watan assass		. for Ci-s 4 stress	and Tidal Manak Ctusans	
			o for Size 1 Stream	ns and Tidal Marsh Streams)	
□B	No flow, water in	it assessment reach.			
⊟c	No water in asse	,			
_	o of Flow Bootsi	-tion	-btui-		
		ction – assessment read		a neel coguence is soverely o	ffected by a flow restriction or fill to the
□A					or impoundment on flood or ebb within
	the assessment	reach (examples: unders	sized or perched o	culverts, causeways that constr	ict the channel, tidal gates, debris jams,
_	beaver dams).	, , ,	,	, , , , , , , , , , , , , , , , , , , ,	, <u> </u>
⊠B	Not A				
3. Feature	Pattern – assess	sment reach metric			
			altered pattern (exa	amples: straightening, modifica	tion above or below culvert).
⊠B	Not A		ļ (3/4	, 3	
	Longitudinal Pr	ofile – assessment reac	h metric		
4. realure	•			eam profile (examples: chapp	el down-cutting, existing damming, over
			•		ile has not reformed from any of these
	disturbances).				
⊠B	Not A				
	f Active Instabilit	y – assessment reach r	metric		
				ne stream has currently reco	overed. Examples of instability include
					(such as concrete, gabion, rip-rap).
□A	< 10% of channe			g,	,
⊠B	10 to 25% of cha	annel unstable			
□C	> 25% of channe	el unstable			

6.	Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB). LB RB								
	□A ⊠B	∏A ⊠B	Moderate reference i	evidence of interaction (e	conditions examples:	limited streamsi	rms, levee de area ac	es, down- ccess, dis	eraction cutting, aggradation, dredging) that adversely affect sruption of flood flows through streamside area, leakt inor ditching [including mosquito ditching])
	□C	□с	Extensive [examples of flood flo	evidence of : causeways ws through s ditching]) <u>or</u>	conditions with flood treamside	that adversely Iplain and chann area] <u>or</u> too mud	affect refe el constric ch floodpla	rence inte tion, bulk in/intertid	craction (little to no floodplain/intertidal zone acces heads, retaining walls, fill, stream incision, disruptio dal zone access [examples: impoundments, intensiv or assessment reach is a man-made feature on a
7.		-		ssessment	reach/inte	ertidal zone met	ric		
	\square A		ored water in						er discoloration, oil sheen, stream foam)
	□B □C					m features or inter-			nd causing a water quality problem
	\Box D	Odor ((not including	natural sulfid	le odors)				_ , , , ,
	□E	section		r collected o	ata indica	ating degraded v	vater quai	lity in the	assessment reach. Cite source in "Notes/Sketch
	□F □G		ock with acces sive algae in s						
	□н	Degra	ded marsh ve	getation in th	ne intertida	al zone (removal			nowing, destruction, etc)
	∐I ∐I		o no stressors		_ (explain	n in "Notes/Sketo	h" section	1)	
8.						al Marsh Strear			
	For S ⊠A					sidered a drough all not exceeding			eams, D2 drought or higher is considered a drough
	В	Droug	_	and rainfall e		1 inch within the			
9.			erous Stream		ent reach	metric			
٥.	□Ye						Yes, skip	to Metric	: 13 (Streamside Area Ground Surface Condition).
10.			am Habitat Ty ⊠No Deg				of the as	eccemor	nt reach (examples of stressors include excessiv
	iva.	□Tes	sedi	mentation, n	nining, ex		am harde	ning [for	example, rip-rap], recent dredging, and snagging
	10b.					e of assessment quatic mosses		kip for S □F	ize 4 Coastal Plain streams) 5% oysters or other natural hard bottoms
		_	(include liverw	orts, lichens	, and alga	l mats)	Check for Tidal Marsh Streams Only	□G	Submerged aquatic vegetation
		,	vegetation			d/or emergent	Sk for .	□H	Low-tide refugia (pools) Sand bottom
			Multiple snags 5% undercut I			p trees) s and/or roots	Che	□K □L	5% vertical bank along the marsh Little or no habitat
		i	in banks exter Little or no hal	nd to the nor			'	_	
			Little of 110 flat	лас					
****	*****	*****	*********REM	AINING QUE	ESTIONS	ARE NOT APPL	ICABLE	FOR TID	AL MARSH STREAMS********************
11.	Bedfo	orm and S	Substrate – as	sessment r	each met	ric (skip for Siz	e 4 Coast	al Plain s	streams and Tidal Marsh Streams)
		_	_				tream? (s	kip for C	coastal Plain streams)
	11b.		evaluated. Ch Riffle-run sect			oox(es).			
			Pool-glide sed			tric 12, Aquatic	l ife)		
	11c.	_		•	•		•	of the ass	essment reach – whether or not submerged. Chec
		at least o	ne box in eac	h row (skip	for Size 4	Coastal Plain	streams a	and Tidal	Marsh Streams). Not Present (NP) = absent, Rar Predominant (P) = > 70%. Cumulative percentage
		should no	t exceed 100%	6 for each as	ssessment		(71) – 2 –	10 70 70, 1	redominant (1) = > 10%. Cumulative percentage
			R C ⊠ □	A	P	Bedrock/sapro	lite		
						Boulder (256 - Cobble (64 – 2		n)	
						Gravel (2 – 64	mm)		
		\exists				Sand (.062 – 2 Silt/clay (< 0.0			
						Detritus Artificial (rip-ra	•	te etc)	
	11d.	_	⊔ ⊔ ∐No Arep	ப ools filled wi	ப th sedimer	` '	• •	,	streams and Tidal Marsh Streams)

12.			sessment reach metric (skip for Tidal Marsh Streams)		
	12a. □ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☑Other:		
	12b. 🗌	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.		
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles		
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)		
			Beetles Caddisfly larvae (T)		
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)		
			Damselfly and dragonfly larvae Dipterans		
			Mayfly larvae (E)		
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae		
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)		
	Ä		Other fish		
			Salamanders/tadpoles Snails		
			Stonefly larvae (P) Tipulid larvae		
			Worms/leeches		
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.		
	\boxtimes A	\boxtimes A	Little or no alteration to water storage capacity over a majority of the streamside area		
	□B □C	□B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)		
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.		
	□A ⊠B □C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep		
15.	5. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams) Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the wetted perimeter of assessment reach.				
	LB ⊠Y □N	RB ⊠Y □N	Are wetlands present in the streamside area?		
16.	Baseflo	w Contril	outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)		
	Check a ⊠A		utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)		
	□B □C □D	Ponds (i	include wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) to bank seepage or sweating (iron in water indicates seepage)		
	□E □F		ped or bank soil reduced (dig through deposited sediment if present) the above		
17.	Check a	II that ap			
	□A □B □C	Obstruc Urban s	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)		
	□D □E ⊠F	Assessr	e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge the above		
18.			sment reach metric (skip for Tidal Marsh Streams)		
	⊠a □B	Stream Degrade	Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees)		
	□c	Sueam	shading is gone or largely absent		

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB \Box A \Box A \Box A \Box A \Box A D C feet wide D C extends to the edge of the watershed D C D C D C D C D C D C D C D C
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB A Mature forest B Non-mature woody vegetation or modified vegetation structure C C Herbaceous vegetation with or without a strip of trees < 10 feet wide D D Maintained shrubs E Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet LB RB LB RB LB RB A A A A A A A A A A Row crops B B B B B B B Maintained turf C C C C C C C Pasture (no livestock)/commercial horticulture D D D D D D D D Pasture (active livestock use)
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB A A Medium to high stem density B B B Low stem density C C C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB □ A The total length of buffer breaks is < 25 percent. □ B □ B The total length of buffer breaks is between 25 and 50 percent. □ C □ C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB □A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. □B Usegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. □C □C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
Note	es/Sketch:

Stream Site Name	Banner Branch Mitigation	Date of Assessment	10-2-2019			
Stream Category	Pb3	Assessor Name/Organization	Kyle Obermiller/WLS			
Notes of Field Asses		NO				
Presence of regulator	NO					
Additional stream inf	NO					
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream) Perennial						

(poronnal, intermittent, ridal Maron Gudan)	1 010111110	<u>. </u>
	USACE/	NCDWR
Function Class Rating Summary	All Streams	Intermittent
(1) Hydrology	MEDIUM	
(2) Baseflow	HIGH	
(2) Flood Flow	MEDIUM	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA NA	
(3) Stream Stability	MEDIUM	
•		
(4) Channel Stability	MEDIUM	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA NA	
(2) Longitudinal Tidal Flow	NA NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	MEDIUM	
(3) Upland Pollutant Filtration	MEDIUM	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	OMITTED	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	MEDIUM	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA NA	
(3) Flow Restriction	NA NA	
. ,		
(3) Tidal Marsh Stream Stability	NA NA	
(4) Tidal Marsh Channel Stability	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone	NA	
Overall	MEDIUM	

		ACC	Unipanies Usei	Mailuai Veisioii 2.1	
USA	CE AID #:			NCDWR #:	
INST	RUCTIONS: Attach a s	ketch of the assessment	area and photogr	aphs. Attach a copy of the USG	S 7.5-minute topographic quadrangle,
and c	ircle the location of the	stream reach under evalu	uation. If multiple	e stream reaches will be evaluat	ed on the same property, identify and
numb	er all reaches on the at	tached map, and include a	a separate form f	or each reach. See the NC SAM	User Manual for detailed descriptions
					asurements were performed. See the
		amples of additional meas			
NOTE	E EVIDENCE OF STRE	SSORS AFFECTING TH	E ASSESSMEN	Γ AREA (do not need to be wit	hin the assessment area).
PRO	JECT/SITE INFORMAT	ION:			
	eject name (if any):	Banner Branch Mitigati			-2019
	plicant/owner name:	Water & Land Solutions	S	Assessor name/organization	: Kyle Obermiller/WLS
5. Co	•	Stokes		6. Nearest named water body	
	er basin:	Roanoke		on USGS 7.5-minute quad:	Banner Branch
	,	degrees, at lower end of a		· ————————————————————————————————————	0
		depth and width can be			
	e number (show on atta			Length of assessment reach eva	. ,
		(in riffle, if present) to top			Unable to assess channel depth.
	hannel width at top of b			assessment reach a swamp ster	am: Lites Lino
	• • • • • • • • • • • • • • • • • • • •	al flow Intermittent flov	v ∐Tidai Marsh	Siream	
_	EAM CATEGORY INFO C SAM Zone:	_	□ □: • d = / !	P) Inner Coastal Plain (I)	Outer Casatal Plain (O)
15. N	C SAIVI Zone:	☐ Mountains (M)	□ Piedmont (I) Inner Coastal Plain (I)	Outer Coastal Plain (O)
				\	
	stimated geomorphic			✓	
	alley shape (skip for	(more sinusus etreer	m flattar vallav a	_	atracm ataonar vallav alana)
	idal Marsh Stream):	(more sinuous strear			stream, steeper valley slope)
	/atershed size: (skip	☐Size 1 (< 0.1 mi²)	☐Size 2 (0.1	to < 0.5 mi ²) \square Size 3 (0.5 to	o < 5 mi²)
	or Tidal Marsh Stream				
	TIONAL INFORMATIO		No If Voc. o	heck all that apply to the assess	mont area
	Section 10 water	Classified T			tershed (I III III IV V)
_	Section 10 water Essential Fish Habitat	_			ers/Outstanding Resource Waters
	Publicly owned proper		parian buffer rule		•
	Anadromous fish	□303(d) List			vironmental Concern (AEC)
			listed protected s	species within the assessment a	
	List species:				
	Designated Critical Ha	bitat (list species)			
19. A	re additional stream info	ormation/supplementary n	neasurements in	cluded in "Notes/Sketch" section	or attached? ☐Yes ⊠No
			o for Size 1 strea	ams and Tidal Marsh Streams)	
]A Water througho]B No flow, water i				
	C No water in ass				
	_	iction – assessment read			w
					ffected by a flow restriction or fill to the or impoundment on flood or ebb within
					ict the channel, tidal gates, debris jams,
	beaver dams).	rodon (oxampioo: dildon	oizoa oi poioiioa	carrente, caucerraye that content	ot the ename, treat gates, assite jame,
\boxtimes					
3. Fe	eature Pattern – asses	sment reach metric			
_			altered pattern (e:	xamples: straightening, modifica	tion above or below culvert)
	B Not A	o accomonición reactividad e	morea pattern (e.	kampios. straightering, meanica	and above of bolow earverty.
		ofila accessment re-	h motric		
	_	ofile - assessment reac		troom profile (evemples: shapp	ol down outting, ovieting domming, over
			•		el down-cutting, existing damming, over le has not reformed from any of these
	disturbances).	aggradation, diedying, d	and choavalion (mioro appropriate chamilei pion	io has not reformed from any of these
\boxtimes	B Not A				
		tu accocament recel	motrio		
		ity – assessment reach i		the stream has currently roce	vered. Examples of instability include
					(such as concrete, gabion, rip-rap).
	A < 10% of chann		July, ablivo W		(1221 as solutions, gastern, tip tap).
	B 10 to 25% of ch				
	C > 25% of chann	el unstable			

6.					streamsic					
	LB	RB	ne Lett	Bank (LE	3) and the	Right Ba	ınk (RB).			
	□A ⊠B	□A ⊠B	Mod refe	derate evi rence inte	dence of ceraction (ex	conditions camples:	limited streams	erms, leve side area a	es, down- iccess, dis	eraction cutting, aggradation, dredging) that adversely affec sruption of flood flows through streamside area, leaky inor ditching [including mosquito ditching])
	□c	□C	Exte [exa of flo mos	ensive evi amples: c ood flows	dence of dauseways through standard	conditions with flood reamside	s that adversely dplain and chan a area] <u>or</u> too mu	affect refe nel constri och floodpla	erence int ction, bulk ain/intertic	eraction (little to no floodplain/intertidal zone access theads, retaining walls, fill, stream incision, disruptior dal zone access [examples: impoundments, intensive or assessment reach is a man-made feature on ar
7.	Wate	r Quality	Stresso	ors – asse	essment r	each/inte	ertidal zone me	etric		
	Chec □A	k all that		atar in etr	aam or inte	artidal zor	ne (milky white	blue upps	atural wat	er discoloration, oil sheen, stream foam)
	□в	Exces	ssive se	dimentation	on (burying	g of strear	m features or in	tertidal zo	ne)	
					pollutant (ural sulfide		s entering the a	assessmer	nt reach <u>a</u>	nd causing a water quality problem
	□E	Curre section		shed or c	collected d	ata indica	ating degraded	water qua	lity in the	assessment reach. Cite source in "Notes/Sketch"
	⊠F	Lives	tock with		o stream o					
	□G □H				am or inte ation in the			ıl, burning,	regular m	nowing, destruction, etc)
	□J	Other Little	r: to no str	essors		_ (explain	n in "Notes/Sket	ch" section	n)	
В.					netric (ski	p for Tid	lal Marsh Strea	ıms)		
		ize 1 or 2 Droug Droug	streams ght cond ght cond	, D1 drou litions <u>and</u>	ght or high I no rainfal	er is cons I or rainfa		ht; for Size g 1 inch wi	ithin the la	reams, D2 drought or higher is considered a drought ast 48 hours
9.	_	e or Dang	jerous S	Stream –	assessme			lf Yes, skip	o to Metric	c 13 (Streamside Area Ground Surface Condition).
10.	Natu	ral In-stre					each metric			
	10a.	∐Yes	⊠No	sedime	ntation, m	ining, exc		eam harde	ening [for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging; to Metric 12)
	10b.	Check al ☐A					e of assessmer quatic mosses		skip for S □F	ize 4 Coastal Plain streams) 5% oysters or other natural hard bottoms
		⊠B	(include	e liverwort	s, lichens,	and alga		Check for Tidal Marsh Streams Only	□G □H	Submerged aquatic vegetation Low-tide refugia (pools)
			vegetat	ion			_	sck for T sh Stre Only		Sand bottom
		⊠c ⊠d			nd logs (in nks and/or		ap trees) ts and/or roots	Che	□K □J	5% vertical bank along the marsh Little or no habitat
		□E		s extend to no habita		nal wetted	d perimeter			
		_								
****	******	******	******	*REMAIN	IING QUE	STIONS	ARE NOT APP	LICABLE	FOR TID	AL MARSH STREAMS************************************
11.	Bedf	orm and	Substra	te – asse	ssment re	each met	ric (skip for Si	ze 4 Coas	tal Plain	streams and Tidal Marsh Streams)
	11a.	□Yes	⊠No	ls asses	sment read	ch in a na	atural sand-bed	stream? (s	skip for C	Coastal Plain streams)
	11b.	Bedform ⊠A □B □C	Riffle-ru Pool-gli	ın section de sectio	k the appropriate (evaluate absorbt (evaluate ab	e 11c) e 11d)	box(es). etric 12, Aquatio	a Lifa)		
	11c	_			-	-	· ·	-	of the ass	sessment reach – whether or not submerged. Check
	110.	at least of (R) = pre	one box sent but	in each i t <u><</u> 10%, (ow (skip	for Size 4 C) = > 10	4 Coastal Plain 0-40%, Abunda	streams	and Tidal	Marsh Streams). Not Present (NP) = absent, Rare Predominant (P) = > 70%. Cumulative percentages
			\boxtimes	Ě			Bedrock/sapr Boulder (256		m)	
						Ħ	Cobble (64 –	256 mm)	··· <i>i)</i>	
					\boxtimes		Gravel (2 – 6 Sand (.062 –			
							Silt/clay (< 0.			
		\boxtimes					Artificial (rip-r	ap, concre	ete, etc.)	
	11d.	□Yes	□No	Are pool	s filled with	n sedimer	nt? (skip for Si	ze 4 Coas	tal Plain	streams and Tidal Marsh Streams)

12.			seessment reach metric (skip for Tidal Marsh Streams)
	12a. □ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? tone of the following reasons and skip to Metric 13. ☐No Water ☒Other:
	12b. 🗌	Yes [No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all the apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams.]Adult frogs]Aquatic reptiles
			Aquatic repaires Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles
	Ä		Caddisfly larvae (T) Asian clam (<i>Corbicula</i>)
	Ä		Crustacean (isopod/amphipod/crayfish/shrimp) Damselfly and dragonfly larvae
	Ä		Dipterans
	Ä		Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
			Midges/mosquito larvae Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)
			Mussels/Clams (not <i>Corbicula</i>) Other fish
			Salamanders/tadpoles Snails
			Stonefly larvae (P) Tipulid larvae
12	· <u></u>	_]Worms/leeches Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)
13.		r for the	Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runor
	□A ⊠B	RB □A ⊠B	Little or no alteration to water storage capacity over a majority of the streamside area Moderate alteration to water storage capacity over a majority of the streamside area
	C	□C	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A ⊠B □C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted p	er for the erimeter	ce – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norm of assessment reach.
	LB ⊠Y ∏N	RB ⊠Y ∏N	Are wetlands present in the streamside area?
16.		w Contri	butors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	\boxtimes A	Streams	putors within the assessment reach or within view of <u>and</u> draining to the assessment reach. s and/or springs (jurisdictional discharges)
	□B □C □D □E □F	Obstruct Evidence Stream	include wet detention basins; do not include sediment basins or dry detention basins) tion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weil te of bank seepage or sweating (iron in water indicates seepage) bed or bank soil reduced (dig through deposited sediment if present) the above
17.	Baseflo	w Detrac	tors – assessment area metric (skip for Tidal Marsh Streams)
	Check a A B C C	Evidend Obstruc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) tion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) tream (≥ 24% impervious surface for watershed)
	□D □E ⊠F	Assessi	that the streamside area has been modified resulting in accelerated drainage into the assessment reach ment reach relocated to valley edge the above
18.			sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	⊠A □B □C	Stream Degrade	shading is appropriate for stream category (may include gaps associated with natural processes) ed (example: scattered trees) shading is gone or largely absent

19.	Consider "veget to the first break Vegetated Wo	oded					
	□B □B □I □C □C □C □D □D □I	RB A					
20.		 streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). 					
	□A ⊠A □B □B □C □C □D □D □E □E	Mature forest Non-mature woody vegetation or modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation					
21.	Check all appropriate within 30 feet of sold from the following the following the following the sold from the following the sold from the following the sold from the following the sold from the following the sold from the sold	- streamside area metric (skip for Tidal Marsh Streams) priate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is tream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). lowing stressors occurs on either bank, check here and skip to Metric 22: 0 feet 30-50 feet					
	LB RB LB □A □A □/ □B □B □I □C □C □C	RB LB RB A A A A A Row crops B B B Maintained turf C C C Pasture (no livestock)/commercial horticulture D D D Pasture (active livestock use)					
22.	-	streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).					
		Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground					
23. Continuity of Vegetated Buffer – streamside area metric (skip for Touriside whether vegetated buffer is continuous along stream (parallel LB RB		getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.					
	⊠A ⊠A □B □B □C □C	The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.					
24.	-	position – streamside area metric (skip for Tidal Marsh Streams) inant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to a habitat.					
	□A ⊠A	Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.					
	⊠в □в	Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or					
	□c □c	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.					
25.	. Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. Yes No Was conductivity measurement recorded? If No, select one of the following reasons. No Water Other:						
	25b. Check the b ☐A < 46	oox corresponding to the conductivity measurement (units of microsiemens per centimeter). ⊠B 46 to < 67					
Note	es/Sketch:						

Stream Site Name	Banner Branch Mitigation	Date of Assessment	10-2-2019				
Stream Category	Kyle Obermiller/WLS						
Notes of Field Asses		NO					
Presence of regulator	NO						
Additional stream inf	NO						
NC SAM feature type	NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)						

(i to the first of		
	USACE/	NCDWR
Function Class Rating Summary	All Streams	Intermittent
(1) Hydrology	MEDIUM	
(2) Baseflow	HIGH	
(2) Flood Flow	MEDIUM	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	MEDIUM	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA NA	
(3) Tidal Marsh Channel Stability	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	MEDIUM	
(2) Streamside Area Vegetation (3) Upland Pollutant Filtration	MEDIUM	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	YES	
. ,		
(2) Aquatic Life Tolerance	OMITTED	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	MEDIUM	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	MEDIUM	

		Acc	ompanies oser i	nanuai version z.i	
USACE A				NCDWR #:	
					GS 7.5-minute topographic quadrangle,
					ated on the same property, identify and
and expla	nations of requeste	d information. Record in	the "Notes/Sketc	h" section if supplementary me	M User Manual for detailed descriptions easurements were performed. See the
		amples of additional meas			
NOTE EV	IDENCE OF STRE	SSORS AFFECTING TH	E ASSESSMENT	AREA (do not need to be wi	thin the assessment area).
	T/SITE INFORMAT name (if any):	ION: Banner Branch Mitigati	on	2. Date of evaluation: 10-2	2-2019
3. Applica	int/owner name:	Water & Land Solutions	S	4. Assessor name/organizatio	n: Kyle Obermiller/WLS
5. County	:	Stokes		6. Nearest named water body	
7. River b	asin:	Roanoke		on USGS 7.5-minute quad	: Banner Branch
8. Site co	ordinates (decimal d	degrees, at lower end of a	assessment reach): <u>36.527313°</u> , -80.20063	5°
	INFORMATION: (c mber (show on atta	depth and width can be ched map): UT1-R3		ength of assessment reach ex	valuated (feet): 800
11. Chani	nel depth from bed ((in riffle, if present) to top	of bank (feet):	1.5	☐Unable to assess channel depth.
	nel width at top of ba			ssessment reach a swamp ste	eam?
14. Featu	re type: 🛛 Perennia	al flow Intermittent flow	v □Tidal Marsh	Stream	
_	CATEGORY INFO	_			
15. NC S/	AM Zone:	☐ Mountains (M)	Piedmont (P) Inner Coastal Plain ()
				\	/
16. Estima	ated geomorphic			/ ⊠B	
	shape (skip for	⊔ ∧	<u> </u>		
	Marsh Stream):	(more sinuous strear	=		s stream, steeper valley slope)
	shed size: (skip	\square Size 1 (< 0.1 mi ²)	☐Size 2 (0.1 t	$0 < 0.5 \text{ mi}^2$) Size 3 (0.5 the second	to < 5 mi²)
	dal Marsh Stream)				
	NAL INFORMATIO		No If Voc. oh	eck all that apply to the asses	cment area
	ction 10 water	Classified T			atershed (I III III IV IV)
_	sential Fish Habitat	□Primary Nur			aters/Outstanding Resource Waters
	olicly owned propert		parian buffer rule i		<u> </u>
	adromous fish	☐303(d) List	sanan sanor raio i		nvironmental Concern (AEC)
			listed protected s	pecies within the assessment	
Lis	t species:				
□De:	signated Critical Ha	bitat (list species)			
19. Are a	dditional stream info	ormation/supplementary n	neasurements inc	uded in "Notes/Sketch" section	n or attached? ☐Yes ⊠No
4 01					
			o for Size 1 stream	ms and Tidal Marsh Streams	5)
□B	No flow, water in	ut assessment reach.			
□c	No water in asse				
_	noo of Flow Bootsi	otion accessment rec	ah matria		
2. Evide		ction – assessment reach in-stre		lo-pool soguence is soverely	affected by a flow restriction or fill to the
ЦΑ					r or impoundment on flood or ebb within
					rict the channel, tidal gates, debris jams,
	beaver dams).		·	•	, ,
⊠B	Not A				
3. Featu	re Pattern – asses	sment reach metric			
□A	A majority of the	assessment reach has a	altered pattern (ex	amples: straightening, modification	ation above or below culvert).
⊠B	Not A				
4. Featu	re Longitudinal Pr	ofile – assessment reac	h metric		
□A	_			ream profile (examples: chanr	nel down-cutting, existing damming, over
_			•		file has not reformed from any of these
	disturbances).			·	•
⊠B	Not A				
5. Signs	of Active Instabili	ty – assessment reach i	metric		
Consi	der only current in	nstability, not past ever	nts from which t		overed. Examples of instability include
active	bank failure, active	channel down-cutting (he			g (such as concrete, gabion, rip-rap).
⊠A	< 10% of channel				
□в □С	10 to 25% of channel > 25% of channel				
ЦС	/ 20 /0 UI UI di II II	บา นาเอเสมเซ			

Ο.		sider for th										
	LB	RB	no Lon	Dank (LD)	, and the	rtigiit Da	(11.2).					
	⊠a □B	⊠A □B	Mod refe	derate evic rence inte	dence of corraction (ex	onditions amples:	limited stre	s: ber eamsid	ms, leve de area a	es, dowr access, d	n-cutting, aggradation, dr	edging) that adversely affect rough streamside area, leaky
	□c	□c	Exte [exa of flo mos	ensive evid amples: ca bod flows t	dence of causeways was through str hing]) or fl	onditions with flood eamside	that adve dplain and o area] <u>or</u> to	rsely a channe oo muc	affect ref el constri h floodpl	erence in iction, bul lain/intert	teraction (little to no floo kheads, retaining walls, f idal zone access [examp	dplain/intertidal zone access ill, stream incision, disruption es: impoundments, intensive a man-made feature on an
7.	Wate	r Quality	Stresso	ors – asse	ssment re	each/inte	ertidal zon	e met	ric			
	Chec □A	k all that		ator in otro	om or into	rtidal zan	oo (millar u	ıbita b	ممير ميا	otural wa	tor discoloration, oil abov	on atroom foom)
	⊟̂B						m features				ter discoloration, oil shee	ii, siieaiii ioaiii)
					pollutant c ural sulfide		s entering	the as	sessme	nt reach a	and causing a water qua	ity problem
	ΠE	Curre	nt publi				ating degra	aded w	ater qua	ality in th	e assessment reach. C	ite source in "Notes/Sketch"
	□F	sectio Livest		n access to	o stream o	r intertida	al zone					
	□G □H				am or inter			moval	hurning	rogulor	moving destruction sto	
		Other	:				in "Notes				mowing, destruction, etc)	
	⊠J		to no str					_				
8.		Size 1 or 2 Droug Droug	streams ght cond ght cond	i, D1 droug litions <u>and</u>	ght or high no rainfall	er is cons For rainfa		drought eding	t; for Size	ithin the I	treams, D2 drought or hiq ast 48 hours	gher is considered a drought.
9.		e or Dang	erous S	Stream – a				ss? If	Yes, ski	p to Metri	ic 13 (Streamside Area G	Ground Surface Condition).
10.							each metri					
	10a.	∐Yes	⊠No	sedimer	ntation, mi	ining, ex	cavation, i	n-strea	am hard	ening [fo		stressors include excessive ent dredging, and snagging)
	10b.						e of asses			<u> </u>	Size 4 Coastal Plain str 5% oysters or other n	
			(include	e liverworts	s, lichens,	and alga	l mats)		Check for Tidal Marsh Streams Only	∐'G	Submerged aquatic v	egetation
			Multiple vegetat		d/or leaf p	acks and	d/or emerg	gent	k for h Stre	□H □I	Low-tide refugia (pool Sand bottom	S)
					d logs (inc		p trees) s and/or ro	oote	Chec	□J □K	5% vertical bank alon Little or no habitat	g the marsh
		_	in bank	s extend to	o the norm		d perimete		Į		Little of no nabitat	
		□E	Little or	no habita	t							
****	*****	******	******	*REMAIN	ING QUE	STIONS	ARE NOT	APPL	ICABLE	FOR TIE	DAL MARSH STREAMS	******
11.	Bedf	orm and S	Substra	te – asses	ssment re	ach met	ric (skip f	or Size	e 4 Coas	stal Plain	streams and Tidal Mar	sh Streams)
	11a.	□Yes	⊠No	ls assess	ment read	ch in a na	tural sand	-bed s	tream? (skip for	Coastal Plain streams)	
	11b.	Bedform ⊠A			the appr (evaluate		oox(es).					
		□В	Pool-gli	de section	(evaluate	e 11d)						
		_			•	•	tric 12, Aq	•	•	4.11		
	11c.	at least of (R) = pres	one box sent but	in each re t <u><</u> 10%, C	ow (skip f	or Size 4 C) = > 10	1 Coastal I 0-40%, Abu	Plain s	streams	and Tida	al Marsh Streams). Not	er or not submerged. Check Present (NP) = absent, Rare %. Cumulative percentages
			R	C	A	P		,				
			\boxtimes	\exists	\exists		Bedrock Boulder			ım)		
							Cobble (Gravel (
					\boxtimes		Sand (.0)62 – 2	? mḿ)			
							Silt/clay Detritus	(< 0.06	62 mm)			
							Artificial	(rip-ra	p, concr	ete, etc.)		
	11d.	□Yes	□No	Are pools	s filled with	sedimer	nt? (skip fo	or Size	e 4 Coas	stal Plain	streams and Tidal Mar	sh Streams)

12.			sessment reach metric (skip for Tidal Marsh Streams)
	12a. ☐ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☑Other:
	12b.	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
			Beetles Caddisfly larvae (T)
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
			Damselfly and dragonfly larvae
			Dipterans Mayfly Iarvae (E)
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea)
			Mussels/Clams (not <i>Corbicula</i>) Other fish
	Ä		Salamanders/tadpoles
			Snails Stonefly larvae (P)
			Tipulid larvae Worms/leeches
13.	Conside	r for the	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	LB ⊠A	RB ⊠A	Little or no alteration to water storage capacity over a majority of the streamside area
	□B □C	∐В □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
			livestock disturbance, buildings, man-made levees, drainage pipes)
14.	Conside LB	r for the RB	Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted p	er for the erimeter o	 e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
	\boxtimes Y	RB ⊠Y	Are wetlands present in the streamside area?
16	∐N Basofloy	∐N v Contrib	outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
10.		II contrib	utors within the assessment reach or within view of and draining to the assessment reach.
	⊠A □B		and/or springs (jurisdictional discharges) nclude wet detention basins; do not include sediment basins or dry detention basins)
	□C	Obstruct	ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
	□D □E	Stream I	e of bank seepage or sweating (iron in water indicates seepage) bed or bank soil reduced (dig through deposited sediment if present)
4-	□F		the above
17.	Check a		ors – assessment area metric (skip for Tidal Marsh Streams) ply.
	□A □B		e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit)
	□C	Urban st	ream (≥ 24% impervious surface for watershed)
	□D □E		e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge
	⊠F	None of	the above
18.			sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	\boxtimes A	Stream	shading is appropriate for stream category (may include gaps associated with natural processes)
	□B □C		d (example: scattered trees) shading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB □A □A □A □A □A □A □A □A □A □ ≥ 100 feet wide or extends to the edge of the watershed
	□ B □ B □ B □ B □ C
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB A Mature forest B B Non-mature woody vegetation or modified vegetation structure C C C Herbaceous vegetation with or without a strip of trees < 10 feet wide
21.	D Maintained shrubs Little or no vegetation Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet).
	If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet LB RB LB RB LB RB A A A A A A A A A A A A A B A B A B A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB A A Medium to high stem density B B B Low stem density C C C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB □ A The total length of buffer breaks is < 25 percent. □ B □ B The total length of buffer breaks is between 25 and 50 percent. □ C □ C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	 ☑A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species with non-native invasive species absent or sparse. ☑B ☑B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. Yes No Was conductivity measurement recorded? If No, select one of the following reasons. No Water Other:
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Note	es/Sketch:

Stream Site Name	Banner Branch Mitigation	Date of Assessment	10-2-2019			
Stream Category	ream Category Pb3 Assessor Name/Organization		Kyle Obermiller/WLS			
Notes of Field Asses	ssment Form (Y/N)		NO			
Presence of regulator	ory considerations (Y/N)		NO			
Additional stream inf	NO					
IC SAM feature type (perennial, intermittent, Tidal Marsh Stream)						

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA NA	
· ·	NA NA	
(2) Longitudinal Tidal Flow		
(2) Tidal Marsh Stream Stability	NA NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	HIGH	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	OMITTED	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	MEDIUM	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(3) Fidal Marsh Steam Stability (4) Tidal Marsh Channel Stability	NA NA	
	NA NA	
(4) Tidal Marsh Stream Geomorphology(3) Tidal Marsh In-stream Habitat	NA NA	
(3) Intertidal Zone		
Overall	NA HIGH	

	7,0001.	npamee ece ma	1441 10101011 211	
USACE AID #:			NCDWR #:	
	ketch of the assessment are	ea and photograph		7.5-minute topographic quadrangle,
				on the same property, identify and
				ser Manual for detailed descriptions
				rements were performed. See the
NC SAM User Manual for ex				
	•	•	REA (do not need to be within	the assessment area).
			(
PROJECT/SITE INFORMAT			Date of evaluation: 10-2-20	10
1. Project name (if any):	Banner Branch Mitigation			Kyle Obermiller/WLS
3. Applicant/owner name:	Water & Land Solutions		Assessor name/organization:	Kyle Obermiller/WLS
5. County:	Stokes	6.	Nearest named water body	
7. River basin:	Roanoke		on USGS 7.5-minute quad:	Banner Branch
8. Site coordinates (decimal	degrees, at lower end of ass	sessment reach):	36.526111°, -80.203778°	
STREAM INFORMATION: (c			with of accomment reach avalua	atad (fact): 4 200
9. Site number (show on atta			gth of assessment reach evalua	
11. Channel depth from bed				nable to assess channel depth.
12. Channel width at top of b			essment reach a swamp steam	? ∐Yes ∐No
14. Feature type: ☐Perenni		☐Tidal Marsh Str	eam	
STREAM CATEGORY INFO		_	_	
15. NC SAM Zone:	☐ Mountains (M)	□ Piedmont (P)	☐ Inner Coastal Plain (I)	Outer Coastal Plain (O)
			\	,
16. Estimated geomorphic	_ \	1		
valley shape (skip for	\Box A \smile		⊠B	
Tidal Marsh Stream):	(more sinuous stream,	flatter vallev slope	e) (less sinuous str	eam, steeper valley slope)
· ·	Size 1 (< 0.1 mi²)			
17. Watershed size: (skip for Tidal Marsh Stream)	` ,	□3i2e 2 (0.1 to <	. 0.5 IIII)	
,				
ADDITIONAL INFORMATIO		□No If Voc. aboo	le all that apply to the apparage	nt 0.00
			k all that apply to the assessme	
Section 10 water	Classified Tro			shed (I I III III IV V)
☐Essential Fish Habitat	☐Primary Nurse		• •	/Outstanding Resource Waters
Publicly owned proper		rian buffer rule in e		
☐Anadromous fish	□303(d) List			onmental Concern (AEC)
-	of a federal and/or state ils	stea protectea spec	cies within the assessment area	•
List species:				
Designated Critical Ha				
19. Are additional stream info	ormation/supplementary mea	asurements includ	ed in "Notes/Sketch" section or	attached? ∐Yes ⊠No
			.=	
	• •	or Size 1 streams	and Tidal Marsh Streams)	
	ut assessment reach.			
☐C No water in assi	essment reach.			
2. Evidence of Flow Restri	ction - assessment reach	n metric		
	assessment reach in-stream	m habitat or riffle-	pool sequence is severely affect	ted by a flow restriction or fill to the
				impoundment on flood or ebb within
				he channel, tidal gates, debris jams,
beaver dams).				
☐B Not A				
3. Feature Pattern – asses	sment reach metric			
		ered pattern (evam	ples: straightening, modification	above or below culvert)
⊠B Not A	assessment reactinas atte	cica pattern (cxam	pies. straightering, modification	above of below ediverty.
4. Feature Longitudinal Pr	ofile – assessment reach	metric		
				lown-cutting, existing damming, over
	aggradation, dredging, an	nd excavation whe	re appropriate channel profile l	has not reformed from any of these
disturbances).				
☐B Not A				
5. Signs of Active Instabili	ty – assessment reach me	etric		
_	=		stream has currently recover	red. Examples of instability include
				ich as concrete, gabion, rip-rap).
☐A < 10% of chann	o (,,	J	, , , , , , , , , , , , , , , , , , , ,
☐B 10 to 25% of ch				
$\overline{\boxtimes}$ C > 25% of chann	el unstable			

6.					streamsic					
	LB	ider for t RB	ne Left	Bank (LE	3) and the	Right Ba	nk (RB).			
	□A ⊠B	∏A ⊠B	Мо	derate evi	idence of c	conditions		rms, leve	es, down-	eraction cutting, aggradation, dredging) that adversely affect ruption of flood flows through streamside area, leaky
	□с	□c	Ext [ex: of f mo	ensive ev amples: c lood flows	ridence of c causeways through st ching]) <u>or</u> f	conditions with flood reamside	that adversely plain and chann area] <u>or</u> too mud	affect refe el constric ch floodpla	erence inte ction, bulk ain/intertid	nor ditching [including mosquito ditching]) eraction (little to no floodplain/intertidal zone access heads, retaining walls, fill, stream incision, disruption lal zone access [examples: impoundments, intensive or assessment reach is a man-made feature on an
7.	Wato	r Quality	Stroce	ore – 266	ocemont r	oach/into	ertidal zone met	tric		
7.		k all that		015 – a55	essment	eachinte	rtidai zone mei	uric		
	⊠A			ater in str	eam or inte	ertidal zon	ie (milky white, b	olue, unna	atural wate	er discoloration, oil sheen, stream foam)
	⊠B						n features or int			
	□C ⊠D				t pollutant (tural sulfide		s entering the as	ssessmer	it reach <u>ai</u>	nd causing a water quality problem
							iting degraded v	water qua	lity in the	assessment reach. Cite source in "Notes/Sketch"
	-	section							-	
	⊠F □G				to stream o eam or inte					
	∐H							, burning,	regular m	nowing, destruction, etc)
	□I □J			ressors		_ (explain	in "Notes/Sketo	ch" section	ר)	
_										
8.							al Marsh Strear		3 or 4 str	eams, D2 drought or higher is considered a drought.
	⊠A	Droug	ght cond	ditions <u>and</u>	<u>d</u> no rainfal	ll or rainfa	II not exceeding	1 inch wi	thin the la	st 48 hours
	В				<u>d</u> rainfall ex	ceeding '	1 inch within the	last 48 ho	ours	
_	C		_	conditions		_				
9.	Large ☐Ye		•		assessme oo large or			Yes, skip	to Metric	13 (Streamside Area Ground Surface Condition).
10.							ach metric	-6 41		
	10a.	⊠Yes	□No	sedime	entation, m	ining, exc		am harde	ening [for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging) to Metric 12)
	10b.									ize 4 Coastal Plain streams)
		□A			macrophyt ts, lichens,		quatic mosses	Check for Tidal Marsh Streams Only	□F □G	5% oysters or other natural hard bottoms Submerged aquatic vegetation
		□в					d/or emergent	k for Ti h Strea Only	∐H	Low-tide refugia (pools)
			vegeta			-l	- ()	S ds q	₽'.	Sand bottom
		□C □D			nd logs (in nks and/or		p trees) s and/or roots	Che	□J □K	5% vertical bank along the marsh Little or no habitat
			in bank	ks extend	to the norn		perimeter			
		⊠E	Little o	r no habita	at					
****	*****	******	*****	**REMAI	NING QUE	STIONS	ARE NOT APPI	ICABLE	FOR TID	AL MARSH STREAMS************************************
11.	Bedf	orm and	Substra	ate – asse	essment re	each met	ric (skip for Siz	e 4 Coas	tal Plain s	streams and Tidal Marsh Streams)
	11a.	□Yes	⊠No	ls asses	sment rea	ch in a na	tural sand-bed s	stream? (s	skip for C	oastal Plain streams)
	11b.	_			k the app		oox(es).			
		⊠A □B	Riffle-r	un section	n (evalua te en (evaluat	11c)				
		∐c	Natura	l bedform	absent (sl	cip to Met	tric 12, Aquatic	Life)		
	11c.	In riffle se							of the ass	essment reach – whether or not submerged. Check
		at least of	one box	k in each	row (skip	for Size 4	Coastal Plain	streams a	and Tidal	Marsh Streams). Not Present (NP) = absent, Rare
					Common (or each as			t(A) = > c	40-70%, F	Predominant (P) = > 70%. Cumulative percentages
		NP	R	C C	A A	P	reacii.			
		\boxtimes					Bedrock/sapro			
		\boxtimes		님	\vdash	H	Boulder (256 -		m)	
		\exists		H	\exists	\exists	Cobble (64 – 2 Gravel (2 – 64			
				\boxtimes			Sand (.062 – 2	2 mm)		
		H					Silt/clay (< 0.0	62 mm)		
				\exists	\exists	\exists	Detritus Artificial (rip-ra	ap, concre	ete, etc.)	
	11d.	_ □Yes	□No	Are pool	ls filled with	h sedimer		-	-	streams and Tidal Marsh Streams)

12.	12a. □\	Yes ⊠	No Was a	ach metric (skip for n in-stream aquatic li lowing reasons and s	fe assessment pe	erformed as de		User Manual?		
	12b.	Yes 🗌		natic organisms present If No, skip to Metric 1		ment reach (lo	ok in riffles, po	ools, then snags)	? If Yes, check	all that
	1 0000000000000000000000000000000000000		Number Adult frogs Aquatic reptile Aquatic macre Beetles Caddisfly larv Asian clam (C Crustacean (i Damselfly and Dipterans Mayfly larvae Megaloptera Midges/mosq Mosquito fish Mussels/Clam Other fish Salamanders Snails Stonefly larvae	rs over columns referes es ophytes and aquatic rae (T) Corbicula) sopod/amphipod/cray d dragonfly larvae (E) (alderfly, fishfly, dobs uito larvae (Gambusia) or mud ns (not Corbicula) /tadpoles ne (P)	to "individuals" for mosses (include yfish/shrimp) confly larvae)	liverworts, liche			and 4 streams.	
			Tipulid larvae Worms/leech							
13.	Consider			ace Condition – stro 3) and the Right Ban						runoff.
	⊠a □B	⊠A □B □C	Moderate alt Severe altera	Iteration to water storal eration to water storal ation to water storage turbance, buildings, r	age capacity over capacity over a n	a majority of the s	he streamside treamside area	area	hes, fill, soil comp	action,
14.	Consider LB			ge – streamside are B) and the Right Ba				sh Streams, and	I B valley types)	1
	□в	□A □B ⊠C	Majority of st	treamside area with o treamside area with o treamside area with o	depressions able	to pond water	3 to 6 inches o	eep		
15.	Consider wetted pe	r for the erimeter o	Left Bank (LI of assessmen	de area metric (skip B) and the Right Ba t reach. s present in the strea	nk (RB). Do not	-	nds outside of	the streamside a	rea or within the	norma
	⊠N	⊠N						• .		
16.	Check al ☐ A ☐ B ☐ C ☐ D ☐ D ☐ E	I contrib Streams Ponds (ii Obstruct Evidence Stream b	utors within and/or spring nclude wet de ion passing fle e of bank seep	the assessment reach metrical the assessment reacts (jurisdictional discheditention basins; do not own during low-flow per page or sweating (iro bil reduced (dig throu	ch or within vietharges) of include sedimenteriods within the and in water indicated.	w of <u>and</u> drain nt basins or dry assessment ard es seepage)	ning to the ass detention bases dea (beaver dan	sessment reach		ı, weir)
17.	Check al	Evidence Obstruct Urban st Evidence Assessn	ply. e of substantia ion not passir ream (≥ 24% e that the strea	al water withdrawals a ng flow during low-flow impervious surface for amside area has bee ocated to valley edge	from the assessm w periods affectin or watershed) in modified result	nent reach (incl ng the assessm	ent reach (ex:	watertight dam,	sediment deposit	:)
18.	Shading Consider □A ☑B	- assess aspect. Stream s Degrade	sment reach Consider "lea shading is app d (example: s	metric (skip for Tida f-on" condition. propriate for stream c scattered trees) ne or largely absent			ociated with na	tural processes)		

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.
	Vegetated Wooded LB RB LB RB \square A \square A \square A \supseteq 100 feet wide or extends to the edge of the watershed \square B \square B \square B \square B From 50 to < 100 feet wide \square C \square C \square C From 30 to < 50 feet wide \square D \square D \square D \square D From 10 to < 30 feet wide \square E
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams)
	Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB
	□A □A Mature forest □B □B Non-mature woody vegetation or modified vegetation structure
	□C□C□D□D□DHerbaceous vegetation with or without a strip of trees < 10 feet wide□DMaintained shrubs
	E E Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is
	within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22:
	Abuts < 30 feet 30-50 feet
	LB RB LB RB A A A A A A A A A A A A A A A A A A A
	□B □B □B □B Maintained turf □C □C □C □C Pasture (no livestock)/commercial horticulture
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB ⊠A Medium to high stem density
	□B □B Low stem density □C □C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams)
	Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB
	□A □A The total length of buffer breaks is < 25 percent.
	□ B□ C□ C□ C□ D□ C□ D□ D<
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams)
	Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat.
	LB RB
	with non-native invasive species absent or sparse. B B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native
	species. This may include communities of weedy native species that develop after clear-cutting or clearing <u>or</u> communities with non-native invasive species present, but not dominant, over a large portion of the expected strata <u>or</u>
	communities missing understory but retaining canopy trees. IN C IN C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities
	with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams)
	25a. Yes No Was conductivity measurement recorded? If No, select one of the following reasons. No Water Other:
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter).
	□A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
	es/Sketch:
Diss	olved oxygen 0.15, Temperature 82.4 degrees, Conductivity 464.2, pH 7.09. Cattle access abundant. Bad odor.

Stream Site Name	Banner Branch Mitigation	Date of Assessmer	nt 10-2-2019	
Stream Category	Pb1	Assessor Name/Organization	n Kyle Ober	miller/WLS
Notes of Field Asses	esment Form (V/N)		YES	
	ory considerations (Y/N)		NO	
•	formation/supplementary measu	rements included (V/N)	NO	
	e (perennial, intermittent, Tidal I			<u></u>
NC SAM leature typ	e (perennai, intermittent, Tidari	viaisii Sileaiii)	Intermitter	<u> </u>
	Function Class Rating Sumr	nary	USACE/ All Streams	NCDWR Intermittent
	(1) Hydrology		LOW	LOW
	(2) Baseflow		HIGH	HIGH
	(2) Flood Flow		LOW	LOW
	(3) Streamside Aı	ea Attenuation	MEDIUM	MEDIUM
	(4) Floodpl	ain Access	MEDIUM	MEDIUM
	(4) Wooded	d Riparian Buffer	MEDIUM	MEDIUM
	(4) Microto	oography	NA	NA
	(3) Stream Stabili		LOW	LOW
	(4) Channe	· —	LOW	LOW
	` '	nt Transport	LOW	LOW
		Geomorphology	MEDIUM	MEDIUM
		dal Zone Interaction	NA	NA
	(2) Longitudinal Ti	dal Flow	NA	NA
	(2) Tidal Marsh Str	_	NA	NA
	* *	rsh Channel Stability	NA	NA
		rsh Stream Geomorphology	NA	NA
	(1) Water Quality		LOW	LOW
	(2) Baseflow	-	HIGH	HIGH
	(2) Streamside Area Ve	getation	LOW	LOW
	(3) Upland Polluta	-	LOW	LOW
	(3) Thermoregula		MEDIUM	MEDIUM
	(2) Indicators of Stresso		YES	YES
	(2) Aquatic Life Toleran		OMITTED	NA
	(2) Intertidal Zone Filtration		NA	NA
	(1) Habitat		LOW	LOW
	(2) In-stream Habitat		LOW	LOW
	(3) Baseflow		HIGH	HIGH
	(3) Substrate		LOW	LOW
	(3) Stream Stabili	ty	LOW	LOW
	(3) In-stream Hab	itat	LOW	LOW
	(2) Stream-side Habitat		LOW	LOW
	(3) Stream-side H	labitat	LOW	LOW
	(3) Thermoregula	tion	MEDIUM	MEDIUM
	(2) Tidal Marsh In-stream	Habitat	NA	NA
	(3) Flow Restriction		NA	NA
	(3) Tidal Marsh Str	_	NA	NA
		rsh Channel Stability	NA	NA
		rsh Stream Geomorphology	NA	NA
	(3) Tidal Marsh In-		NA	NA
	(2) Intertidal Zone	_	NA	NA

LOW

LOW

Overall

USACE AID #:	NCDWR #:
	ch a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,
and circle the location	of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and
number all reaches on	the attached map, and include a separate form for each reach. See the NC SAM User Manual for detailed descriptions
and explanations of red	quested information. Record in the "Notes/Sketch" section if supplementary measurements were performed. See the
NC SAM User Manual	for examples of additional measurements that may be relevant.
NOTE EVIDENCE OF	STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).
PROJECT/SITE INFO	RMATION:
Project name (if any)	
3. Applicant/owner nan	
5. County:	Stokes 6. Nearest named water body
7. River basin:	Roanoke on USGS 7.5-minute quad: Banner Branch
	cimal degrees, at lower end of assessment reach): 36.527551°, -80.204080°
· ·	ON: (depth and width can be approximations)
9. Site number (show of	
	n bed (in riffle, if present) to top of bank (feet): 0.5 Unable to assess channel depth.
12. Channel width at to	
	erennial flow Intermittent flow Tidal Marsh Stream
STREAM CATEGORY	
15. NC SAM Zone:	Mountains (M) ☐ Piedmont (P) ☐ Inner Coastal Plain (I) ☐ Outer Coastal Plain (O)
13. NO SAW ZONE.	Modifications (M)
16. Estimated geomorp	
valley shape (skip	ror —
Tidal Marsh Stream	m): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope)
17. Watershed size: (s	kip
for Tidal Marsh St	,
ADDITIONAL INFORM	
	nsiderations evaluated? Yes No If Yes, check all that apply to the assessment area.
☐Section 10 water	
☐Essential Fish H	_ , , , ,
☐Publicly owned p	
☐Anadromous fish	_
□Documented pre	sence of a federal and/or state listed protected species within the assessment area.
List species:	
☐Designated Critic	cal Habitat (list species)
19. Are additional strea	m information/supplementary measurements included in "Notes/Sketch" section or attached? ☐Yes ☒No
	ssessment reach metric (skip for Size 1 streams and Tidal Marsh Streams)
	bughout assessment reach.
	rater in pools only.
☐C No water	n assessment reach.
2. Evidence of Flow	Restriction – assessment reach metric
	0% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to the
	ostructing flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb within
the asses	sment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams,
beaver da	ms).
☐B Not A	
3. Feature Pattern –	assessment reach metric
	of the assessment reach has altered pattern (examples: straightening, modification above or below culvert).
⊠B Not A	
	nal Profile – assessment reach metric
	f assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over
	active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these
disturband	ces).
⊠B Not A	
5. Signs of Active Ins	stability – assessment reach metric
_	rent instability, not past events from which the stream has currently recovered. Examples of instability include
	active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).
	channel unstable
	of channel unstable
☐C > 25% of (channel unstable

6.					streamsic					
	LB	RB	ne Lett	Bank (LE	3) and the	Right Ba	nk (RB).			
	□A ⊠B	∏A ⊠B	Mod refe	derate evi erence inte	idence of c eraction (ex	conditions xamples:	limited streamsi	rms, leve de area a	es, down- ccess, dis	cutting, aggradation, dredging) that adversely affect ruption of flood flows through streamside area, leaky
	□С	□c	Exte [exa of fl mos	ensive evi amples: c lood flows	ridence of c causeways through st ching]) <u>or</u> f	conditions with flood reamside	that adversely Iplain and chann area] <u>or</u> too mud	affect refe el constric ch floodpla	erence inte ction, bulk ain/intertid	nor ditching [including mosquito ditching]) eraction (little to no floodplain/intertidal zone access heads, retaining walls, fill, stream incision, disruption lal zone access [examples: impoundments, intensive or assessment reach is a man-made feature on an
7.	Wate	r Quality	Stresso	ors – asso	essment r	each/inte	ertidal zone met	tric		
		k all that								
	□A									er discoloration, oil sheen, stream foam)
	⊠B □C						n features or intended			nd causing a water quality problem
	$\boxtimes D$	Odor	(not inc	luding nat	tural sulfide	e odors)				
	□E	Curre section		shed or c	collected d	ata indica	iting degraded v	water qua	lity in the	assessment reach. Cite source in "Notes/Sketch"
	⊠F			h access	to stream o	or intertida	al zone			
	☐G Excessive algae in stream or intertidal zone									and the state of t
	□H						ai zone (removai i in "Notes/Sketc			lowing, destruction, etc)
	ΠJ		to no sti			_ (-,	
8.							al Marsh Strear			
		ize 1 or 2	streams	s, D1 drou	ight or high	ner is cons	sidered a drough Ill not exceeding	t; for Size	3 or 4 str	eams, D2 drought or higher is considered a drought.
	⊠a □B						in not exceeding 1 inch within the			St 48 flours
	□с			onditions	_	J				
9.	Large □Ye		•		assessme oo large or			Yes, skip	to Metric	13 (Streamside Area Ground Surface Condition).
10.							each metric			
	10a.	⊠Yes	□No	sedime	entation, m	ining, exc		am harde	ening [for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging) to Metric 12)
	10b.									ize 4 Coastal Plain streams)
		□A			macropnyt ts, lichens,		quatic mosses I mats)	Check for Tidal Marsh Streams Only	□F □G	5% oysters or other natural hard bottoms Submerged aquatic vegetation
		⊠B	Multiple	e sticks ar			d/or emergent	k for T h Stree	⊟н	Low-tide refugia (pools)
		□с	vegetat		nd logs (in	cluding la	p trees)	arsh O	□I □J	Sand bottom 5% vertical bank along the marsh
		□Ď	5% und	dercut bar	nks and/or	root mats	s and/or roots	ပ် 🖁	□ĸ	Little or no habitat
		□E		s extend t r no habita		nal wetted	d perimeter			
			Little of	110 Habite	<i>.</i> 10					
****	*****	******	*****	**REMAI	NING QUE	STIONS	ARE NOT APPL	ICABLE	FOR TID	AL MARSH STREAMS************************************
11.		_	_							streams and Tidal Marsh Streams)
		□Yes	⊠No					stream? (s	skip for C	oastal Plain streams)
	11b.	Bedform ⊠A			k the app		ox(es).			
		□в	Pool-gl	ide sectio	n (evaluat	e 11d)				
		□с	Natural	bedform	absent (sk	kip to Met	tric 12, Aquatic	Life)		
	11c.	at least of	ne box	in each i	row (skip	for Size 4	Coastal Plain	streams a	and Tidal	essment reach – whether or not submerged. Check Marsh Streams) . Not Present (NP) = absent, Rare Predominant (P) = > 70%. Cumulative percentages
		should no		ed 100% fo	or each as			. ()		() · · · · · · · · · · · · · · · · · ·
		NP ⊠	R □	C	A	P □	Bedrock/sapro	olite		
		\boxtimes					Boulder (256 -		m)	
							Cobble (64 – 2			
		\exists		\boxtimes	H	H	Gravel (2 – 64 Sand (.062 – 2			
					×		Silt/clay (< 0.0			
			\square	H	H	H	Detritus Artificial (rip-ra	ap, concre	ete. etc.)	
	11d.	□Yes	□No	Are pool	_ Is filled witl	_		-	-	streams and Tidal Marsh Streams)

12.	12a. □\	∕es ⊠	No Wa	t reach metric (skip fo as an in-stream aquatic e following reasons and	life assessment p	erformed as de		User Manual?		
	12b. □\	∕es □		aquatic organisms pre y. If No, skip to Metric		sment reach (Id	ook in riffles, po	ools, then snags)	? If Yes, check a	all that
	1 0000000000000000000000000000000000000		Nun Adult frog Aquatic re Aquatic re Aquatic m Beetles Caddisfly Asian clan Crustacea Damselfly Dipterans Mayfly lar Megalopte Midges/m Mosquito Mussels/G Other fish Salamand Snails Stonefly la	nbers over columns refers sptiles acrophytes and aquatic larvae (T) m (<i>Corbicula</i>) an (isopod/amphipod/cr and dragonfly larvae vae (E) era (alderfly, fishfly, dob osquito larvae fish (<i>Gambusia</i>) or muc clams (not <i>Corbicula</i>) lers/tadpoles arvae (P)	er to "individuals" ic mosses (include rayfish/shrimp)	liverworts, lich			nd 4 streams.	
			Tipulid lar Worms/le							
13.	Consider			Surface Condition – si (LB) and the Right Ba						runoff.
	⊠a □B	⊠A □B □C	Moderate Severe a	no alteration to water st e alteration to water sto lteration to water storag disturbance, buildings,	orage capacity ove ge capacity over a	er a majority of t majority of the s	he streamside treamside area	area	es, fill, soil compa	action,
14.	Consider LB			orage – streamside ar ((LB) and the Right B				sh Streams, and	B valley types)	
	□в	□A □B ⊠C	Majority	of streamside area with of streamside area with of streamside area with	n depressions able	to pond water	3 to 6 inches d	eep		
15.	Consider wetted pe	r for the erimeter o	Left Bank of assessr	nside area metric (ski (LB) and the Right B nent reach. ands present in the stre	ank (RB). Do not		nds outside of	the streamside a	rea or within the r	norma
	⊠N	⊠N						. . \		
16.	Check al ☐ A ☐ B ☐ C ☐ D ☐ D ☐ E	I contrib Streams Ponds (i Obstruct Evidence Stream I	utors wit and/or sp nclude we ion passir e of bank	ssessment reach methin the assessment re- rings (jurisdictional disc t detention basins; do rig flow during low-flow is seepage or sweating (ink soil reduced (dig thro	each or within viecharges) not include sedime periods within the ron in water indica	ew of <u>and</u> drain ent basins or dr assessment ar ites seepage)	ning to the ass y detention bas ea (beaver dan	sessment reach.	om-release dam,	, weir)
17.	Check al	I that ap Evidence Obstruct Urban st Evidence Assessn	ply. e of substation not pateream (≥ 2 te that the	essment area metric antial water withdrawals ssing flow during low-fl 4% impervious surface streamside area has be relocated to valley edge	s from the assessr low periods affecti for watershed) een modified resul	ment reach (inc ng the assessn	nent reach (ex:	watertight dam, s	ediment deposit)	ı
18.	Shading Consider □A ☑B	- asses aspect. Stream s Degrade	sment rea Consider shading is ed (examp	ch metric (skip for Ti "leaf-on" condition. appropriate for stream e: scattered trees) gone or largely absent	category (may inc		ociated with nat	ural processes)		

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out								
	to the first break. Vegetated Wooded LB RB LB RB								
	□A □A □A ≥ 100 feet wide or extends to the edge of the watershed □B □B □B □B From 50 to < 100 feet wide □C □C □C □C □C □C □C □C □C □C □C □C □C □								
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB								
	□A □A Mature forest □B □B Non-mature woody vegetation or modified vegetation structure □C □C Herbaceous vegetation with or without a strip of trees < 10 feet wide □D □D Maintained shrubs □E □E Little or no vegetation								
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22:								
	Abuts < 30 feet 30-50 feet LB RB LB RB LB RB								
	□A □A □A □A □A Row crops □B □B □B □B □B ■B Maintained turf								
	□C □C □C □C Pasture (no livestock)/commercial horticulture □D □D □D □D □D Pasture (active livestock use)								
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).								
	LB RB A Medium to high stem density								
	□B □B Low stem density □C □C No wooded riparian buffer or predominantly herbaceous species or bare ground								
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB								
	 ☑A ☑B ☐B ☐B ☐C ☐C ☐C ☐C ☐D /ul>								
24.	getative Composition – streamside area metric (skip for Tidal Marsh Streams) aluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to sessment reach habitat. RB								
	LB RB A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.								
	☑B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or								
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.								
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.								
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\Box A < 46 \qquad \Box B 46 \text{ to } < 67 \qquad \Box C 67 \text{ to } < 79 \qquad \Box D 79 \text{ to } < 230 \qquad \boxtimes E \geq 230$								
Note	es/Sketch:								

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Banner Branch Mitigation	Date of Assessment	10-2-2019	
Stream Category	Pb1	Assessor Name/Organization	Kyle Ober	miller/WLS
		C		
Notes of Field Asses	ssment Form (Y/N)		NO	
Presence of regulate	ory considerations (Y/N)		NO	
Additional stream in	formation/supplementary measur	ements included (Y/N)	NO	
NC SAM feature typ	e (perennial, intermittent, Tidal M	arsh Stream)	Intermitter	nt
			USACE/	NCDWR
	Function Class Rating Summ	ary A	All Streams	Intermittent
	(1) Hydrology		MEDIUM	MEDIUM
	(2) Baseflow		HIGH	HIGH
	(2) Flood Flow		MEDIUM	MEDIUM
	(3) Streamside Are	ea Attenuation	MEDIUM	MEDIUM
	(4) Floodpla	in Access	MEDIUM	MEDIUM
	(4) Wooded	Riparian Buffer	HIGH	HIGH
	(4) Microtop	ography	NA	NA
	(3) Stream Stability	<u>—</u>	MEDIUM	MEDIUM
	(4) Channel	Stability	MEDIUM	MEDIUM
	(4) Sedimen	t Transport	LOW	LOW
		 Geomorphology	HIGH	HIGH
	(2) Stream/Intertida	· • • · · · · · · · · · · · · · · · · ·	NA	NA
	(2) Longitudinal Tid		NA	NA
	(2) Tidal Marsh Stre		NA	NA
		sh Channel Stability	NA	NA
		sh Stream Geomorphology	NA	NA
	(1) Water Quality	sir Stream Geomorphology	LOW	LOW
	(2) Baseflow		HIGH	HIGH
	(2) Streamside Area Veg	etation	LOW	LOW
	(2) Streamside Area veg		LOW	LOW
	(3) Thermoregulati		MEDIUM	MEDIUM
	(2) Indicators of Stressor		YES	YES
	` '		OMITTED	NA
	(2) Aquatic Life Tolerance(2) Intertidal Zone Filtration			
	(1) Habitat	I	NA LOW	NA LOW
				LOW
	(2) In-stream Habitat		LOW	
	(3) Baseflow		HIGH	HIGH
	(3) Substrate	<u> </u>	LOW	LOW
	(3) Stream Stability		MEDIUM	MEDIUM
	(3) In-stream Habit	<u> </u>	LOW	MEDIUM
	(2) Stream-side Habitat	—	MEDIUM	MEDIUM
	(3) Stream-side Ha		MEDIUM	MEDIUM
	(3) Thermoregulati		MEDIUM	MEDIUM
	(2) Tidal Marsh In-stream	Habitat	NA	NA
	(3) Flow Restriction		NA	NA
	(3) Tidal Marsh Stre	-	NA	NA
	(4) Tidal Mar	sh Channel Stability	NA	NA
	(4) Tidal Mar	sh Stream Geomorphology	NA	NA
	(3) Tidal Marsh In-s	tream Habitat	NA	NA
	(2) Intertidal Zone		NA	NA

LOW

LOW

Overall

NC SAM FIELD ASSESSMENT RESULTS Accompanies User Manual Version 2.1

		ACC	Unipanies Usei	Ivialiuai veisioli 2. i	
USACE	AID #:			NCDWR #:	
INSTRU	JCTIONS: Attach a s	ketch of the assessment a	area and photogr	aphs. Attach a copy of the USGS	3 7.5-minute topographic quadrangle,
and circ	le the location of the	stream reach under evalu	uation. If multiple	e stream reaches will be evaluate	ed on the same property, identify and
					User Manual for detailed descriptions
					surements were performed. See the
		amples of additional meas			
NOTE E	EVIDENCE OF STRE	SSORS AFFECTING TH	E ASSESSMEN	Γ AREA (do not need to be with	in the assessment area).
	CT/SITE INFORMAT	-			
	ct name (if any):	Banner Branch Mitigation		2. Date of evaluation: 10-2-2	
	cant/owner name:	Water & Land Solutions	S	4. Assessor name/organization:	Kyle Obermiller/WLS
5. Coun	•	Stokes		6. Nearest named water body	
7. River		Roanoke		on USGS 7.5-minute quad:	Banner Branch
	`	degrees, at lower end of a		<i>'</i>	
		depth and width can be			h 4 1 (f 4). 240
	number (show on atta			Length of assessment reach eva	` '
	nnel width at top of b	(in riffle, if present) to top ank (feet): 5.6		1.7	Unable to assess channel depth.
		al flow Intermittent flow			III! Lifes Lino
	M CATEGORY INFO			Caoam	
_	SAM Zone:	☐ Mountains (M)	□ Piedmont (Filled)	P) Inner Coastal Plain (I)	Outer Coastal Plain (O)
10.110	07 (IVI 20110.	Mountaino (M)	Z i loamon (i	inner coastar ram (i)	Guter Godelar Flam (6)
40 ===		1			
	mated geomorphic ey shape (skip for	\Box A \frown	$\overline{}$	⊠в	
	al Marsh Stream):	(more sinuous strear	m. flatter vallev sl	lope) (less sinuous s	stream, steeper valley slope)
	ershed size: (skip	⊠Size 1 (< 0.1 mi²)			
	Fidal Marsh Stream)	· · · · · · · · · · · · · · · · · · ·		6 (0.0 1111)	(10 mm)
	ONAL INFORMATIO				
18. Wer	e regulatory consider	rations evaluated? ⊠Yes	s □No If Yes, c	heck all that apply to the assessn	nent area.
□S	ection 10 water	☐Classified T	rout Waters	☐Water Supply Water	ershed (I II III IIV V)
	ssential Fish Habitat		•		ers/Outstanding Resource Waters
	ublicly owned proper		parian buffer rule		
	nadromous fish	□303(d) List	l'ata d a nata ata d		vironmental Concern (AEC)
	ist species:	e of a federal and/or state	listea protectea s	species within the assessment are	ea.
	esignated Critical Ha	shitat (list species)			
	_		neasurements inc	cluded in "Notes/Sketch" section of	or attached? □Yes ⊠No
13.7110	additional Stream inte	ornation/supplementary in	neasurements in	Sidded III 140tes/Oketeii Section (or attached: 103 200
1. Cha	nnel Water – assess	sment reach metric (skip	o for Size 1 strea	ams and Tidal Marsh Streams)	
		ut assessment reach.		•	
ДВ	No flow, water in				
□с	No water in ass	essment reach.			
2. Evic	lence of Flow Restri	iction – assessment read	ch metric		
$\boxtimes A$					ected by a flow restriction or fill to the
					or impoundment on flood or ebb within
	the assessment beaver dams).	reach (examples: under	sized or perched	cuiverts, causeways that constric	et the channel, tidal gates, debris jams,
□в	Not A				
		sment reach metric			
⊠A		e assessment reach has a	altered pattern (ex	xamples: straightening, modificati	on above or below culvert).
□В	Not A				
	_	ofile – assessment reac			
⊠A			•		I down-cutting, existing damming, over
		e aggradation, dredging, a	and excavation v	wnere appropriate channel profile	e has not reformed from any of these
□в	disturbances). Not A				
		ity – assessment reach r			
					vered. Examples of instability include
activ	e bank fallure, active < 10% of chann		zau-cui), active w	nueriing, and artilicial hardening (such as concrete, gabion, rip-rap).
⊠ß	10 to 25% of ch				
□c	> 25% of chann				

6.					streamsion) and the						
	□A □B	□A □B	Mode refere	erate evid ence inte	dence of c raction (ex	conditions xamples:	limited streams	rms, leve ide area a	es, down- .ccess, dis	eraction cutting, aggradation, dredging) tha ruption of flood flows through strea nor ditching [including mosquito di	amside area, leaky
	⊠C	⊠C	Exter [exan of floo mosq	nsive evice nples: ca od flows t	dence of c auseways through st hing]) <u>or</u> f	conditions with flood reamside	that adversely Iplain and chanr area] <u>or</u> too mu	affect refe nel constri ch floodpla	erence inte ction, bulk ain/intertic	eraction (little to no floodplain/inter heads, retaining walls, fill, stream i lal zone access [examples: impour or assessment reach is a man-ma	rtidal zone access incision, disruption ndments, intensive
7.				s – asse	ssment r	each/inte	ertidal zone me	tric			
	$\boxtimes A$		lored wat							er discoloration, oil sheen, stream	foam)
	□B □C						m features or int es entering the a			nd causing a water quality problem	n
	\Box D	Odor	(not inclu	ding natu	ural sulfide	e odors)	· ·		· <u> </u>		
		section	n.					water qua	ility in the	assessment reach. Cite source	in Notes/Sketch
	⊠F □G				o stream o am or inte						
	H	Degra	aded mars	sh vegeta	ation in the	e intertida				nowing, destruction, etc)	
	Π̈́		to no stre			_ (explail)	III Notes/Skett	JI 3661101	1)		
8.							al Marsh Stream			55.1	
	\square A						sidered a drough all not exceeding			eams, D2 drought or higher is consist 48 hours	sidered a drought.
	□в ⊠С		ght conditi ought cor		rainfall ex	ceeding '	1 inch within the	last 48 h	ours		
9.			_		assessme	ent reach	metric				
	□Ye	_			_	_		f Yes, skip	to Metric	: 13 (Streamside Area Ground Sur	face Condition).
10.			eam Habit ⊠No	Degrade sedimer	ed in-streantation, m	am habita iining, exc		am harde	ening [for	nt reach (examples of stressors example, rip-rap], recent dredgin to Metric 12)	
	10b.									ize 4 Coastal Plain streams)	II 16
			(include I	liverworts	s, lichens,	and algal		Check for Tidal Marsh Streams Only	∐F ∐G	5% oysters or other natural hard Submerged aquatic vegetation	DOTTOMS
			Multiple s vegetation		d/or leaf	packs and	d/or emergent	k for . h Stre Only	□H □I	Low-tide refugia (pools) Sand bottom	
		□C □D	Multiple s	snags an	nd logs (industrial		p trees) s and/or roots	Chec	□J □K	5% vertical bank along the mars	h
			in banks	extend to	o the norn		d perimeter	ļ		Little of no nabitat	
		⊠E	Little or n	io nabila	ι						
****	*****	******	*******	REMAIN	ING QUE	STIONS	ARE NOT APP	LICABLE	FOR TID	AL MARSH STREAMS*********	*****
11.	Bedfo	orm and S	Substrate	- asses	ssment re	each met	ric (skip for Siz	e 4 Coas	tal Plain	streams and Tidal Marsh Stream	ıs)
		□Yes						stream? (s	skip for C	oastal Plain streams)	
	11b.				k the appi (evaluate		ox(es).				
		□в			n (evaluat absent (sk		tric 12, Aquatic	: Life)			
	11c.				•	-		•	of the ass	essment reach – whether or not su	ubmerged. Check
										Marsh Streams) . Not Present (Noredominant (P) = $> 70\%$. Cumul	
			ot exceed	100% fo	or each as	sessment		. ()			ante personages
			R	C □	A	P □	Bedrock/sapro				
			\square				Boulder (256 Cobble (64 –		m)		
						Ä	Gravel (2 – 64	1 mm) (
						Ħ	Sand (.062 – . Silt/clay (< 0.0				
		\square	\square				Detritus Artificial (rip-ra	ap, concre	ete, etc.)		
	11d.	□Yes	No A	Are pools	s filled with	h sedimer		-	•	streams and Tidal Marsh Stream	ıs)

12.			sessment reach metric (skip for Tidal Marsh Streams)
	12a. ☐ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☑Other:
	12b.	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
			Beetles Caddisfly larvae (T)
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
			Damselfly and dragonfly larvae Dipterans
	Ħ		Mayfly larvae (E)
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)
			Other fish
			Salamanders/tadpoles Snails
			Stonefly larvae (P) Tipulid larvae
	_		Worms/leeches
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	□A	\square A	Little or no alteration to water storage capacity over a majority of the streamside area
	□в ⊠С	□B ⊠C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted p	er for the erimeter	 e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
	LB ⊠Y ∏N	RB ⊠Y ∏N	Are wetlands present in the streamside area?
16.	_		outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	Check a ⊠A		utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
	⊠B □C	Ponds (i	nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
	\Box D	Evidenc	e of bank seepage or sweating (iron in water indicates seepage)
	□E □F		ped or bank soil reduced (dig through deposited sediment if present) the above
17.	Baseflov Check a		ors – assessment area metric (skip for Tidal Marsh Streams)
	\square A	Evidenc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C	Urban s	ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
	□D □E		e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge
4.5	⊠F	None of	the above
18.			sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	□A □B	Stream	shading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees)
	⊠c		shading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB \square A \square A \square A \square A \square A \square 100 feet wide or extends to the edge of the watershed \square B \square B \square B \square B \square B From 50 to < 100 feet wide \square C \square C \square C \square C \square C \square C From 30 to < 50 feet wide \square D \square D \square D \square D \square D \square D \square D \square D
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB A Mature forest B Non-mature woody vegetation or modified vegetation structure C C Herbaceous vegetation with or without a strip of trees < 10 feet wide D D Maintained shrubs E Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet LB RB LB RB LB RB A A A A A A A A A A A A A A A A A A A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB A Medium to high stem density B B B Low stem density C C C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB \[\text{A} \text{A} \text{The total length of buffer breaks is < 25 percent.} \] \[\text{B} \text{B} \text{The total length of buffer breaks is between 25 and 50 percent.} \] \[\text{C} \text{C} \text{The total length of buffer breaks is > 50 percent.} \]
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB □A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. □B ☑B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. ☑C □C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. ☐ Yes ☐ No Was conductivity measurement recorded? If No, select one of the following reasons. ☐ No Water ☐ Other: 25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). ☐ A < 46 ☐ B 46 to < 67 ☐ C 67 to < 79 ☐ D 79 to < 230 ☐ E ≥ 230
	es/Sketch: colved oxygen 0.15, Temperature 82.4 degrees, Conductivity 464.2, pH 7.09. Cattle access abundant. Bad odor.

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Banner Branch Mitigation	Date of Assessment	10-2-2019				
Stream Category	Stream Category Pb1 Assessor Name/Organization						
Notes of Field Asses		YES					
Presence of regulator	NO						
Additional stream inf	NO						
NC SAM feature type	NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)						

(poronnial, intermittent, ridal Maron Groam)	Tototilla	<u>. </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	NA	
(3) Stream Stability	LOW	
(4) Channel Stability	MEDIUM	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA NA	
(2) Longitudinal Tidal Flow	NA NA	
	NA NA	
(2) Tidal Marsh Stream Stability		
(3) Tidal Marsh Channel Stability	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	HIGH	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	LOW	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	LOW	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone	NA NA	
	INA	

NC SAM FIELD ASSESSMENT RESULTS Accompanies User Manual Version 2.1

		ACC	Unipanies User ivi	iailuai veisioli 2.1	
USACE A	ID #:			NCDWR #:	
INSTRUC	TIONS: Attach a s	ketch of the assessment a	area and photogra	phs. Attach a copy of the USGS	7.5-minute topographic quadrangle,
					d on the same property, identify and
					ser Manual for detailed descriptions
					urements were performed. See the
		amples of additional meas			
NOTE EVI	DENCE OF STRE	SSORS AFFECTING TH	E ASSESSMENT	AREA (do not need to be withi	n the assessment area).
	SITE INFORMAT				
	name (if any):	Banner Branch Mitigation		2. Date of evaluation: 10-2-2	
	nt/owner name:	Water & Land Solutions		4. Assessor name/organization:	Kyle Obermiller/WLS
5. County:		Stokes		6. Nearest named water body	
7. River ba		Roanoke		on USGS 7.5-minute quad:	Banner Branch
		degrees, at lower end of a		36.530447°, -80.209968°	
		depth and width can be			4.000
	nber (show on atta			ength of assessment reach evalu	
	•	(in riffle, if present) to top			Jnable to assess channel depth.
	el width at top of b			ssessment reach a swamp stean	I? ∐Yes ∐NO
	e type: ⊠Perenni CATEGORY INFO	al flow Intermittent flow	v 🔲 i idai iviarsh S	ouealli	
15. NC SA		Mountains (M)	□ Piedmont (P)	☐ Inner Coastal Plain (I)	Outer Coastal Plain (O)
15. NC 34	aw Zone.	☐ Mountains (M)	△ Pleamont (P)	Inner Coastar Plain (I)	U Outer Coastai Plain (O)
		,			
	ited geomorphic	\square A \frown	$\overline{}$	⊠B	
	shape (skip for Marsh Stream):	(more sinuous strear	m flatter valley slo	_	ream, steeper valley slope)
	,				
	shed size: (skip Ial Marsh Stream)	☐Size 1 (< 0.1 mi²)	⊠Size 2 (0.1 to	$0 < 0.5 \text{ mi}^2$) Size 3 (0.5 to <	: 5 mi²)
	IAL INFORMATIO				
			s □No If Yes che	eck all that apply to the assessm	ent area
	tion 10 water	Classified T			rshed (I I II III IV V)
_	ential Fish Habitat	☐Primary Nur			s/Outstanding Resource Waters
	licly owned proper	•	parian buffer rule ir		_
	dromous fish	303(d) List			ronmental Concern (AEC)
□Doc	umented presence	of a federal and/or state	listed protected sp	ecies within the assessment are	a.
	species:				
	ignated Critical Ha				
19. Are ad	ditional stream info	ormation/supplementary n	neasurements incl	uded in "Notes/Sketch" section o	r attached?
4 01	-1.34/		0:		
			o for Size 1 Stream	ns and Tidal Marsh Streams)	
□B	No flow, water in	ut assessment reach.			
□c	No water in asse				
_	as of Flour Boots:	-4!	ab waatuia		
		ction – assessment read		o pool coguence is soverely affe	ested by a flow rootriction or fill to the
□A					cted by a flow restriction or fill to the impoundment on flood or ebb within
	the assessment	reach (examples: under	sized or perched c	ulverts, causeways that constrict	the channel, tidal gates, debris jams,
_	beaver dams).	, , , , , , , , , , , , , , , , , , , ,	,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
⊠B	Not A				
3. Featur	e Pattern – asses	sment reach metric			
			altered pattern (exa	amples: straightening, modification	n above or below culvert).
⊠B	Not A		1, (370	. 5 3, 3	
	e I ongitudinal Pr	ofile – assessment reac	h metric		
4. realur	•			eam profile (examples: chappel	down-cutting, existing damming, over
MV			•		has not reformed from any of these
	disturbances).		CAUCATOM WI	Spender and analysis promo	The second from any or moor
□В	Not A				
	of Active Instabili	ty – assessment reach i	metric		
				ne stream has currently recove	ered. Examples of instability include
					uch as concrete, gabion, rip-rap).
□A	< 10% of chann		,,	5	73 71 -17
□в	10 to 25% of cha				
⊠c	> 25% of channe	el unstable			

6.					treamsid					
	LB	RB	e Leit Da	alik (LD)	and the I	Kigiii ba	IIK (KD).			
	∏A ⊠B	∏A ⊠B	Mode refere	rate evid nce inter	ence of co action (ex	onditions amples:	limited streams	erms, leve side area a	es, down- ccess, dis	eraction cutting, aggradation, dredging) that adversely affec cruption of flood flows through streamside area, leaky inor ditching [including mosquito ditching])
	□C	□C	Exten [exam of floo mosq	sive evic ples: ca d flows t	lence of couseways whence of couseways whence the couse of the couse o	onditions with flood eamside	that adversely Iplain and chan area] <u>or</u> too mu	affect refe nel constri och floodpla	erence inte ction, bulk ain/intertic	eraction (little to no floodplain/intertidal zone access theads, retaining walls, fill, stream incision, disruption dal zone access [examples: impoundments, intensive or assessment reach is a man-made feature on a
7.				s – asse	ssment re	each/inte	ertidal zone me	etric		
	□A ⊠B		red wate				ne (milky white, m features or in			er discoloration, oil sheen, stream foam)
	□c ⊠d				oollutant d ıral sulfide		s entering the a	assessmer	nt reach <u>a</u>	nd causing a water quality problem
	□E	Curren section		ed or co	llected da	ıta indica	ating degraded	water qua	lity in the	assessment reach. Cite source in "Notes/Sketch
	⊠F □G	Livesto	ck with a		stream o am or inter					
		Degrad Other:	led mars	h vegeta		intertida				nowing, destruction, etc)
В.					etric (skir	o for Tida	al Marsh Strea	ıms)		
		e 1 or 2 st Drough Drough	reams, [it conditi	D1 droug ons <u>and</u> ons <u>and</u>	ht or highen no rainfall	er is cons or rainfa		ht; for Size g 1 inch wi	thin the la	eams, D2 drought or higher is considered a drought ast 48 hours
9.	Large □	or Dange ⊠No			ssessme o large or			lf Yes, skip	to Metric	: 13 (Streamside Area Ground Surface Condition).
10.							each metric			
	10a. [_ Yes [∑		sedimen	tation, mi	ning, exc		eam harde	ening [for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging to Metric 12)
							e of assessmer quatic mosses		skip for S □F	ize 4 Coastal Plain streams) 5% oysters or other natural hard bottoms
		(i	nclude li	verworts	, lichens,	and algal		Check for Tidal Marsh Streams Only	□G □H	Submerged aquatic vegetation Low-tide refugia (pools)
	_	_ v	egetatio	n	d logs (inc		_	eck for T rsh Stre Only		Sand bottom 5% vertical bank along the marsh
		_D 5	% under	rcut banl	ks and/or	root mats	s and/or roots	ე <u>გ</u>	□ĸ	Little or no habitat
		_		o habitat		ai welled	i peninetei			
***	*****	******	*******	REMAIN	ING QUES	STIONS	ARE NOT APF	LICABLE	FOR TID	AL MARSH STREAMS************************************
11.	Bedfor	m and Su	ubstrate	– asses	sment re	ach metr	ric (skip for Si	ze 4 Coas	tal Plain	streams and Tidal Marsh Streams)
	11a. [_						stream? (s	skip for C	coastal Plain streams)
		⊠A F ⊒B F	Riffle-run Pool-glide	section e section	the appro (evaluate (evaluate (bsent (ski	11c) 11d)	oox(es). tric 12, Aquati	c Life)		
	11c. lr a (l s	n riffle sec t least on R) = prese hould not IP E	tions, che box ir ent but sexceed	eck all the each result of the e	nat occur b	pelow the or Size 4 C) = > 10	normal wetted Coastal Plain 0-40%, Abunda t reach. Bedrock/sapi Boulder (256 Cobble (64 –	perimeter streams ant (A) = > rolite - 4096 mi 256 mm)	and Tidal 40-70%, I	sessment reach – whether or not submerged. Check I Marsh Streams) . Not Present (NP) = absent, Rare Predominant (P) = > 70%. Cumulative percentages
							Gravel (2 – 6 Sand (.062 – Silt/clay (< 0. Detritus Artificial (rip-	2 mm) 062 mm)	ote ote)	
	11d. [_	_	u re pools	_	ы sedimen		-	•	streams and Tidal Marsh Streams)

-		sessment reach metric (skip for Tidal Marsh Streams)
		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. No Water Other:
12b. ⊠`	Yes 🗌	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
Ä		Aquatic replices Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles
Ä		Caddisfly larvae (T)
벌		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
		Damselfly and dragonfly larvae Dipterans
		Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
		Midges/mosquito larvae Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i>
		Mussels/Clams (not <i>Corbicula</i>) Other fish
Ä		Salamanders/tadpoles Snails
Ä		Stonefly larvae (P) Tipulid larvae
		Worms/leeches
Conside	r for the l	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
\square A	\square A	Little or no alteration to water storage capacity over a majority of the streamside area Moderate alteration to water storage capacity over a majority of the streamside area
⊠c	⊠c	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)
		Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
Conside wetted pe	r for the erimeter o	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal f assessment reach.
⊠Y □N	\boxtimes Y	Are wetlands present in the streamside area?
	v Contrib	utors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
Check al		utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
□C 図D □E	Obstruct Evidence Stream b	nclude wet detention basins; do not include sediment basins or dry detention basins) on passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) of bank seepage or sweating (iron in water indicates seepage) led or bank soil reduced (dig through deposited sediment if present)
Baseflov	v Detract	ors – assessment area metric (skip for Tidal Marsh Streams)
□A □B □C	Evidence Obstruct	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) on not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
□D □E ⊠F	Assessm	that the streamside area has been modified resulting in accelerated drainage into the assessment reach ent reach relocated to valley edge the above
		sment reach metric (skip for Tidal Marsh Streams)
□A □B □C	Stream s Degrade	hading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees) hading is gone or largely absent
	12a. If N 12b. If N 12b. If N 12b. If N 12c. If N	12a. Yes If No, select 12b. Yes If No, select 12b. Yes If No, select 12c. If No, select 12c. Yes If No, select 12c. If No, select 12c.

19.	9. Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded								
	LB RB LB RB \triangle A \triangle A \triangle A \triangle A \triangle A \triangle A \triangle A ≥ 100 feet wide \underline{or} extends to the edge of the watershed \triangle B \triangle B \triangle B \triangle B \triangle B From 50 to < 100 feet wide \triangle C \triangle C \triangle C \triangle C \triangle C \triangle C From 30 to < 50 feet wide \triangle D \triangle D \triangle D \triangle D \triangle D \triangle D From 10 to < 30 feet wide \triangle E \triangle E \triangle E \triangle E \triangle E < 10 feet wide \underline{or} no trees								
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).								
	LB RB A Mature forest B Non-mature woody vegetation or modified vegetation structure C C Herbaceous vegetation with or without a strip of trees < 10 feet wide D D Maintained shrubs E E Little or no vegetation								
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22:								
	Abuts < 30 feet 30-50 feet LB RB LB RB LB RB								
	□A □A □A □A Row crops								
	□B □B □B □B Maintained turf □C □C □C □C Pasture (no livestock)/commercial horticulture □D □D □D □D □D Pasture (active livestock use)								
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams)								
	Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB								
	 □A								
23.	□C No wooded riparian buffer or predominantly herbaceous species or bare ground Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams)								
	Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB								
	□A □A The total length of buffer breaks is < 25 percent. □B □B The total length of buffer breaks is between 25 and 50 percent. □C □C The total length of buffer breaks is > 50 percent.								
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams)								
	Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB								
	Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.								
	Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or								
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.								
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. ☐ Yes ☐ No Was conductivity measurement recorded? If No, select one of the following reasons. ☐ No Water ☐ Other:								
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\Box A < 46$ $\Box B = 46$ to < 67 $\Box C = 67$ to < 79 $\Box D = 79$ to < 230 $\Box E = 230$								
Note	es/Sketch:								

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Banner Branch Mitigation	Date of Assessment	10-2-2019					
Stream Category	Stream Category Pb2 Assessor Name/Organization							
Notes of Field Asses		NO						
Presence of regulator		NO						
Additional stream inf	NO							
NC SAM feature type	NC SAM feature type (perennial, intermittent, Tidal Marsh Stream) Perennial Perennial							

(pororimal, intermittent, fradi waren otroam)	1 010111110	<u>. </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	NA	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	LOW	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	MEDIUM	
(2) Stream/Intertidal Zone Interaction	NA NA	
• ,	NA NA	
(2) Longitudinal Tidal Flow		
(2) Tidal Marsh Stream Stability	NA NA	
(3) Tidal Marsh Channel Stability	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	MEDIUM	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	MEDIUM	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	HIGH	
(3) Stream Stability	LOW	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA NA	
(3) Tidal Marsh Stream Stability	NA NA	
(3) Fidal Marsh Stream Stability (4) Tidal Marsh Channel Stability	NA NA	
. ,	NA NA	
(4) Tidal Marsh Stream Geomorphology (3) Tidal Marsh In-stream Habitat	NA NA	
(3) Intertidal Zone		
. ,	NA LOW	
Overall	LOW	

NC SAM FIELD ASSESSMENT RESULTS Accompanies User Manual Version 2.1

	7.000		
USACE AID #:		NCDWR #:	
	a sketch of the assessment area and ph		
	the stream reach under evaluation. If m		
	e attached map, and include a separate fo		
	ested information. Record in the "Notes/		urements were performed. See the
	examples of additional measurements the		
NOTE EVIDENCE OF ST	RESSORS AFFECTING THE ASSESSI	MENT AREA (do not need to be withir	the assessment area).
PROJECT/SITE INFORM	IATION:		
1. Project name (if any):	Banner Branch Mitigation	2. Date of evaluation: 10-2-20	019
3. Applicant/owner name:	Water & Land Solutions	4. Assessor name/organization:	Kyle Obermiller/WLS
5. County:	Stokes	6. Nearest named water body	
7. River basin:	Roanoke	on USGS 7.5-minute quad:	Banner Branch
8. Site coordinates (decin	nal degrees, at lower end of assessment	reach): 36.521520°, -80.208311°	
STREAM INFORMATION	N: (depth and width can be approximat	tions)	
9. Site number (show on		10. Length of assessment reach evalu	ated (feet): 1,800
11. Channel depth from b	ed (in riffle, if present) to top of bank (fee	et): 1.8	nable to assess channel depth.
12. Channel width at top	of bank (feet): 10.6 1	3. Is assessment reach a swamp steam	? □Yes □No
	ennial flow Intermittent flow Tidal M	•	
STREAM CATEGORY IN			
15. NC SAM Zone:	☐ Mountains (M) ☐ Piedm	ont (P)	Outer Coastal Plain (O)
	_	_	
46 Fatimental manuscribi			
 Estimated geomorphic valley shape (skip for each or each		⊠B	
Tidal Marsh Stream)		llev slone) (less sinuous sti	eam, steeper valley slope)
·	<u> </u>		
17. Watershed size: (skip	· · · · · · · · · · · · · · · · · · ·	$2 (0.1 \text{ to } < 0.5 \text{ mi}^2)$ Size 3 (0.5 to <	5 mi²)
for Tidal Marsh Stream ADDITIONAL INFORMA	,		
	iderations evaluated? ⊠Yes ⊟No If Y	os shock all that apply to the assessme	ant area
Section 10 water	Classified Trout Waters		shed (I II III IV V)
Essential Fish Hab	_	= '''	s/Outstanding Resource Waters
Publicly owned pro			
☐ Anadromous fish	□303(d) List		onmental Concern (AEC)
_	ence of a federal and/or state listed protect		
List species:	mos or a roughar array or class motor protect	0.04 op 00.00 m.m. 1.10 00000011 0.100	
Designated Critical	Habitat (list species)		
	information/supplementary measuremen	nts included in "Notes/Sketch" section or	attached? ☐Yes ⊠No
10.740 additional official	mornation, supplementary measuremen	its indiaded in 14etes/exeter section of	attached: 100 Miles
1. Channel Water - ass	essment reach metric (skip for Size 1	streams and Tidal Marsh Streams)	
	ghout assessment reach.	· · · · · · · · · · · · · · · · · · ·	
	er in pools only.		
□C No water in a	assessment reach.		
2. Evidence of Flow Re	striction – assessment reach metric		
	6 of assessment reach in-stream habitat	or riffle-pool sequence is severely affer	cted by a flow restriction or fill to the
	tructing flow or a channel choked with a		
	nent reach (examples: undersized or per		
beaver dams		•	
⊠B Not A			
3. Feature Pattern – as	sessment reach metric		
	the assessment reach has altered patte	rn (examples: straightening modification	a above or below culvert)
⊠B Not A	the assessment reach has altered patte	Th (Champies, Straightening, mounication	rabove of below ediverty.
	Profile – assessment reach metric		
	ssessment reach has a substantially alte		
	ctive aggradation, dredging, and excava	mon where appropriate channel profile	has not reformed from any of these
disturbances ⊠B Not A	5).		
א אואו מ א A			
_	bility – assessment reach metric		
	nt instability, not past events from wl		
	tive channel down-cutting (head-cut), act	tive widening, and artificial hardening (so	uch as concrete, gabion, rip-rap).
	annel unstable		
	f channel unstable		
□C > 25% of character	annel unstable		

ь.				raction – s Bank (LB)								
	LB	RB		` '	•	•	, ,					
	⊠A □B	⊠A □B	Mod refe	derate evic erence inte	dence of c raction (ex	onditions camples:	limited strea	berm mside	ns, leve e area a	es, down ccess, di	-cutting, aggradation, d	redging) that adversely affect frough streamside area, leaky mosquito ditching])
	□C	□c	[exa of fl mos	amples: ca ood flows t	auseways :hrough str ning]) <u>or</u> fl	with flood reamside	dplain and ch area] <u>or</u> too	annel much	constriction	ction, bull ain/interti	kheads, retaining walls, dal zone access [examp	odplain/intertidal zone access fill, stream incision, disruption ples: impoundments, intensive s a man-made feature on an
7.				ors – asse	ssment re	each/inte	ertidal zone	metri	С			
	Chec	Exce	olored wa ssive se	dimentatio	n (burying	of strear	m features or	r intert	tidal zoı	ne)	ter discoloration, oil she	•
	□D □E	Odor	not inc) ent publi	luding natu	iral sulfide	odors)	_					Cite source in "Notes/Sketch"
	⊠F □G □H □I	Exce	ssive alç aded ma	h access to gae in strea arsh vegeta	am or inter ation in the	rtidal zon e intertida	ne				nowing, destruction, etc	;)
	∏,		to no sti	ressors		(explair	Till Notes/Si	Kelcii	Section	')		
8.	Recent Weather – watershed metric (skip for Tidal Marsh Streams) For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought. Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours Drought conditions and rainfall exceeding 1 inch within the last 48 hours No drought conditions											
9.	Larg □Ye		•	Stream – a tream is to				? If Y	'es, skip	to Metri	c 13 (Streamside Area (Ground Surface Condition).
10.		ral In-stre □Yes	eam Hab ⊠No	Degrade sedimer	ed in-strea	am habita ining, exc	cavation, in-	strean	n harde	ening [for		stressors include excessive ent dredging, and snagging)
	10b.	□A	Multiple (include	e aquatic m e liverworts	nacrophytes, lichens,	es and ac and alga	quatic mosse Il mats)			skip for \$ □F □G	Size 4 Coastal Plain str 5% oysters or other r Submerged aquatic v	natural hard bottoms
		⊠B	vegetat	tion	•		d/or emerge	nt :	Check for Tidal Marsh Streams Only		Low-tide refugia (poo Sand bottom	
		□C □D □E	5% und in bank		ks and/or the norm	root mat	ap trees) s and/or root d perimeter	ts ⁱ	Ohe Mai	∐K □K	5% vertical bank alor Little or no habitat	g the marsh
****	*****											**************************************
٠٠.		□Yes	Substra ⊠No								streams and Tidal Ma (Coastal Plain streams	•
		_	_	ed. Check				cu siiv	cam: (skip ioi v	Joustal Flam Streams)	
		⊠A □B □C	Riffle-ru Pool-gl	un section ide section	(evaluate (evaluate	11c) e 11d)	tric 12, Aqua	atic Li	ife)			
	11c.	at least of (R) = preshould no	one box esent but ot excee	t in each ro t <u><</u> 10%, C ed 100% fo	ow (skip f Common (0	f or Size 4 C) = > 10	4 Coastal Pla 0-40%, Abun	ain st	reams	and Tida	I Marsh Streams). Not	ner or not submerged. Check t Present (NP) = absent, Rare 0%. Cumulative percentages
		NP ⊠ ⊠ □	R □ □		A	P	Bedrock/sa Boulder (2 Cobble (64	. 56 – 4	4096 mi	m)		
							Gravel (2 - Sand (.062 Silt/clay (<	– 64 m 2 – 2 r	nm) mm)			
		$\overline{\boxtimes}$					Detritus Artificial (ri	p-rap,	, concre	,		
	11d.	□Yes	□No	Are pools	filled with	n sedimer	nt? (skip for	Size 4	4 Coas	tal Plain	streams and Tidal Ma	rsh Streams)

12.			sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. No Water Other:
	12b. 🛚	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
			Adult frogs Aquatic reptiles Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles Caddisfly larvae (T) Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
			Damselfly and dragonfly larvae Dipterans Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>) Other fish Salamanders/tadpoles Snails Stonefly larvae (P)
			Tipulid larvae Worms/leeches
13.	Conside	r for the	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	LB □A ⊠B □C	RB □A ⊠B □C	Little or no alteration to water storage capacity over a majority of the streamside area Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)
14.		r for the RB	Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted policy LB	er for the erimeter of RB	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
	⊠Y □N	□Y ⊠N	Are wetlands present in the streamside area?
16.		II contrib Streams Ponds (i Obstruct Evidence Stream I	outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) utors within the assessment reach or within view of and draining to the assessment reach. and/or springs (jurisdictional discharges) nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) of bank seepage or sweating (iron in water indicates seepage) bed or bank soil reduced (dig through deposited sediment if present) the above
17.	Baseflov Check a A B C C D D E S F	II that ap Evidenc Obstruct Urban st Evidenc Assessn	ors – assessment area metric (skip for Tidal Marsh Streams) ply. e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed) e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge the above
18.	Shading	- asses aspect. Stream : Degrade	sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees) shading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded
	LB RB LB RB
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB □ A □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22:
	Abuts < 30 feet 30-50 feet LB RB LB RB □A □A □A □A □A □A □B
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB A Medium to high stem density B B B Low stem density
	C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB
	 ☑A ☑A ☑B ☐B ☐C ☐C ☐C ☐C ☐D
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	□B ☑B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees.
	Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
	es/Sketch: ess sediment in channel and chinese privet present throughout buffer

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Banner Branch Mitigation	Date of Assessment	10-2-2019	
Stream Category	Pb2	Assessor Name/Organization	Kyle Obermiller/WLS	
Notes of Field Asses	sment Form (Y/N)		YES	
Presence of regulator	ory considerations (Y/N)		NO	
Additional stream inf	ormation/supplementary measu	rements included (Y/N)	NO	
NC SAM feature type	e (perennial, intermittent, Tidal I	Marsh Stream)	Perennial	

(poronnial, intermitterit, ridai waren Gudan)	1 010111110	<u>'</u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	MEDIUM	
(4) Microtopography	NA NA	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	MEDIUM	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
• ,		
(2) Longitudinal Tidal Flow	NA NA	
(2) Tidal Marsh Stream Stability	NA NA	
(3) Tidal Marsh Channel Stability	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	MEDIUM	
(3) Upland Pollutant Filtration	MEDIUM	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	MEDIUM	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	LOW	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	LOW	
(2) Stream-side Habitat	MEDIUM	
(3) Stream-side Habitat	MEDIUM	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone	NA NA	
Overall	LOW	

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

US	ACE AID :	#	7.000	NCDWR#	
		oject Nam	e Banner Branch	Date of Evaluation	10/2/2019
Ap	plicant/O	vner Nam	e Water & Land Solutions	Wetland Site Name	W1
	We	etland Typ	e Headwater Forest	Assessor Name/Organization	Emily Dunnigan/WLS
		Ecoregic		Nearest Named Water Body	Banner Branch
	ı	River Bas		USGS 8-Digit Catalogue Unit	03010103
		Coun		NCDWR Region	Winston-Salem
	☐ Ye	s 🛛 N	o Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.521738, -80.204754
Is t	ase circle ent past (f	and/or more instance of the consideration of the co	ree, within 10 years). Noteworthy stressor modifications (examples: ditches, dams, sub-surface discharges into the wetland (ground storage tanks (USTs), hog lagoon etation stress (examples: vegetation mor community alteration (examples: mowing a intensively managed? Actions - Were regulatory considerations of fish tected species or State endangered or the rian buffer rule in effect ary Nursery Area (PNA) and property of Coastal Management Area of Environ	is stressors is apparent. Consider departure fits include, but are not limited to the following. beaver dams, dikes, berms, ponds, etc.) examples: discharges containing obvious pollutes, etc.) tality, insect damage, disease, storm damage, g, clear-cutting, exotics, etc.) No evaluated? Yes No If Yes, check all the irreatened species mental Concern (AEC) (including buffer)	ntants, presence of nearby septic , salt intrusion, etc.)
	Abu Des Abu	its a strea signated N its a 303(supplemental classifications of HQW, ORW, o	or Trout
	Bla Bro Tida	ckwater wnwater al (if tidal,	check one of the following boxes)	Lunar Wind Both	
				duration substantially altered by beaver? uring normal rainfall conditions? Yes	☐ Yes ☑ No ☑ No
	Check a lassessme	box in ea ent area.		ssment area condition metric round surface (GS) in the assessment area an le (see User Manual). If a reference is not app	
	\boxtimes A	⊠A □B	sedimentation, fire-plow lanes, skidder t	ssessment area (ground surface alteration exa tracks, bedding, fill, soil compaction, obvious ance, herbicides, salt intrusion [where appropri ation)	pollutants) (vegetation structure
2.	Surface a	and Sub-	Surface Storage Capacity and Duration	n – assessment area condition metric	
	Consider deep is ex Surf	both incre cpected to Sub □A □B ⊠C	ease and decrease in hydrology. A ditch of affect both surface and sub-surface wat water storage capacity and duration are Water storage capacity or duration are al water storage capacity or duration are surface storage capacity or duration are surfaces.	pacity and duration (Surf) and sub-surface sto ≤ 1 foot deep is considered to affect surface er. Consider tidal flooding regime, if applicabl not altered. tered, but not substantially (typically, not sufficults substantially altered (typically, alteration sufficienction, filling, excessive sedimentation, underg	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change)
3.	Water Sto	orage/Su	rface Relief – assessment area/wetland	d type condition metric (skip for all marshe	es)
		_		age for the assessment area (AA) and the wetl	•
	AA			5	, , , , , , , , , , , , , , , , , , ,
	⊠c □D	□B ⊠C □D	Majority of wetland with depressions able Majority of wetland with depressions able Majority of wetland with depressions able Depressions able to pond water < 3 inches	e to pond water 6 inches to 1 foot deep e to pond water 3 to 6 inches deep es deep	
	□В	Evidence	that maximum depth of inundation is gre- that maximum depth of inundation is bet- that maximum depth of inundation is less	ween 1 and 2 feet	

	Make soil ob	c from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature, servations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional
	indicators. 4a. □A □B □C □D □D	Sandy soil Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features Loamy or clayey gleyed soil Histosol or histic epipedon
	4b.	Soil ribbon < 1 inch
	4c. ⊠A □B	No peat or muck presence A peat or muck presence
5.	Discharge ir	nto Wetland – opportunity metric
		in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples e discharges include presence of nearby septic tank, underground storage tank (UST), etc.
	⊠A ⊠A □B □E	
	□c □c	
6.	Land Use -	opportunity metric (skip for non-riparian wetlands)
	to assessme	at apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining nt area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M) miles and within the watershed draining to the assessment area (2M). 2M
	□A □A □B □E	A ☐A ≥ 10% impervious surfaces B ☐B Confined animal operations (or other local, concentrated source of pollutants
		D □D ≥ 20% coverage of agricultural land (regularly plowed land) E □E ≥ 20% coverage of maintained grass/herb
	Ġ Ġ	
7.	Wetland Act	ing as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands)
		ssment area within 50 feet of a tributary or other open water?
	⊠Yes Wetlan	No If Yes, continue to 7b. If No, skip to Metric 8. d buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland.
	Record	l a note if a portion of the buffer has been removed or disturbed.
		uch of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make udgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.) ≥ 50 feet
	□B □C □D	From 30 to < 50 feet From 15 to < 30 feet From 5 to < 15 feet
	☐E 7c. Tributa	< 5 feet <u>or</u> buffer bypassed by ditches ry width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
	⊠≤ 15	-feet wide □> 15-feet wide □ Other open water (no tributary present)
	7d. Do roof ⊠Yes	ts of assessment area vegetation extend into the bank of the tributary/open water? □No
		am or other open water sheltered or exposed?
	□Ехро	tered – adjacent open water with width < 2500 feet <u>and</u> no regular boat traffic. osed – adjacent open water with width ≥ 2500 feet <u>or</u> regular boat traffic.
8.		Ith at the Assessment Area – wetland type/wetland complex condition metric (evaluate WT for all marshes and loody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest
	Check a box	in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and complex at the assessment area (WC). See User Manual for WT and WC boundaries.
	$\square A \qquad \boxtimes A$	A ≥ 100 feet
		From 30 to < 40 feet

4. Soil Texture/Structure – assessment area condition metric (skip for all marshes)

9.	Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)
	Answer for assessment area dominant landform. \[\text{\te\
10.	Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)
	Consider recent deposition only (no plant growth since deposition). □ A Sediment deposition is not excessive, but at approximately natural levels. □ B Sediment deposition is excessive, but not overwhelming the wetland. □ C Sediment deposition is excessive and is overwhelming the wetland.
11.	Wetland Size – wetland type/wetland complex condition metric
	Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC FW (if applicable) A A A S 500 acres B B B From 100 to < 500 acres C C C From 50 to < 100 acres D D D From 25 to < 50 acres F F F F F F F F F F F F F F F F F F F
12.	Wetland Intactness – wetland type condition metric (evaluate for Pocosins only)
	□A Pocosin is the full extent (≥ 90%) of its natural landscape size.□B Pocosin type is < 90% of the full extent of its natural landscape size.
13.	Connectivity to Other Natural Areas – landscape condition metric
	13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide. Well Loosely A A ≥ 500 acres B B From 100 to < 500 acres
	□C □C From 50 to < 100 acres
	☑D ☐D From 10 to < 50 acres
	☐E ☐E < 10 acres ☐F ☐F Wetland type has a poor or no connection to other natural habitats
	i wettand type has a poor of no confidential habitats
	13b. Evaluate for marshes only. ☐ Yes ☐ No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.
14.	Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)
	May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C." □A 0 □B 1 to 4 □C 5 to 8
15.	Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)
	☐A Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
	 □B Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata. □C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non-
	characteristic species <u>or</u> at least one stratum inappropriately composed of a single species), <u>or</u> exotic species are dominant in at least one stratum.
16.	Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)
	 □A Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). □B Vegetation diversity is low or has > 10% to 50% cover of exotics. □C Vegetation is dominated by exotic species (> 50 % cover of exotics).

17.	Vegetative S	tructure -	- assessment area/wetland type condition metric		
	17a. Is vege ⊠Yes	tation pres ☐No	sent? If Yes, continue to 17b. If No, skip to Metric 18.		
	17b. Evalua ⊠A ∏B	≥ 25% (at coverage of assessment area vegetation for all mars coverage of vegetation coverage of vegetation	shes only. Skip to 17c for non-marsh wetlands.	
	structu	re in airsp	n each column for each stratum. Evaluate this portoace above the assessment area (AA) and the wetland		onside
	Canopy B□Ω C	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associanopy present, but opened more than natural gaps Canopy sparse or absent	ociated with natural processes	
	Mid-Story ⊠ B S	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent		
	Shrub □ B □ C	⊠A □B □C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent		
	ə □C B □B	⊠a □B □C	Dense herb layer Moderate density herb layer Herb layer sparse or absent		
18.	Snags - wet	land type	condition metric (skip for all marshes)		
	□A Larg		(more than one) are visible (> 12 inches DBH, or large rela	ative to species present and landscape stability).	
19.		ass Distri	bution – wetland type condition metric (skip for all ma	rshes)	
			nopy trees have stems > 6 inches in diameter at breast he	eight (DBH); many large trees (> 12 inches DBH) are	е
	_B . Maj		nopy trees have stems between 6 and 12 inches DBH, fernopy trees are < 6 inches DBH or no trees.	w are > 12 inch DBH.	
20.	Large Wood	y Debris -	- wetland type condition metric (skip for all marshes)		
		ge logs (m	bris and man-placed natural debris. nore than one) are visible (> 12 inches in diameter, or large	e relative to species present and landscape stability	') .
21.	Vegetation/C	pen Wate	er Dispersion – wetland type/open water condition me	tric (evaluate for Non-Tidal Freshwater Marsh or	nly)
			pest describes the amount of interspersion between vegended areas, while solid white areas indicate open water. ☐B ☐C	etation and open water in the growing season. Pa □D	itterned
	62				
22.			rity – assessment area condition metric (evaluate for r		
			hat may severely alter hydrologic connectivity include intel		ersion
			ver dams, and stream incision. Documentation required if <u>d</u> overland flow are not severely altered in the assessment		
	☐B Ove	erbank flow	w is severely altered in the assessment area.		
			ris severely altered in the assessment area. k <u>and</u> overland flow are severely altered in the assessmer	nt area.	

Notes

Used as an ag (row crop) field approximatly 10 years ago per landowner. Veg herb dominated. Original stream ditched to both sides of field. Berms and ditches keep water from surrounding drainage area from entering wetland.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

	<u>V1</u> Headwater Forest <i>A</i>	Date of Assessment 10/2/2 Assessor Name/Organization Emily	Dunnigan/WLS			
		<u> </u>				
Notes on Field Assessn	· ·		YES			
Presence of regulatory			NO			
Wetland is intensively n			NO YES			
	ssessment area is located within 50 feet of a natural tributary or other open water (Y/N)					
	ostantially altered by beaver (Y/N)		NO			
•	riences overbank flooding during norm	al rainfall conditions (Y/N)	NO			
Assessment area is on	a coastal island (Y/N)		NO			
Sub-function Rating Su	ımmary					
Function	Sub-function	Metrics	Rating			
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW			
	Retention	Condition	LOW			
Water Quality	Pathogen Change	Condition	LOW			
		Condition/Opportunity	LOW			
		Opportunity Presence (Y/N)	NO			
	Particulate Change	Condition	LOW			
		Condition/Opportunity	NA			
		Opportunity Presence (Y/N)	NA			
	Soluble Change	Condition	LOW			
		Condition/Opportunity	LOW			
		Opportunity Presence (Y/N)	NO			
	Physical Change	Condition	LOW			
		Condition/Opportunity	LOW			
		Opportunity Presence (Y/N)	NO			
	Pollution Change	Condition	NA			
		Condition/Opportunity	NA			
		Opportunity Presence (Y/N)	NA			
Habitat	Physical Structure	Condition	LOW			
	Landscape Patch Structure	Condition	HIGH			
	Vegetation Composition	Condition	LOW			
unction Rating Summ	arv					
Function		Metrics	Rating			
Hydrology		Condition	LOW			
Water Quality		Condition	LOW			
		Condition/Opportunity	LOW			
		Opportunity Presence (Y/N)	NO			
Habitat		Condition	LOW			

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

110	NACE AID "		Accompanies	NODWO#	1
US	SACE AID #			NCDWR#	10/0/0010
		ect Name		Date of Evaluation	10/2/2019
Α	pplicant/Own			Wetland Site Name	W2
		and Type		Assessor Name/Organization	Emily Dunnigan/WLS
	Level III E	coregion	Piedmont	Nearest Named Water Body	Banner Branch
1		ver Basir		USGS 8-Digit Catalogue Unit	03010103
		County		NCDWR Region	Winston-Salem
	☐ Yes	⊠ No		Latitude/Longitude (deci-degrees)	36.528865, -80.200732
	<u> </u>		•		
Ple red	ease circle and cent past (for Hydro Surfactanks, Signs Habitathe assessmann Pegulatory Co Anadi Feder NCDV Abuts	nd/or mare instance ological nace and so undergo of vegerat/plant of the instance on sidera fromous frally proto WR ripars a Prima	e, within 10 years). Noteworthy stressors in odifications (examples: ditches, dams, bub-surface discharges into the wetland (exround storage tanks (USTs), hog lagoons, tation stress (examples: vegetation morta community alteration (examples: mowing, a intensively managed? Yes tions - Were regulatory considerations ev	stressors is apparent. Consider departure finclude, but are not limited to the following. eaver dams, dikes, berms, ponds, etc.) camples: discharges containing obvious polluetc.) lity, insect damage, disease, storm damage clear-cutting, exotics, etc.) No ho	ntants, presence of nearby septic , salt intrusion, etc.)
	N.C. [Abuts Desig	Division of a stream	of Coastal Management Area of Environm	upplemental classifications of HQW, ORW, or	or Trout
W	nat type of n	atural s	tream is associated with the wetland, if	f any? (check all that apply)	
		water		- Tr 77	
		nwater			
	Tidal	(if tidal, o	check one of the following boxes)	unar 🗌 Wind 🔲 Both	
_					
IS	tne assessn	nent are	a on a coastal island? 🔲 Yes 🖂	NO .	
ls	the assessn	nent are	a's surface water storage canacity or d	uration substantially altered by beaver?	☐ Yes ☒ No
				ing normal rainfall conditions?	-
טט		Juanice	area experience overbank moouring dur	ing normal raiman conditions? Tes	
1.	Ground Su	rface Co	ondition/Vegetation Condition – assess	ment area condition metric	
	Check a bo	x in eac	ch column. Consider alteration to the group	und surface (GS) in the assessment area ar	nd vegetation structure (VS) in the
				(see User Manual). If a reference is not app	
			ence an effect.	(a serior of the tappe	and a document
	GS VS				
	⊠A ⊠		Not severely altered		
	B D			essment area (ground surface alteration exa	imples: vehicle tracks, excessive
				acks, bedding, fill, soil compaction, obvious	
				ce, herbicides, salt intrusion [where appropr	
			liversity [if appropriate], hydrologic alteration		
2.	Surface on			·	
۷.			urface Storage Capacity and Duration -		
	Consider bo	oth increa ected to	ase and decrease in hydrology. A ditch ≤	acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface Consider tidal flooding regime, if applicable	water only, while a ditch > 1 foot
	⊠A ⊠		Nater storage capacity and duration are no	ot altered.	
	□в □			ered, but not substantially (typically, not suffice	cient to change vegetation).
	□c □]C V	Vater storage capacity or duration are sub	stantially altered (typically, alteration sufficient	ent to result in vegetation change)
		(examples: draining, flooding, soil compact	tion, filling, excessive sedimentation, underg	round utility lines).
2	Water Ster				
3.		_		type condition metric (skip for all marshe	
			en column. Select the appropriate storage	e for the assessment area (AA) and the wetl	and type (W Γ).
	AA W		Astanta africal and old the control of the	a mand water. A dans	
	3a.		Majority of wetland with depressions able to		
	⊠B	^ID \	viaionity or wetiand with debressions able t	o pond water 6 inches to 1 foot deep	
				a pand water 2 to 6 inches door	
	□c [□C N	Majority of wetland with depressions able to		
	□c [□C N			
	☐C ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	□C N □D D /idence t	Majority of wetland with depressions able to	s deep er than 2 feet	

4.	Soil Texture/Structure – assessment area condition metric (skip for all marshes)
	Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regions indicators. 4a. A Sandy soil B Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
	 ☑B Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) ☐C Loamy or clayey soils not exhibiting redoximorphic features ☐D Loamy or clayey gleyed soil ☐E Histosol or histic epipedon
	4b. □A Soil ribbon < 1 inch □B Soil ribbon ≥ 1 inch
	4c. ☑A No peat or muck presence ☐B A peat or muck presence
5.	Discharge into Wetland – opportunity metric
	Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Example of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Surf Sub
	 ☑A ☑B
	C Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)
6.	Land Use – opportunity metric (skip for non-riparian wetlands)
	Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources drainin to assessment area within entire upstream watershed (WS), within 5 miles <u>and</u> within the watershed draining to the assessment area (5M and within 2 miles and within the watershed draining to the assessment area (2M). WS 5M 2M
	 □A □B
	⊠C ⊠C ≥ 20% coverage of pasture
	 □D □D ≥ 20% coverage of agricultural land (regularly plowed land) □E □E ≥ 20% coverage of maintained grass/herb
	□F □F ≥ 20% coverage of clear-cut land
	☐G ☐G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.
7.	Wetland Acting as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands)
	7a. Is assessment area within 50 feet of a tributary or other open water? ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.
	Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland
	Record a note if a portion of the buffer has been removed or disturbed. 7b. How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Mak buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
	⊠A ≥ 50 feet
	☐B From 30 to < 50 feet ☐C From 15 to < 30 feet
	☐D From 5 to < 15 feet ☐E < 5 feet or buffer bypassed by ditches
	7c. Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
	 ⊠≤ 15-feet wide
	⊠Yes □No
	7e. Is stream or other open water sheltered or exposed? ☐Sheltered – adjacent open water with width < 2500 feet <u>and</u> no regular boat traffic.
	□Exposed – adjacent open water with width ≥ 2500 feet or regular boat traffic.
8.	Wetland Width at the Assessment Area – wetland type/wetland complex condition metric (evaluate WT for all marshes and Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)
	Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT WC
	□A □A ≥ 100 feet
	□B ⊠B From 80 to < 100 feet
	□D □D From 40 to < 50 feet
	□E □E From 30 to < 40 feet □E From 15 to < 30 feet
	☐F☐FFrom 15 to < 30 feet☐G☐GFrom 5 to < 15 feet
	□H □H < 5 feet

9.	Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)
	Answer for assessment area dominant landform. Answer for assessment area dominant landform. Evidence of short-duration inundation (< 7 consecutive days) Evidence of saturation, without evidence of inundation Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)
10.	Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)
	Consider recent deposition only (no plant growth since deposition). A Sediment deposition is not excessive, but at approximately natural levels. B Sediment deposition is excessive, but not overwhelming the wetland. C Sediment deposition is excessive and is overwhelming the wetland.
11.	Wetland Size – wetland type/wetland complex condition metric
	Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC FW (if applicable) A A A S 500 acres B B B From 100 to < 500 acres C C C From 50 to < 100 acres D D D From 25 to < 50 acres F From 10 to < 25 acres F F From 5 to < 10 acres G G G From 1 to < 5 acres H A H A H A From 0.5 to < 1 acre I I From 0.1 to < 0.5 acre J J J From 0.01 to < 0.1 acre K K K K K K K C N.01 acre or assessment area is clear-cut
12.	Wetland Intactness – wetland type condition metric (evaluate for Pocosins only)
	□A Pocosin is the full extent (≥ 90%) of its natural landscape size. □B Pocosin type is < 90% of the full extent of its natural landscape size.
40	Connectivity to Other Natural Areas – landscape condition metric
	 13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide. Well Loosely
4.4	· · · · · · · · · · · · · · · · · · ·
14.	Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland) May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C." □ A 0 □ B 1 to 4 □ C 5 to 8
15.	Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)
	 □A Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area. □B Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata. □C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non-characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.
16.	Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)
	 □A Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). □B Vegetation diversity is low or has > 10% to 50% cover of exotics. □C Vegetation is dominated by exotic species (> 50 % cover of exotics).

17	Vene	tative St	ructure –	assessment area/wetland type condition metric
.,.		Is vegeta	ation pres	
	17b.	Evaluate ⊠A ⊟B	≥ 25% c	coverage of assessment area vegetation for all marshes only . Skip to 17c for non-marsh wetlands. overage of vegetation overage of vegetation
	17c.			each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider ace above the assessment area (AA) and the wetland type (WT) separately.
		B □C	□A ⊠B □C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
	Mid-Story	□A ⊠B □C	□A ⊠B □C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
	Shrub	B □A B □C	□A ⊠B □C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
	Herb	A □B □C	⊠a □B □C	Dense herb layer Moderate density herb layer Herb layer sparse or absent
18.	Snag	js – wetla	and type o	condition metric (skip for all marshes)
	□A ⊠B	Large Not A		more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
19.				ution – wetland type condition metric (skip for all marshes)
	ПА	Majo pres	-	nopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are
	⊠B □C	Majo	rity of can	nopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH. nopy trees are < 6 inches DBH or no trees.
20.	Larg	e Woody	Debris -	wetland type condition metric (skip for all marshes)
	Includ □A ⊠B		e logs (mo	oris and man-placed natural debris. Dre than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
21.	Vege	tation/O	pen Wate	r Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)
				est describes the amount of interspersion between vegetation and open water in the growing season. Patterned dareas, while solid white areas indicate open water.
	arout	maioato	□A	
22.	-	-		ty – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)
	Exam	nples of a	ctivities th	at may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, er dams, and stream incision. Documentation required if evaluated as B, C, or D.
	\boxtimes A	Over	bank <u>and</u>	overland flow are not severely altered in the assessment area.
	□B □C			is severely altered in the assessment area. is severely altered in the assessment area.
	□Ď			and overland flow are severely altered in the assessment area.

Notes

stream backed up at culvert, formerly used as irrigation pond. Exotics in herb layer.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site NameV			/2019
Wetland Type _ F	Riverine Swamp Forest	Assessor Name/Organization Emil	y Dunnigan/WLS
Notes on Field Assessn	nent Form (Y/N)		YES
Presence of regulatory	considerations (Y/N)		NO
Wetland is intensively n	nanaged (Y/N)		NO
Assessment area is loc	ated within 50 feet of a natural tributa	ry or other open water (Y/N)	YES
Assessment area is sub	stantially altered by beaver (Y/N)		NO
Assessment area exper	iences overbank flooding during norr	nal rainfall conditions (Y/N)	NO
Assessment area is on	a coastal island (Y/N)		NO
Sub-function Rating Su	mmary		
Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	HIGH
	Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
	Particulate Change	Condition	MEDIUM
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
	Physical Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	MEDIUM
	Landscape Patch Structure	Condition	HIGH
	Vegetation Composition	Condition	MEDIUM
unction Rating Summ	ary		
Function		Metrics	Rating
Hydrology		Condition	HIGH
Water Quality		Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
Habitat		Condition	HIGH

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

LICACE AID #	Accompanies	NCDMD#	1
USACE AID #	Downey Drey -1-	NCDWR#	10/0/0010
Project Name		Date of Evaluation	10/2/2019
Applicant/Owner Name		Wetland Site Name	W3
Wetland Type		Assessor Name/Organization	Emily Dunnigan/WLS
Level III Ecoregion		Nearest Named Water Body	Banner Branch
River Basir		USGS 8-Digit Catalogue Unit	03010103
Count		NCDWR Region	Winston-Salem
☐ Yes ☒ No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.525408, -80.208639
Please circle and/or ma		ot be within the assessment area) tressors is apparent. Consider departure functioned, but are not limited to the following.	from reference, if appropriate, in
	nodifications (examples: ditches, dams, b		
		amples: discharges containing obvious pollu	utants, presence of nearby septic
	round storage tanks (USTs), hog lagoons,		,
		lity, insect damage, disease, storm damage	, salt intrusion, etc.)
Habitat/plant of	community alteration (examples: mowing,	clear-cutting, exotics, etc.)	, ,
•		-	
is the assessment are	a intensively managed? Yes	No	
Regulatory Considera	tions - Were regulatory considerations ev	aluated? ⊠Yes □No If Yes, check all tha	at apply to the assessment area
Anadromous f	fish		a apply to the assessment area.
Federally prot	ected species or State endangered or thre	atened species	
□ NCDWR ripar	ian buffer rule in effect		
Abuts a Prima	ary Nursery Area (PNA)		
☐ Publicly owne			
N.C. Division	of Coastal Management Area of Environm		
Abuts a stream		upplemental classifications of HQW, ORW, o	or I rout
	CNHP reference community	to Later and	
Abuts a 303(d	l)-listed stream or a tributary to a 303(d)-lis	sted stream	
What type of natural s	tream is associated with the wetland, if	any? (check all that apply)	
Blackwater			
	check one of the following boxes)	unar 🗌 Wind 🔲 Both	
Tidal (if tidal, o			
Tidal (if tidal, or list the assessment are	a on a coastal island?	No —	
Is the assessment are	a on a coastal island? Yes I Yes I A A A A A A A A A	No uration substantially altered by beaver?	☐ Yes ⊠ No
Is the assessment are	a on a coastal island? Yes I Yes I A A A A A A A A A	No —	
Is the assessment are Is the assessment are Does the assessment	a on a coastal island? ☐ Yes ☒ ☐ a's surface water storage capacity or d area experience overbank flooding dur	No uration substantially altered by beaver? ing normal rainfall conditions? Yes	
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co	a on a coastal island?	No uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric	No
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co	a on a coastal island? Yes I a's surface water storage capacity or darea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar	No No No No No No No No No No No No No N
Is the assessment are Is the assessment are Does the assessment Ground Surface Co Check a box in eac assessment area.	a on a coastal island? Yes I a's surface water storage capacity or darea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable	No uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric	No No No No No No No No No No No No No N
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co Check a box in eac assessment area. C area based on evide	a on a coastal island? Yes I a's surface water storage capacity or darea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar	No No No No No No No No No No No No No N
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co Check a box in eac assessment area. C area based on evide GS VS	a on a coastal island? Yes I a's surface water storage capacity or darea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable ence an effect.	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar	No No No No No No No No No No No No No N
☐ Tidal (if tidal, of Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Concheck a box in each assessment area. Of area based on evidence GS VS ☐ A ☐ A	a on a coastal island? Yes I a's surface water storage capacity or darea experience overbank flooding durondition/Vegetation Condition – assess th column. Consider alteration to the group compare to reference wetland if applicable ence an effect.	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app	No No vegetation structure (VS) in the plicable, then rate the assessment
☐ Tidal (if tidal, of Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Concheck a box in each assessment area. Of area based on evidence GS VS ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	a on a coastal island? Yes I a's surface water storage capacity or diarea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assess.	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app	No nd vegetation structure (VS) in the blicable, then rate the assessment amples: vehicle tracks, excessive
☐ Tidal (if tidal, of Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Concheck a box in each assessment area. Of area based on evidence GS VS ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	a on a coastal island? Yes I a's surface water storage capacity or diarea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the asses the column of the group compared over a majority of the asses the column of t	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app	No Individual vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
☐ Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Concept Amount of Check a box in each assessment area. Of area based on evidence GS VS ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	a on a coastal island? Yes I a's surface water storage capacity or desire a experience overbank flooding dure condition/Vegetation Condition – assess the column. Consider alteration to the grown compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assess the column of the grown of the column of th	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not appearance is not appearance in the surface alteration examples in the surface alteration examples in the surface alteration examples.	No Individual vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
☐ Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Concept Check a box in each assessment area. Of area based on evide GS VS ☐ A ☐ A ☐ A ☐ B ☐ B ☐ B ☐ B ☐ B ☐ B ☐ B	a on a coastal island? Yes I a's surface water storage capacity or dearea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assess the column of the co	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion)	No Individual vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
☐ Tidal (if tidal, of Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Concheck a box in each assessment area. Of area based on evidence GS VS □ A □ A □ A □ A □ B □ B □ B □ S □ B □ B □ S □ B □ S □ S	a on a coastal island? Yes I a's surface water storage capacity or diversity of area experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered over a majority of the assest the column of the column o	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric	No nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Concept a box in each assessment area. Of area based on evide GS VS SA SA SA SA SA SA SA SA SA SA SA SA SA	a on a coastal island? Yes I a's surface water storage capacity or diversity of area experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered over a majority of the assessed mentation, fire-plow lanes, skidder tradition examples: mechanical disturbantiversity [if appropriate], hydrologic alteration curface Storage Capacity and Duration - the column. Consider surface storage capacity and capacity capacity and capacity	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto	No nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub).
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Concept a box in each assessment area. Of area based on evide GS VS SA SA SA SA SA SA SA SA SA SA SA SA SA	a on a coastal island? Yes Area as surface water storage capacity or dearea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the grown compare to reference wetland if applicable ence an effect. Not severely altered over a majority of the assest the column of the column of the column of the column of the column of the column. Consider surface storage capacity and Duration – the column. Consider surface storage capacity and decrease in hydrology. A ditch	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface stated to affect surface	No Indiversely No Indiversel
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Concept a box in each assessment area. Of area based on evide GS VS SA SA SA SA SA SA SA SA SA SA SA SA SA	a on a coastal island? Yes Area as surface water storage capacity or dearea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the grown compare to reference wetland if applicable ence an effect. Not severely altered over a majority of the assest the column of the column of the column of the column of the column of the column. Consider surface storage capacity and Duration – the column. Consider surface storage capacity and decrease in hydrology. A ditch	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto	No Indiversely No Indiversel
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Contect a box in each assessment area. On area based on evidence of Sont Sont Sont Sont Sont Sont Sont Sont	a's surface water storage capacity or diarea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest the column in the properties of the column in the column in the column in the column in the column in the column in the column. Consider surface storage capacity and Duration in the column. Consider surface storage capacity and decrease in hydrology. A ditch saffect both surface and sub-surface water	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface Consider tidal flooding regime, if applicab	No Indiversely No Indiversel
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Contect a box in each assessment area. On area based on evided GS VS SA SA SA SA SA SA SA SA SA SA SA SA SA	a's surface water storage capacity or diversity of the assess chapter and the compared overland if applicable ence an effect. Not severely altered Severely altered over a majority of the assess chapter attended in a majority of the assess chapter and in a majority of the assess chapte	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface Consider tidal flooding regime, if applicab ot altered.	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It water only, while a ditch > 1 foot le.
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Concheck a box in each assessment area. On area based on evidence of Sonatory VS	a's surface water storage capacity or diarea experience overbank flooding durondition/Vegetation Condition – assess th column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest the column of the group compared over a majority of the assest the column of t	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sta at 1 foot deep is considered to affect surface acity and duration (Surf) and sub-surface sta at 1 foot deep is considered to affect surface acity and duration (Surf) and sub-surface sta at 1 foot deep is considered to affect surface acity and sub-surface sta at 1 foot deep is considered to affect surface acity and sub-surface sta at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It water only, while a ditch > 1 foot le.
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Concheck a box in each assessment area. On area based on evidence of Surface and Sub-Surface and Sub-Sub-Surface and Sub-Sub-Surface and Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-	a's surface water storage capacity or diarea experience overbank flooding durondition/Vegetation Condition – assess th column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest the column of the group alteration, fire-plow lanes, skidder traditeration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration furface Storage Capacity and Duration – the column. Consider surface storage capacity and decrease in hydrology. A ditch saffect both surface and sub-surface water water storage capacity and duration are now water storage capacity or duration are altered to the surface capacity or duration are sub-water storage uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (surf)	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It water only, while a ditch > 1 foot le.	
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Concheck a box in each assessment area. On area based on evidence of Surface and Sub-Surface and Sub-Sub-Surface and Sub-Sub-Surface and Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-	a's surface water storage capacity or diarea experience overbank flooding durondition/Vegetation Condition – assess th column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest the column of the group alteration, fire-plow lanes, skidder traditeration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration furface Storage Capacity and Duration – the column. Consider surface storage capacity and decrease in hydrology. A ditch saffect both surface and sub-surface water water storage capacity and duration are now water storage capacity or duration are altered to the surface capacity or duration are sub-water storage uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sta at 1 foot deep is considered to affect surface acity and duration (Surf) and sub-surface sta at 1 foot deep is considered to affect surface acity and duration (Surf) and sub-surface sta at 1 foot deep is considered to affect surface acity and sub-surface sta at 1 foot deep is considered to affect surface acity and sub-surface sta at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface at 1 foot deep is considered to affect surface	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It water only, while a ditch > 1 foot le.	
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Consider both incredeep is expected to Surface and Sub-Sample	a's surface water storage capacity or diversity. Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest diversity [if appropriate], hydrologic alteration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration ence and decrease in hydrology. A ditch safet storage capacity and duration are not water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are sub examples: draining, flooding, soil compact	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (surf)	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). The period of the control of the co
Tidal (if tidal, of Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Concept a box in each assessment area. On a carea based on evidence of Surface and Sub-Surface and Sub	a's surface water storage capacity or diarea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest edimentation, fire-plow lanes, skidder traditeration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration the column. Consider surface storage capacity and Duration – the column. Consider surface storage capacity and decrease in hydrology. A ditch saffect both surface and sub-surface water water storage capacity or duration are not water storage capacity or duration are altered water storage capacity or duration are sub examples: draining, flooding, soil compact face Relief – assessment area/wetland to	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and duration sub-surface sto acity and duration (surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and duration sub-surface sto acity and	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Concheck a box in each assessment area. On a carea based on evidence of the consider both increduce of the consider both increduced of the consider both increduced of the consider both increduced of the consider both increduced of the consider both increduced of the consideration of the considerati	a's surface water storage capacity or diarea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest dimentation, fire-plow lanes, skidder traditeration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration the column. Consider surface storage capacity and Duration – the column. Consider surface storage capacity and duration are nowner storage capacity or duration are nowner storage capacity or duration are altered at the storage capacity or duration are altered at the storage capacity or duration are subject to the surface and sub-surface water storage capacity or duration are altered at the storage capacity or duration are subject to the surface and sub-surface water storage capacity or duration are altered at the storage capacity or duration are subject to the surface and sub-surface water storage capacity or duration are altered at the column. Select the appropriate storage the column.	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and the substantially (typically, not sufficient sufficient to substantially altered (typically, alteration sufficient to, filling, excessive sedimentation, undergous expectation metric (skip for all marshese for the assessment area (AA) and the wether	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Tidal (if tidal, of Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Contect a box in each assessment area. On a read based on evidence of Solution	a's surface water storage capacity or diversity. Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest diversity [if appropriate], hydrologic alteration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration examples and decrease in hydrology. A ditch safect both surface and sub-surface water water storage capacity and duration are not water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are sub-examples: draining, flooding, soil compact face Relief – assessment area/wetland to the column. Select the appropriate storage water waterity of wetland with depressions able to water to water of wetland with depressions able to water to water of wetland with depressions able to water to water of wetland with depressions able to water to water of wetland with depressions able to water or water of wetland with depressions able to water or water or water or water or water or water storage capacity or duration are sub-examples: draining, flooding, soil compact of the column. Select the appropriate storage water water or wate	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and duration (surf) and sub-surface sto acity and trial flooding regime, if applicab out altered. Ted, but not substantially (typically, not sufficient substantially altered (typically, alteration sufficient substantially altered (typically, alteration, undergout supplementation, undergout supplementation metric (skip for all marshese for the assessment area (AA) and the wetter pond water > 1 deep	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Tidal (if tidal, of ls the assessment are ls the assessment are Does the assessment 1. Ground Surface Concert a box in each assessment area. On a carea based on evided GS VS SAA AAA AAAAAAAAAAAAAAAAAAAAAAAAA	a's surface water storage capacity or diversity. Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest diversity [if appropriate], hydrologic alteration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration examples and decrease in hydrology. A ditch safect both surface and sub-surface water water storage capacity and duration are now water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are sub-examples: draining, flooding, soil compact face Relief – assessment area/wetland in the column. Select the appropriate storage water waterity of wetland with depressions able to wajority of wetland with d	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface storated to affect surface. Consider tidal flooding regime, if applicab out altered. red, but not substantially (typically, not sufficient sufficient stantially altered (typically, alteration sufficient suffic	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Tidal (if tidal, of Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Contect a box in each assessment area. On a carea based on evided GS VS SAA AAA AAAAAAAAAAAAAAAAAAAAAAAAA	a's surface water storage capacity or diversity. Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest diversity [if appropriate], hydrologic alteration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration examples and duration ence and decrease in hydrology. A ditch safect both surface and sub-surface water Nater storage capacity and duration are altered by the storage capacity or duration are altered by the storage capacity or duration are altered by the storage capacity or duration are altered by the surface water of the column. Select the appropriate storage capacity or duration are altered by the surface water of the column. Select the appropriate storage capacity or duration are sub-examples: draining, flooding, soil compact of the column. Select the appropriate storage capacity of wetland with depressions able to diagority of wetland with depressions able to diagori	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and trial flooding regime, if applicab obtailtered. Ted, but not substantially (typically, not sufficient sufficient in the substantially altered (typically, alteration sufficient in filling, excessive sedimentation, undergous expectation metric (skip for all marshed for the assessment area (AA) and the wetter pond water > 1 deep to pond water > 1 deep to pond water 3 to 6 inches deep	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Tidal (if tidal, of Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Contect a box in each assessment area. Of area based on evided GS VS SA A A A A A A A A A A A A A A A A	a's surface water storage capacity or diversity. Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest diversity [if appropriate], hydrologic alteration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration examples and decrease in hydrology. A ditch safect both surface and sub-surface water water storage capacity and duration are now water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are sub-examples: draining, flooding, soil compact face Relief – assessment area/wetland in the column. Select the appropriate storage water waterity of wetland with depressions able to wajority of wetland with d	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and duration (Surf) and sub-surface sto acity and trial flooding regime, if applicab obtailtered. Ted, but not substantially (typically, not sufficient sufficient in the substantially altered (typically, alteration sufficient in filling, excessive sedimentation, undergous expectation metric (skip for all marshed for the assessment area (AA) and the wetter pond water > 1 deep to pond water > 1 deep to pond water 3 to 6 inches deep	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Tidal (if tidal, of Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Concheck a box in each assessment area. On a rea based on evidence of Surface and Sub-Surface and Sub-Sub-Surface and Sub-Sub-Surface and Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-	a's surface water storage capacity or diarea experience overbank flooding durondition/Vegetation Condition – assess the column. Consider alteration to the group compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest the column. General majority of the assest dimentation, fire-plow lanes, skidder translateration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration the column. Consider surface storage capacity and Duration – the column. Consider surface storage capacity and duration are not water storage capacity or duration are altered both surface and sub-surface water water storage capacity or duration are altered by the column. Select the appropriate storage capacity of duration are subject to the appropriate storage. Majority of wetland with depressions able to depressions able to depressions able to depressions able to perform the column are subjected by the column with depressions able to depressions able to depressions able to depressions able to depressions able to depressions able to depressions able to depressions able to pond water < 3 inches	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface sta acity and duration (Surf) and sub-surface acity and duration (Surf) and sub-surface acity and duration (Surf) and sub-surface acity and duration (Surf) and sub-surface acity and duration (Surf) and sub-surface acity and duration (Surf) and sub-surface acity and surface alteration exact acity and surface alteration exact acity and surface alteration exact acity and surface alteration exact acity and surface alteration exact acity and surface alteration exact acity and surface alteration exact acity and surface alteration exact aci	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change (pround utility lines).
Tidal (if tidal, of Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Concheck a box in each assessment area. On a carea based on evidence of Surface and Sub-Surface and Sub-Sub-Surface and Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-	a's surface water storage capacity or diversity. Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest diversity [if appropriate], hydrologic alteration examples: mechanical disturbant diversity [if appropriate], hydrologic alteration examples and duration ence and decrease in hydrology. A ditch safect both surface and sub-surface water Nater storage capacity and duration are altered by the storage capacity or duration are altered by the storage capacity or duration are altered by the storage capacity or duration are altered by the surface water of the column. Select the appropriate storage capacity or duration are altered by the surface water of the column. Select the appropriate storage capacity or duration are sub-examples: draining, flooding, soil compact of the column. Select the appropriate storage capacity of wetland with depressions able to diagority of wetland with depressions able to diagori	uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto at 1 foot deep is considered to affect surface consider tidal flooding regime, if applicab out altered. red, but not substantially (typically, not sufficient istantially altered (typically, alteration sufficient istantially altered (typically, alteration, undergous) representation metric (skip for all marshed for the assessment area (AA) and the wetled to pond water > 1 deep to pond water > 1 deep to pond water 3 to 6 inches deep to pond water 3 to 6 inches deep to pond water 3 to 6 inches deep to port than 2 feet	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change (pround utility lines).

	Make soil ob	c from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature, servations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional
	indicators. 4a. □A □B □C □D □D	Sandy soil Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features Loamy or clayey gleyed soil Histosol or histic epipedon
	4b.	Soil ribbon < 1 inch
	4c. ⊠A □B	No peat or muck presence A peat or muck presence
5.	Discharge ir	nto Wetland – opportunity metric
		in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples e discharges include presence of nearby septic tank, underground storage tank (UST), etc.
	⊠A ⊠A □B □E	
	□c □c	
6.	Land Use -	opportunity metric (skip for non-riparian wetlands)
	to assessme	at apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining nt area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M) miles and within the watershed draining to the assessment area (2M). 2M
	□A □A □B □E	A ☐A ≥ 10% impervious surfaces B ☐B Confined animal operations (or other local, concentrated source of pollutants
		D □D ≥ 20% coverage of agricultural land (regularly plowed land) E □E ≥ 20% coverage of maintained grass/herb
	Ġ Ġ	
7.	Wetland Act	ing as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands)
		ssment area within 50 feet of a tributary or other open water?
	⊠Yes Wetlan	No If Yes, continue to 7b. If No, skip to Metric 8. d buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland.
	Record	l a note if a portion of the buffer has been removed or disturbed.
		uch of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make udgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.) ≥ 50 feet
	□B □C □D	From 30 to < 50 feet From 15 to < 30 feet From 5 to < 15 feet
	☐E 7c. Tributa	< 5 feet <u>or</u> buffer bypassed by ditches ry width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
	⊠≤ 15	-feet wide □> 15-feet wide □ Other open water (no tributary present)
	7d. Do roof ⊠Yes	ts of assessment area vegetation extend into the bank of the tributary/open water? □No
		am or other open water sheltered or exposed?
	□Ехро	tered – adjacent open water with width < 2500 feet <u>and</u> no regular boat traffic. osed – adjacent open water with width ≥ 2500 feet <u>or</u> regular boat traffic.
8.		Ith at the Assessment Area – wetland type/wetland complex condition metric (evaluate WT for all marshes and loody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest
	Check a box	in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and complex at the assessment area (WC). See User Manual for WT and WC boundaries.
	$\square A \qquad \boxtimes A$	A ≥ 100 feet
		From 30 to < 40 feet

4. Soil Texture/Structure – assessment area condition metric (skip for all marshes)

9.	Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)
	Answer for assessment area dominant landform. Answer for assessment area dominant landform. Evidence of short-duration inundation (< 7 consecutive days) Evidence of saturation, without evidence of inundation Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)
10.	Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)
	Consider recent deposition only (no plant growth since deposition). □ A Sediment deposition is not excessive, but at approximately natural levels. □ B Sediment deposition is excessive, but not overwhelming the wetland. □ C Sediment deposition is excessive and is overwhelming the wetland.
11.	Wetland Size – wetland type/wetland complex condition metric
	Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC FW (if applicable) A A A Soo acres B B From 100 to < 500 acres C C C From 50 to < 100 acres D D D From 25 to < 50 acres E E From 10 to < 25 acres F F F From 5 to < 10 acres G G G G From 1 to < 5 acres H H H From 0.5 to < 1 acre I D D T From 0.1 to < 0.5 acre J D D T From 0.01 to < 0.1 acre K C C C C C C C C C C C C C C C C C C C
12.	Wetland Intactness – wetland type condition metric (evaluate for Pocosins only)
	 □A Pocosin is the full extent (≥ 90%) of its natural landscape size. □B Pocosin type is < 90% of the full extent of its natural landscape size.
12	Connectivity to Other Natural Areas – landscape condition metric
	13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide. Well Loosely A A ≥ 500 acres B B From 100 to < 500 acres C C From 50 to < 100 acres D D D From 10 to < 50 acres E SE < 10 acres F Wetland type has a poor or no connection to other natural habitats 13b. Evaluate for marshes only.
	Yes No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.
14.	Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland) May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C." □ A 0 □ B 1 to 4 □ C 5 to 8
15.	Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)
	 □A Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area. □B Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata. □C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non-characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.
16.	Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)
	 □A Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). □B Vegetation diversity is low or has > 10% to 50% cover of exotics. □C Vegetation is dominated by exotic species (> 50 % cover of exotics).

17.	Vegetative Structure – assessment area/wetland type condition metric
	17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
	17b. Evaluate percent coverage of assessment area vegetation for all marshes only . Skip to 17c for non-marsh wetlands. □A ≥ 25% coverage of vegetation □B < 25% coverage of vegetation
	17c. Check a box in each column for each stratum . Evaluate this portion of the metric for non-marsh wetlands . Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.
	AA WT ☐ □ A Canopy closed, or nearly closed, with natural gaps associated with natural processes ☐ □ B □ B Canopy present, but opened more than natural gaps □ □ □ C Canopy sparse or absent
	Dense mid-story/sapling layer □ □ B □ B Moderate density mid-story/sapling layer □ □ □ C
	☐ ☐ A ☐ Dense shrub layer☐ ☐ B ☐ B Moderate density shrub layer☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
	후 점 점 Dense herb layer 후 데B 데B Moderate density herb layer 데C 데C Herb layer sparse or absent
18.	Snags – wetland type condition metric (skip for all marshes)
	□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).□B Not A
19.	Diameter Class Distribution – wetland type condition metric (skip for all marshes)
	Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are
	present. □ Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH. □ Majority of canopy trees are < 6 inches DBH or no trees.
20.	Large Woody Debris – wetland type condition metric (skip for all marshes)
	Include both natural debris and man-placed natural debris. ☐A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ☐B Not A
21.	Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)
	Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterne areas indicate vegetated areas, while solid white areas indicate open water.
22.	Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)
	Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.
	☑A Overbank <u>and</u> overland flow are not severely altered in the assessment area.
	B Overbank flow is severely altered in the assessment area.
	 Overland flow is severely altered in the assessment area. Both overbank <u>and</u> overland flow are severely altered in the assessment area.

Notes

Wetland is missing most trees due to clearing and grazing pressures. Cows are able to enter the wetland degrading vegeation diversity.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name W			/2/2019
Wetland Type He	eadwater Forest	Assessor Name/Organization En	nily Dunnigan/WLS
Notes on Field Assessme	ent Form (Y/N)		YES
Presence of regulatory co	onsiderations (Y/N)		NO
Wetland is intensively ma	anaged (Y/N)		NO
Assessment area is locate	ted within 50 feet of a natural tributa	ry or other open water (Y/N)	YES
Assessment area is subs	stantially altered by beaver (Y/N)		NO
Assessment area experie	ences overbank flooding during norr	nal rainfall conditions (Y/N)	NO
Assessment area is on a	coastal island (Y/N)		NO
Sub-function Rating Sun	nmarv		
Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	MEDIUM
	Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N	YES
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N) <u>NA</u>
	Soluble Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N	YES
	Physical Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N	YES
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N) NA
Habitat	Physical Structure	Condition	MEDIUM
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ry		
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	HIGH
-		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
Habitat		Condition	LOW

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

LICACE AID #	Accompan	NCDMP#	1
USACE AID #	Name Depart Description	NCDWR#	10/0/2010
Project I		Date of Evaluation	10/2/2019
Applicant/Owner I		Wetland Site Name	W4
Wetland		Assessor Name/Organization	Emily Dunnigan/WLS
Level III Ecor		Nearest Named Water Body	Banner Branch
	Basin Roanoke	USGS 8-Digit Catalogue Unit	03010103
	ounty Stokes	NCDWR Region	Winston-Salem
☐ Yes	No Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.520933, -80.207813
Please circle and/o		y not be within the assessment area) of stressors is apparent. Consider departure for sinclude, but are not limited to the following.	from reference, if appropriate, in
		ns, beaver dams, dikes, berms, ponds, etc.)	
		d (examples: discharges containing obvious pollu	stants presence of nearby sentic
	derground storage tanks (USTs), hog lago		diants, presence of fically septic
		nortality, insect damage, disease, storm damage	salt intrusion etc.)
Habitat/p	lant community alteration (examples: mov	ving, clear-cutting, exotics, etc.)	, can maradion, etc.)
_			
Is the assessmen	t area intensively managed?	⊠ No	
		s evaluated? ⊠Yes □No If Yes, check all tha	at apply to the assessment area.
Anadrom			
	protected species or State endangered or	threatened species	
NCDWR	riparian buffer rule in effect		
Abuts a F	Primary Nursery Area (PNA)		
Publicly o	owned property	(450) (1 1 1 1 4 (1)	
N.C. Divi		onmental Concern (AEC) (including buffer)	an Tanad
Abuts a s		or supplemental classifications of HQW, ORW,	or i rout
	ed NCNHP reference community	D. Pata Latarana	
Abuts a 3	303(d)-listed stream or a tributary to a 303(d)-listed stream	
What type of natu	ıral stream is associated with the wetlar	nd, if any? (check all that apply)	
Blackwat	.CI		
	uter _	Lunar Wind Both	
☐ Brownwa	ater idal, check one of the following boxes) —		
☐ Brownwa	ater idal, check one of the following boxes) —]Lunar □ Wind □ Both ☑ No	
Brownwa Tidal (if ti	ater idal, check one of the following boxes) t area on a coastal island? Yes		□ Yes ⊠ No
Brownwa Tidal (if ti Is the assessmen Is the assessmen	nter idal, check one of the following boxes) It area on a coastal island? The area's surface water storage capacity	─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─	-
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr	ater idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity It area experience overbank flooding	No or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes	-
Brownwa Tidal (if ti Is the assessmen Does the assessr 1. Ground Surface	nter idal, check one of the following boxes) It area on a coastal island? It area's surface water storage capacity ment area experience overbank flooding the Condition/Vegetation Condition – ass	No or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric	⊠ No
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box ii	ater idal, check one of the following boxes) It area on a coastal island? It area's surface water storage capacity ment area experience overbank flooding the Condition/Vegetation Condition – ass in each column. Consider alteration to the	No or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar	No No No No No No No No No No No No No N
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are	ater idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding the Condition/Vegetation Condition – ass in each column. Consider alteration to the each compare to reference wetland if applice	No or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric	No No No No No No No No No No No No No N
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on	ater idal, check one of the following boxes) It area on a coastal island? It area's surface water storage capacity ment area experience overbank flooding the Condition/Vegetation Condition – ass in each column. Consider alteration to the	No or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar	No No No No No No No No No No No No No N
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS	ter idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect.	No or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar	No No No No No No No No No No No No No N
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A	ater idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app	nd vegetation structure (VS) in the plicable, then rate the assessment
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not appear tracks, bedding, fill, soil compaction, obvious	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not appear tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropri	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not appear tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropri	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
Brownwa Tidal (if ti Is the assessment Is the assessment Does the assessment Check a box in assessment are area based on GS VS A A B B	it area on a coastal island? Yes It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applice evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distut diversity [if appropriate], hydrologic alter	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not appear tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropri	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A A B B B 2. Surface and S	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alter ub-Surface Storage Capacity and Durate	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exa er tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where approprieration) ion – assessment area condition metric	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A A B B B 2. Surface and S Check a box in	idal, check one of the following boxes) It area on a coastal island? It area's surface water storage capacity ment area experience overbank flooding ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alter ub-Surface Storage Capacity and Durat meach column. Consider surface storage	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exe er tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where approprieration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface sto	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub).
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A A B B 2. Surface and S Check a box in Consider both	it area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alter the each column. Consider surface storage increase and decrease in hydrology. A dit	or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exa er tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropriation) ion — assessment area condition metric capacity and duration (Surf) and sub-surface sto	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub).
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A A B B 2. Surface and S Check a box in Consider both deep is expected	it area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alter the each column. Consider surface storage increase and decrease in hydrology. A dit	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exe er tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where approprieration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface sto	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub).
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A A B B B 2. Surface and S Check a box in Consider both deep is expecte Surf Sub	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applice evidence an effect. Not severely altered Severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alter ub-Surface Storage Capacity and Durat meach column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface we	or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exa er tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropriation) ion — assessment area condition metric capacity and duration (Surf) and sub-surface sto exact ≤ 1 foot deep is considered to affect surface evater. Consider tidal flooding regime, if applicable	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub).
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A A B B 2. Surface and S Check a box in Consider both deep is expecte Surf Sub A A	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding It ce Condition/Vegetation Condition – ass In each column. Consider alteration to the Iteration are experience wetland if applicate evidence an effect. Not severely altered Severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidded alteration examples: mechanical disturbing diversity [if appropriate], hydrologic alteres and sub-surface storage increase and decrease in hydrology. A dited to affect both surface and sub-surface we water storage capacity and duration a	or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exa er tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropriation) ion — assessment area condition metric capacity and duration (Surf) and sub-surface sto exact ≤ 1 foot deep is considered to affect surface water. Consider tidal flooding regime, if applicab re not altered.	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le.
Brownwa Tidal (if till Is the assessment Is the assessment Does the assessment are area based on GS VS A A B B B 2. Surface and S Check a box in Consider both in deep is expected Surf Sub A A B B B	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass n each column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alte ub-Surface Storage Capacity and Durat n each column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface w Water storage capacity and duration a Water storage capacity and duration are	or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exa er tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where approprieration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface sto ch ≤ 1 foot deep is considered to affect surface vater. Consider tidal flooding regime, if applicab re not altered. e altered, but not substantially (typically, not suffice	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It water only, while a ditch > 1 foot le.
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessr 1. Ground Surfac Check a box in assessment are area based on GS VS A A A B B 2. Surface and S Check a box in Consider both deep is expecte Surf Sub A A	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass n each column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alter ub-Surface Storage Capacity and Durat n each column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface we Water storage capacity and duration are Water storage capacity or duration are Water storage capacity or duration are	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exa er tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where approprieration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface sto coch ≤ 1 foot deep is considered to affect surface evater. Consider tidal flooding regime, if applicab are not altered. Ealtered, but not substantially (typically, not sufficient substantially altered (typically, alteration sufficient	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less exage capacity and duration (Sub). It water only, while a ditch > 1 foot le.
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessmen Does the assessment are area based on GS VS A A A B B B B B B B B B B B B B B B B	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applice evidence an effect. Not severely altered Severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alte ub-Surface Storage Capacity and Durate n each column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface w Water storage capacity and duration a Water storage capacity or duration are Water storage capacity or duration are (examples: draining, flooding, soil come	or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exact tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropreration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface stoch ≤ 1 foot deep is considered to affect surface vater. Consider tidal flooding regime, if applicable altered, but not substantially (typically, not sufficient substantially altered (typically, alteration sufficient paction, filling, excessive sedimentation, underground surface in the substantially altered (typically, alteration, underground surface).	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It was water only, while a ditch > 1 foot le. cient to change vegetation). The pround utility lines in the pround utility lines.
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessmen Does the assessment are area based on GS VS A A A B B B B 2. Surface and S Check a box in Consider both deep is expected Surf Sub A A A B B B B B B B B B B B B B B B B	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alte ub-Surface Storage Capacity and Durat meach column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface w Water storage capacity and duration a Water storage capacity or duration are Water storage capacity or duration are (examples: draining, flooding, soil com e/Surface Relief – assessment area/wetla	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exa er tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where approprieration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface sto exater. Consider tidal flooding regime, if applicab are not altered. It altered, but not substantially (typically, not sufficie exatered, but not substantially (typically, not sufficie paction, filling, excessive sedimentation, undergen and type condition metric (skip for all marshe	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is considered to result in vegetation change (ground utility lines).
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessmen Does the assessment are area based on GS VS A A A B B B B 2. Surface and S Check a box in Consider both deep is expected Surf Sub A A A B B B B C C C C 3. Water Storage Check a box in Check a box in Check a box in Check a box in Check a box in Check a box in Check a box in Check a box in Check a box in Check a box in Check a box in Check a box in Check a box in Check a box in Check a box in Check a Surface Check a box in	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alte ub-Surface Storage Capacity and Durat meach column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface w Water storage capacity and duration a Water storage capacity or duration are Water storage capacity or duration are (examples: draining, flooding, soil com e/Surface Relief – assessment area/wetla	or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exact tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropreration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface stoch ≤ 1 foot deep is considered to affect surface vater. Consider tidal flooding regime, if applicable altered, but not substantially (typically, not sufficient substantially altered (typically, alteration sufficient paction, filling, excessive sedimentation, underground surface in the substantially altered (typically, alteration, underground surface).	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is considered to result in vegetation change (ground utility lines).
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessmen Does the assessment are area based on GS VS A A A B B B B B B B B B B B B B B B B	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applice evidence an effect. Not severely altered Severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alte ub-Surface Storage Capacity and Durat meach column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface w Water storage capacity and duration a Water storage capacity or duration are (examples: draining, flooding, soil com el/Surface Relief – assessment area/wetla meach column. Select the appropriate sto	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area are able (see User Manual). If a reference is not app assessment area (ground surface alteration exact tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where approprieration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface stored to affect surface water. Consider tidal flooding regime, if applicable and thered, but not substantially (typically, not sufficient paction, filling, excessive sedimentation, undergrand type condition metric (skip for all marshed) and type condition metric (skip for all marshed) area for the assessment area (AA) and the weten	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is considered to result in vegetation change (ground utility lines).
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessmen Does the assessment are area based on GS VS A A A B B B B B B B B B B B B B B B B	it area on a coastal island? Yes It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applice evidence an effect. Not severely altered Severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alte ub-Surface Storage Capacity and Durat meach column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface w Water storage capacity and duration a Water storage capacity or duration are (examples: draining, flooding, soil com e/Surface Relief – assessment area/wetla meach column. Select the appropriate sto Majority of wetland with depressions a	or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area are able (see User Manual). If a reference is not appears tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropre eration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface stoch ≤ 1 foot deep is considered to affect surface water. Consider tidal flooding regime, if applicable altered, but not substantially (typically, not sufficient paction, filling, excessive sedimentation, undergrand type condition metric (skip for all marshed) and type condition metric (skip for all marshed) be to pond water > 1 deep	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is considered to result in vegetation change (ground utility lines).
Brownwa Tidal (if ti Is the assessmen Is the assessmen Does the assessmen Does the assessment are area based on GS VS A A A B B B B C Check a box in Consider both deep is expected Surf Sub A A A B B B C C C C 3. Water Storage Check a box in AA WT 3a. A A B B B B	It area on a coastal island? Yes It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applice evidence an effect. Not severely altered Severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alte ub-Surface Storage Capacity and Durate n each column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface w Water storage capacity and duration a Water storage capacity or duration are Water storage capacity or duration are (examples: draining, flooding, soil com is/Surface Relief – assessment area/wetla meach column. Select the appropriate sto Majority of wetland with depressions a Majority of wetland with depressions a	or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exact tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropreration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface stoch ≤ 1 foot deep is considered to affect surface vater. Consider tidal flooding regime, if applicable altered, but not substantially (typically, not sufficient paction, filling, excessive sedimentation, undergound type condition metric (skip for all marshed prage for the assessment area (AA) and the wetable to pond water > 1 deep ble to pond water > 1 deep ble to pond water > 1 deep ble to pond water > 1 foot deep	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is considered to result in vegetation change (ground utility lines).
Brownwa Tidal (if tills the assessment Is the assessment Does the assessment are area based on GS VS A A B B B B C Check a box in Consider both in deep is expected Surf Sub A A A B B B B C Check a box in AA WT Sa. A A B B B B C C C C	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applice evidence an effect. Not severely altered Severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alter ub-Surface Storage Capacity and Durat meach column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface we Water storage capacity and duration a Water storage capacity or duration are (examples: draining, flooding, soil com structure Relief – assessment area/wetla meach column. Select the appropriate sto Majority of wetland with depressions a Majority of wetland with depressions a Majority of wetland with depressions a	or duration substantially altered by beaver? during normal rainfall conditions? ☐ Yes sessment area condition metric ground surface (GS) in the assessment area ar able (see User Manual). If a reference is not app assessment area (ground surface alteration exact tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where appropreration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface stoch ≤ 1 foot deep is considered to affect surface vater. Consider tidal flooding regime, if applicable altered, but not substantially (typically, not sufficient paction, filling, excessive sedimentation, undergound type condition metric (skip for all marshed prage for the assessment area (AA) and the wet be to pond water > 1 deep ble to pond water > 1 deep ble to pond water > 3 to 6 inches deep	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is considered to result in vegetation change (ground utility lines).
Brownwa Tidal (if till Is the assessment Is the assessment Does the assessment are area based on GS VS A A B B B B 2. Surface and S Check a box in Consider both in deep is expected Surf Sub A A A B B B B B B B B B B B B B B B B	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alter ub-Surface Storage Capacity and Durat meach column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface we Water storage capacity and duration a Water storage capacity or duration are (examples: draining, flooding, soil com s/Surface Relief – assessment area/wetla meach column. Select the appropriate sto Majority of wetland with depressions a Majority of wetland with depressions a Majority of wetland with depressions a Depressions able to pond water < 3 in-	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area are able (see User Manual). If a reference is not app assessment area (ground surface alteration exact tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where approprieration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface storater. Consider tidal flooding regime, if applicable appropriate tidal flooding regime, if applicable altered, but not substantially (typically, not sufficient altered, but not substantially (ty	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is considered to result in vegetation change (ground utility lines).
Brownwa Tidal (if till Is the assessment Is the assessment Does the assessment are area based on GS VS A A A B B B B B B B B B B B B B B B B	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alte ub-Surface Storage Capacity and Durat meach column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface w Water storage capacity and duration a Water storage capacity or duration are (examples: draining, flooding, soil com e/Surface Relief – assessment area/wetla meach column. Select the appropriate sto Majority of wetland with depressions a Majority of wetland with depressions a Majority of wetland with depressions a Depressions able to pond water < 3 in ence that maximum depth of inundation is general	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area are able (see User Manual). If a reference is not app assessment area (ground surface alteration exact tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where approprieration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface storater. Consider tidal flooding regime, if applicable and the considered to affect surface altered, but not substantially (typically, not sufficient paction, filling, excessive sedimentation, undergound type condition metric (skip for all marshed) and type condition metric (skip for all marshed) and type condition metric (skip for all marshed) and type condition metric (skip for all marshed) be to pond water > 1 deep be to pond water 3 to 6 inches deep areater than 2 feet	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is considered to result in vegetation change (ground utility lines).
Brownwa Tidal (if till Is the assessment Is the assessment Is the assessment Is the assessment Is the assessment are assessment are area based on GS VS A A A B B B B B B B B B B B B B B B B	idal, check one of the following boxes) It area on a coastal island? Yes It area's surface water storage capacity ment area experience overbank flooding Ce Condition/Vegetation Condition – ass meach column. Consider alteration to the ea. Compare to reference wetland if applic evidence an effect. Not severely altered Severely altered over a majority of the sedimentation, fire-plow lanes, skidde alteration examples: mechanical distu diversity [if appropriate], hydrologic alter ub-Surface Storage Capacity and Durat meach column. Consider surface storage increase and decrease in hydrology. A dit ed to affect both surface and sub-surface we Water storage capacity and duration a Water storage capacity or duration are (examples: draining, flooding, soil com s/Surface Relief – assessment area/wetla meach column. Select the appropriate sto Majority of wetland with depressions a Majority of wetland with depressions a Majority of wetland with depressions a Depressions able to pond water < 3 in-	or duration substantially altered by beaver? during normal rainfall conditions? Yes sessment area condition metric ground surface (GS) in the assessment area are able (see User Manual). If a reference is not app assessment area (ground surface alteration exact tracks, bedding, fill, soil compaction, obvious rbance, herbicides, salt intrusion [where approprieration) ion – assessment area condition metric capacity and duration (Surf) and sub-surface storater. Consider tidal flooding regime, if applicable and the considered to affect surface altered, but not substantially (typically, not suffice paction, filling, excessive sedimentation, undergound type condition metric (skip for all marshed) and type condition metric (skip for all marshed) and type condition metric (skip for all marshed) be to pond water > 1 deep be to pond water 3 to 6 inches to 1 foot deep be to pond water 3 to 6 inches deep creater than 2 feet between 1 and 2 feet	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less orage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is considered to result in vegetation change (ground utility lines).

		c from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. servations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional
	indicators. 4a. ⊠A □B □C □D □E	Sandy soil Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features Loamy or clayey gleyed soil Histosol or histic epipedon
	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch
	4c. ⊠A □B	No peat or muck presence A peat or muck presence
5.	Discharge in	nto Wetland – opportunity metric
		t in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples the discharges include presence of nearby septic tank, underground storage tank (UST), etc.
	⊠A ⊠A □B □E	
	□c □(Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)
6.	Land Use -	opportunity metric (skip for non-riparian wetlands)
	Check all the to assessme	at apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining nt area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), miles and within the watershed draining to the assessment area (2M).
	□A □A □B □E	B Confined animal operations (or other local, concentrated source of pollutants C ≥ 20% coverage of pasture
	□D □[□E □E □F □F	E □E ≥ 20% coverage of maintained grass/herb □F ≥ 20% coverage of clear-cut land
	□G □(Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed <u>or</u> hydrologic alterations that prevent drainage <u>and/or</u> overbank flow from affecting the assessment area.
7.		ing as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands)
	⊠Yes Wetlan	essment area within 50 feet of a tributary or other open water? No If Yes, continue to 7b. If No, skip to Metric 8. buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. I a note if a portion of the buffer has been removed or disturbed.
	buffer j ⊠A ⊡B	uch of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make udgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.) ≥ 50 feet From 30 to < 50 feet
	□C □D □E	From 15 to < 30 feet From 5 to < 15 feet < 5 feet or buffer bypassed by ditches
	⊠≤ 15	ry width. If the tributary is anastomosed, combine widths of channels/braids for a total widthfeet wide □> 15-feet wide □ Other open water (no tributary present)
	7d. Do roo ⊠Yes	ts of assessment area vegetation extend into the bank of the tributary/open water? ☐No
	⊠She	am or other open water sheltered or exposed? Itered – adjacent open water with width < 2500 feet <u>and</u> no regular boat traffic. osed – adjacent open water with width ≥ 2500 feet <u>or</u> regular boat traffic.
8.	Wetland Wid	th at the Assessment Area – wetland type/wetland complex condition metric (evaluate WT for all marshes and loody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest
		t in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and complex at the assessment area (WC). See User Manual for WT and WC boundaries.
	□A □ <i>A</i>	A ≥ 100 feet
	□B ⊠E	
	H H	

4. Soil Texture/Structure – assessment area condition metric (skip for all marshes)

9.	Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)				
	Answer for assessment area dominant landform. \[\text{\te\				
10.	Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)				
	Consider recent deposition only (no plant growth since deposition). □ A Sediment deposition is not excessive, but at approximately natural levels. □ B Sediment deposition is excessive, but not overwhelming the wetland. □ C Sediment deposition is excessive and is overwhelming the wetland.				
11.	Wetland Size – wetland type/wetland complex condition metric				
	Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC FW (if applicable) A A A S 500 acres B B B From 100 to < 500 acres C C C From 50 to < 100 acres D D D From 25 to < 50 acres F F F F F F F F F F F F F F F F F F F				
12.	Wetland Intactness – wetland type condition metric (evaluate for Pocosins only)				
	□A Pocosin is the full extent (≥ 90%) of its natural landscape size.□B Pocosin type is < 90% of the full extent of its natural landscape size.				
13.	Connectivity to Other Natural Areas – landscape condition metric				
	13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide. Well Loosely A A ≥ 500 acres B B From 100 to < 500 acres C C From 50 to < 100 acres				
	☐D				
	F Wetland type has a poor or no connection to other natural habitats				
	13b. Evaluate for marshes only . ☐ Yes ☐ No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.				
14.	Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland) May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C." □ A 0 □ B 1 to 4 □ C 5 to 8				
15.	Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)				
	 ☐A Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area. ☐B Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing It also includes communities with exotics present, but not dominant, over a large portion of the expected strata. ☐C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in a least one stratum. 				
16.	Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)				
	 ☐A Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). ☐B Vegetation diversity is low or has > 10% to 50% cover of exotics. ☐C Vegetation is dominated by exotic species (> 50 % cover of exotics). 				

17.	Vegetative Structure – assessment area/wetland type condition metric					
	17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.					
	17b. Evaluate percent coverage of assessment area vegetation for all marshes only . Skip to 17c for non-marsh wetlands. □A ≥ 25% coverage of vegetation □B < 25% coverage of vegetation					
	17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Cons structure in airspace above the assessment area (AA) and the wetland type (WT) separately. AA WT					
	☐ □ A Canopy closed, or nearly closed, with natural gaps associated with natural processes ☐ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
	Dense mid-story/sapling layer B					
	용					
	은 집A 집A Dense herb layer 의 집B 집B Moderate density herb layer 집C 집C Herb layer sparse or absent					
18.	Snags – wetland type condition metric (skip for all marshes)					
	□ A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).□ Not A					
19.	Diameter Class Distribution – wetland type condition metric (skip for all marshes)					
	Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.					
	 Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH. Majority of canopy trees are < 6 inches DBH or no trees. 					
20.	Large Woody Debris – wetland type condition metric (skip for all marshes)					
	Include both natural debris and man-placed natural debris. ☐A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ☑B Not A					
21.	Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)					
	Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.					
22.	Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)					
	Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.					
	A Overbank <u>and</u> overland flow are not severely altered in the assessment area.					
	□B Overbank flow is severely altered in the assessment area.□C Overland flow is severely altered in the assessment area.					
D Both overbank and overland flow are severely altered in the assessment area.						

Notes

Abutting pasture. Cows frequent the wetland area to get to the stream. Microstegium and privet

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Date of Assessment __10/2/2019

Wetland Site Name W4

Wetland Type H	leadwater Forest		Emily Dunnigan/MI		
vveцани гуре <u>г</u>	icauwatei Fulest	Assessor Name/Organization <u>E</u>	.nmy Dunnigan/VVL		
Notes on Field Assessn	nent Form (Y/N)		YES		
Presence of regulatory	considerations (Y/N)		NO		
Wetland is intensively n	nanaged (Y/N)		NO		
ssessment area is located within 50 feet of a natural tributary or other open water (Y/N)					
Assessment area is sub	ostantially altered by beaver (Y/N)		NO		
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)					
Assessment area is on	a coastal island (Y/N)		NO		
Sub-function Rating Su	ımmary				
Function	Sub-function	Metrics	Rating		
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	MEDIUM		
	Retention	Condition	HIGH		
Water Quality	Pathogen Change	Condition	HIGH		
		Condition/Opportunity	HIGH		
		Opportunity Presence (Y/I	N) YES		
	Particulate Change	Condition	HIGH		
		Condition/Opportunity	NA		
		Opportunity Presence (Y/I	N) <u>NA</u>		
	Soluble Change	Condition	MEDIUM		
		Condition/Opportunity	HIGH		
		Opportunity Presence (Y/I	N) YES		
	Physical Change	Condition	HIGH		
		Condition/Opportunity	HIGH		
		Opportunity Presence (Y/I	N) YES		
	Pollution Change	Condition	NA		
		Condition/Opportunity	NA		
		Opportunity Presence (Y/I	N) NA		
Habitat	Physical Structure	Condition	MEDIUM		
	Landscape Patch Structure	Condition	LOW		
	Vegetation Composition	Condition	LOW		
Function Rating Summ	ary				
Function		Metrics	Rating		
Hydrology		Condition	HIGH		
Water Quality		Condition	HIGH		
		Condition/Opportunity	HIGH		
		Opportunity Presence (Y/N	N) YES		
Habitat		Condition	LOW		

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

US	ACE AID 7	#			NCDWR#	
		ject Nam	e Banner Brand	ch	Date of Evaluation	10/2/2019
Ap	plicant/O	vner Nam	e Water & Land		Wetland Site Name	
	We	tland Typ	e Headwater F	orest	Assessor Name/Organization	Emily Dunnigan/WLS
	Level III	Ecoregic			Nearest Named Water Body	
	F	River Bas			USGS 8-Digit Catalogue Unit	
		Coun		111 121 2	NCDWR Region	
	☐ Ye	s 🛛 N	o Precipitation	within 48 hrs?	Latitude/Longitude (deci-degrees)	36.531706, -80.200317
Is t	ase circle ent past (f	and/or mor instance including and second and	ake note on the I e, within 10 years modifications (exa sub-surface discha pround storage tar etation stress (exa community altera eta intensively ma etations - Were reg fish tected species or rian buffer rule in ary Nursery Area eta property of Coastal Manage	last page if evidence of sets). Noteworthy stressors amples: ditches, dams, but arges into the wetland (exist), hog lagoons amples: vegetation mortation (examples: mowing anaged? Yes State endangered or threeffect (PNA)	ality, insect damage, disease, storm damag, clear-cutting, exotics, etc.) No Valuated? Yes No If Yes, check all the eatened species nental Concern (AEC) (including buffer)	lutants, presence of nearby septic e, salt intrusion, etc.) hat apply to the assessment area.
	Abu Des Abu	its a strea ignated N its a 303(m with a NCDWC CNHP reference d)-listed stream or	Q classification of SA or s community r a tributary to a 303(d)-li	upplemental classifications of HQW, ORW,	or Trout
	Blad Bro Tida	ckwater wnwater al (if tidal,	check one of the	following boxes)	unar 🗌 Wind 🔲 Both	
I					luration substantially altered by beaver? ring normal rainfall conditions? Ye	
	Check a lassessme	oox in ea ent area.	ch column. Cons	sider alteration to the gro	sment area condition metric ound surface (GS) in the assessment area a e (see User Manual). If a reference is not ap	
	\boxtimes A	⊠A □B	sedimentation, fir alteration example	over a majority of the ass e-plow lanes, skidder tra	sessment area (ground surface alteration exacks, bedding, fill, soil compaction, obviounce, herbicides, salt intrusion [where appropion)	is pollutants) (vegetation structure
2.	Surface a	nd Sub-	Surface Storage	Capacity and Duration	 assessment area condition metric 	
	Consider deep is ex Surf ⊠A □B	both incre cpected to Sub ⊠A □B □C	ease and decreas affect both surfact Water storage cap Water storage cap Water storage cap	e in hydrology. A ditch see and sub-surface wate pacity and duration are nepacity or duration are altopacity or duration are subpacity or duration are necessarily and duration are necessarily or duration are necessarily and duration are necessarily and duration are necessarily are necessarily and duration are necessarily are necessarily and duration are necessarily are necessarily and duration are necessarily and duration are necessarily are necessarily and duration are necessarily are necessa	eacity and duration (Surf) and sub-surface si ≤ 1 foot deep is considered to affect surface. The consider tidal flooding regime, if application applications are to altered. The consider tidal flooding regime, if application altered, but not substantially (typically, not sufficient sufficient filling, excessive sedimentation, under the constantially altered (typically, alteration,	e water only, while a ditch > 1 foot ole. ricient to change vegetation). ient to result in vegetation change)
3.	Water Sto	orage/Su	face Relief – ass	sessment area/wetland	type condition metric (skip for all marsh	es)
		-			e for the assessment area (AA) and the we	•
	AA				,	7F- ()-
	□c ⊠d	□B □C ⊠D	Majority of wetlan Majority of wetlan Depressions able	d with depressions able to pond water < 3 inches	to pond water 6 inches to 1 foot deep to pond water 3 to 6 inches deep s deep	
	□В	Evidence	that maximum de	pth of inundation is great pth of inundation is between the financial is perfectly the pth of inundation is less	een 1 and 2 feet	

	Make soil ob	s from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature, servations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional
	indicators. 4a. □A □B □C □D □D	Sandy soil Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features Loamy or clayey gleyed soil Histosol or histic epipedon
	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch
	4c. ⊠A □B	No peat or muck presence A peat or muck presence
5.	Discharge in	to Wetland – opportunity metric
		in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples e discharges include presence of nearby septic tank, underground storage tank (UST), etc.
	⊠A ⊠A □B □E	
	□c □c	
6.	Land Use -	opportunity metric (skip for non-riparian wetlands)
	to assessmer	at apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining at area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), miles and within the watershed draining to the assessment area (2M). 2M
	□A □A □B □E ⊠C ⊠C	B DB Confined animal operations (or other local, concentrated source of pollutants
		D ≥ 20% coverage of agricultural land (regularly plowed land) E □E ≥ 20% coverage of maintained grass/herb
	Ġ Ġ	
7.	Wetland Act	ing as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands)
		ssment area within 50 feet of a tributary or other open water?
	⊠Yes Wetlan	☐No If Yes, continue to 7b. If No, skip to Metric 8. d buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland.
	Record 7b. How m	a note if a portion of the buffer has been removed or disturbed. uch of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make udgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
	□A ⊠B □C	≥ 50 feet From 30 to < 50 feet From 15 to < 30 feet
	□D	From 5 to < 15 feet
	∏E 7c. Tributa	< 5 feet <u>or</u> buffer bypassed by ditches ry width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
	⊠≤ 15	feet wide
	⊠Yes	
		m or other open water sheltered or exposed? tered – adjacent open water with width < 2500 feet and no regular boat traffic.
		osed – adjacent open water with width ≥ 2500 feet <u>or</u> regular boat traffic.
8.		Ith at the Assessment Area – wetland type/wetland complex condition metric (evaluate WT for all marshes and cody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest
	Check a box	in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and omplex at the assessment area (WC). See User Manual for WT and WC boundaries.
	\Box A \Box A	\(\gamma \geq 100 \text{ feet}\)
	⊠E ⊠E	

4. Soil Texture/Structure – assessment area condition metric (skip for all marshes)

9.	Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)
	Answer for assessment area dominant landform. \[\text{\te\
10.	Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)
	Consider recent deposition only (no plant growth since deposition). □ Sediment deposition is not excessive, but at approximately natural levels. □ Sediment deposition is excessive, but not overwhelming the wetland. □ C Sediment deposition is excessive and is overwhelming the wetland.
11.	Wetland Size – wetland type/wetland complex condition metric
	Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see Use Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC FW (if applicable) A A A ≥ 500 acres B B B From 100 to < 500 acres C C C From 50 to < 100 acres From 10 to < 25 acres F F F F F F F F F F F F F F F F F F F
12.	Wetland Intactness – wetland type condition metric (evaluate for Pocosins only)
	□A Pocosin is the full extent (≥ 90%) of its natural landscape size.□B Pocosin type is < 90% of the full extent of its natural landscape size.
13.	Connectivity to Other Natural Areas – landscape condition metric
	13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide. Well Loosely
	☐B ☐B From 100 to < 500 acres
	C C From 50 to < 100 acres
	F Wetland type has a poor or no connection to other natural habitats
	40). Evaluate for more los culto
	13b. Evaluate for marshes only . ☐Yes ☐No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.
1/	Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)
14.	May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Conside the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut select option "C." □A 0 □B 1 to 4 □C 5 to 8
15.	Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)
	□A Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate
	species, with exotic plants absent or sparse within the assessment area. Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing It also includes communities with exotics present, but not dominant, over a large portion of the expected strata. Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in a least one stratum.
16	
10.	Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only) □ A Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). □ B Vegetation diversity is low or has > 10% to 50% cover of exotics. □ C Vegetation is dominated by exotic species (> 50 % cover of exotics).

17.	Vegetative Structure – assessment area/wetland type condition metric
	17a. Is vegetation present? ☐ Yes ☐ No If Yes, continue to 17b. If No, skip to Metric 18.
	17b. Evaluate percent coverage of assessment area vegetation for all marshes only . Skip to 17c for non-marsh wetlands. □ A ≥ 25% coverage of vegetation □ B < 25% coverage of vegetation
	17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.
	AA WT ABOVE AND AND AND AND AND AND AND AND AND AND
	Dense mid-story/sapling layer SOLUTION DENSE Mid-story/sapling layer SOLUTION DENSE Mid-story/sapling layer SOLUTION DENSE Mid-story/sapling layer SOLUTION DENSE Mid-story/sapling layer sparse or absent
	g □A □A Dense shrub layer □□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	⊋ ☑A ☑A Dense herb layer □ □ □ □ □ □ □ □ Herb layer sparse or absent
18.	Snags – wetland type condition metric (skip for all marshes)
	□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).□B Not A
19.	Diameter Class Distribution – wetland type condition metric (skip for all marshes)
	Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are
	present. B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH. C Majority of canopy trees are < 6 inches DBH or no trees.
20.	Large Woody Debris – wetland type condition metric (skip for all marshes)
	Include both natural debris and man-placed natural debris. □ A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). □ B Not A
24	
21.	Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only) Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned
	areas indicate vegetated areas, while solid white areas indicate open water.
22.	Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)
	Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion,
	man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D. A Overbank and overland flow are not severely altered in the assessment area.
	Overbank flow is severely altered in the assessment area.
	Overland flow is severely altered in the assessment area.Both overbank and overland flow are severely altered in the assessment area.
	<u> </u>
Note	es

Cow access.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name W	5 A/B	Date of Assessment 10	0/2/2019
Wetland Type He	eadwater Forest	Assessor Name/Organization E	mily Dunnigan/WLS
Notes on Field Assessme	ent Form (Y/N)		YES
Presence of regulatory co	onsiderations (Y/N)		NO
Wetland is intensively ma	anaged (Y/N)		NO
Assessment area is locat	ed within 50 feet of a natural tributar	y or other open water (Y/N)	YES
Assessment area is subs	tantially altered by beaver (Y/N)		NO
Assessment area experie	ences overbank flooding during norm	al rainfall conditions (Y/N)	YES
Assessment area is on a	coastal island (Y/N)		NO
ub-function Rating Sun	nmarv		
Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	HIGH
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N	l) YES
	Particulate Change	Condition	HIGH
		Condition/Opportunity	NA
		Opportunity Presence (Y/N	N) <u>NA</u>
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N) <u>YES</u>
	Physical Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N	I) YES
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N	l) NA
Habitat	Physical Structure	Condition	HIGH
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	MEDIUM
unction Rating Summa	ry		
Function	•	Metrics	Rating
Hydrology		Condition	HIGH
Water Quality		Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N	
Habitat		Condition	MEDIUM

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

US	ACE AID :	#	, , .	NCDWR#	
		ject Nam	e Banner Branch	Date of Evaluation	10/2/2019
Ap	plicant/O	vner Nam	e Water & Land Solutions	Wetland Site Name	W6A
	We	tland Typ	e Headwater Forest	Assessor Name/Organization	Emily Dunnigan /WLS
		Ecoregic		Nearest Named Water Body	Banner Branch
	ı	River Bas		USGS 8-Digit Catalogue Unit	03010103
		Coun		NCDWR Region	Winston-Salem
	☐ Ye	s 🛛 N	o Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.530159, -80.209670
Is t	ase circle ent past (f	and/or mor instance including and second and	ree, within 10 years). Noteworthy stressor modifications (examples: ditches, dams, sub-surface discharges into the wetland (ground storage tanks (USTs), hog lagoor etation stress (examples: vegetation mor community alteration (examples: mowin ea intensively managed? Yes ations - Were regulatory considerations of the fish tected species or State endangered or the trian buffer rule in effect ary Nursery Area (PNA) ed property of Coastal Management Area of Environ	f stressors is apparent. Consider departure for include, but are not limited to the following. It is beaver dams, dikes, berms, ponds, etc.) examples: discharges containing obvious pollutes, etc.) retality, insect damage, disease, storm damage g, clear-cutting, exotics, etc.) No evaluated? Yes No If Yes, check all the interestence species	atants, presence of nearby septic , salt intrusion, etc.)
	Abu Des Abu	its a strea signated N its a 303(supplemental classifications of HQW, ORW, of listed stream	or Trout
	Bla Bro Tida	ckwater wnwater al (if tidal,	check one of the following boxes)	Lunar Wind Both	
				duration substantially altered by beaver? uring normal rainfall conditions? Yes	☐ Yes ⊠ No ☑ No
1.	Check a lassessme area base	box in ea ent area.		ssment area condition metric round surface (GS) in the assessment area ar ble (see User Manual). If a reference is not app	
	\boxtimes A	∏A ⊠B	sedimentation, fire-plow lanes, skidder	ssessment area (ground surface alteration exa tracks, bedding, fill, soil compaction, obvious ance, herbicides, salt intrusion [where appropr ation)	pollutants) (vegetation structure
2.	Surface a	nd Sub-	Surface Storage Capacity and Duration	n – assessment area condition metric	
	Consider deep is ex Surf	both incre cpected to Sub □A □B ⊠C	ease and decrease in hydrology. A ditch o affect both surface and sub-surface wat Water storage capacity and duration are Water storage capacity or duration are al Water storage capacity or duration are so	apacity and duration (Surf) and sub-surface stoms ≤ 1 foot deep is considered to affect surface ter. Consider tidal flooding regime, if applicable not altered. Itered, but not substantially (typically, not sufficults but not substantially, alteration sufficient action, filling, excessive sedimentation, undergraph	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change)
3.	Water Sto	orage/Su	rface Relief – assessment area/wetlan	d type condition metric (skip for all marshe	es)
		-		age for the assessment area (AA) and the wetl	•
	AA	WT			, ,
	⊠c □D	□B ⊠C □D	Majority of wetland with depressions able Majority of wetland with depressions able Majority of wetland with depressions able Depressions able to pond water < 3 inch	e to pond water 6 inches to 1 foot deep e to pond water 3 to 6 inches deep es deep	
	□В	Evidence	that maximum depth of inundation is gre that maximum depth of inundation is bet that maximum depth of inundation is less	ween 1 and 2 feet	

		x from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Disservations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional
	4a. □A ⊠B □C □D □E	Sandy soil Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features Loamy or clayey gleyed soil Histosol or histic epipedon
	4b.	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch
	4c. ⊠A ⊟B	No peat or muck presence A peat or muck presence
5.	Discharge in	nto Wetland – opportunity metric
		t in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples to discharges include presence of nearby septic tank, underground storage tank (UST), etc.
		Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
		potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)
6.	Land Use -	opportunity metric (skip for non-riparian wetlands)
	to assessment and within 2 w WS 5M	
	□A □A □B □E □C □C	B Confined animal operations (or other local, concentrated source of pollutants C ≥ 20% coverage of pasture
	□D □C □E □E □F □F	E ☐E ≥ 20% coverage of maintained grass/herb □F ≥ 20% coverage of clear-cut land
	□G □(Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed <u>or</u> hydrologic alterations that prevent drainage <u>and/or</u> overbank flow from affecting the assessment area.
7.	Wetland Act	ting as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands)
	⊠Yes	essment area within 50 feet of a tributary or other open water? □No If Yes, continue to 7b. If No, skip to Metric 8. If buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland.
	Record 7b. How m	d a note if a portion of the buffer has been removed or disturbed. Such of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
	□A ⊠B □C	≥ 50 feet From 30 to < 50 feet From 15 to < 30 feet
	□D □E	From 5 to < 15 feet < 5 feet or buffer bypassed by ditches
	7c. Tributa	ry width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
	_	i-feet wide
	⊠Yes 7e. Is strea	
8.	Wetland Wid	osed – adjacent open water with width ≥ 2500 feet <u>or</u> regular boat traffic. dth at the Assessment Area – wetland type/wetland complex condition metric (evaluate WT for all marshes and
	only)	loody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and
	the wetland o	complex at the assessment area (WC). See User Manual for WT and WC boundaries.
	□A □ <i>A</i> □B □E	
	c ⊠c	C From 50 to < 80 feet
		From 15 to < 30 feet
	□G □C	

4. Soil Texture/Structure – assessment area condition metric (skip for all marshes)

9.	Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)
	Answer for assessment area dominant landform. A Evidence of short-duration inundation (< 7 consecutive days) B Evidence of saturation, without evidence of inundation C Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)
10.	Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)
	Consider recent deposition only (no plant growth since deposition). A Sediment deposition is not excessive, but at approximately natural levels. B Sediment deposition is excessive, but not overwhelming the wetland. C Sediment deposition is excessive and is overwhelming the wetland.
11.	Wetland Size – wetland type/wetland complex condition metric
	Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC FW (if applicable) A A A ≥ 500 acres B B B From 100 to < 500 acres C C C From 50 to < 100 acres D D D From 25 to < 50 acres E E F From 10 to < 25 acres F F F F F F F F F F F F F F F F F F F
12.	Wetland Intactness – wetland type condition metric (evaluate for Pocosins only)
	□A Pocosin is the full extent (≥ 90%) of its natural landscape size.□B Pocosin type is < 90% of the full extent of its natural landscape size.
13.	Connectivity to Other Natural Areas – landscape condition metric
	13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide. Well Loosely A A ≥ 500 acres B B From 100 to < 500 acres C From 50 to < 100 acres
	☐F ☐F Wetland type has a poor or no connection to other natural habitats
	13b. Evaluate for marshes only . ☐Yes ☐No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.
14	Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)
	May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Conside the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut select option "C." □ A 0 □ B 1 to 4 □ C 5 to 8
15.	Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)
	 □A Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area. □B Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing It also includes communities with exotics present, but not dominant, over a large portion of the expected strata. □C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non-characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.
16.	Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)
- •-	 □ A Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). □ B Vegetation diversity is low or has > 10% to 50% cover of exotics. □ C Vegetation is dominated by exotic species (> 50 % cover of exotics).

17.	Vegetative Structure – assessment area/wetland type condition metric
	17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
	17b. Evaluate percent coverage of assessment area vegetation for all marshes only . Skip to 17c for non-marsh wetlands. □A ≥ 25% coverage of vegetation □B < 25% coverage of vegetation
	17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately. AA WT
	© □A □A Canopy closed, or nearly closed, with natural gaps associated with natural processes □ □C □C Canopy present, but opened more than natural gaps
	Dense mid-story/sapling layer □ B □ B Moderate density mid-story/sapling layer □ C □ C Mid-story/sapling layer sparse or absent
	용
	은 집A 집A Dense herb layer 의 집B 집B Moderate density herb layer 집C 집C Herb layer sparse or absent
18.	Snags – wetland type condition metric (skip for all marshes)
	□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).□B Not A
19.	Diameter Class Distribution – wetland type condition metric (skip for all marshes)
	Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
	 Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH. Majority of canopy trees are < 6 inches DBH or no trees.
20.	Large Woody Debris – wetland type condition metric (skip for all marshes)
	Include both natural debris and man-placed natural debris. A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). B Not A
21.	Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)
	Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.
22.	Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)
	Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.
	A Overbank and overland flow are not severely altered in the assessment area.
	Overland flow is severely altered in the assessment area.
	D Both overbank and overland flow are severely altered in the assessment area.

Notes

Cows have access to wetland. Drain tile is below the wetland draining into the stream.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland Site Name			/2019
Wetland Type He	eadwater Forest	Assessor Name/Organization Emil	y Dunnigan /WLS
Notes on Field Assessme	ent Form (Y/N)		YES
Presence of regulatory co	onsiderations (Y/N)		NO
Wetland is intensively ma	anaged (Y/N)		NO
Assessment area is locat	ted within 50 feet of a natural tributa	ry or other open water (Y/N)	YES
Assessment area is subs	stantially altered by beaver (Y/N)		NO
Assessment area experie	ences overbank flooding during norr	nal rainfall conditions (Y/N)	NO
Assessment area is on a	coastal island (Y/N)		NO
Sub-function Rating Sun	nmarv		
Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	MEDIUM
	Retention	Condition	LOW
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	MEDIUM
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	MEDIUM
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ry		
Function	•	Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	MEDIUM
·		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

LICACE A	ID #	Accompanies	NCDWD#	1
USACE A		Downer Dro	NCDWR#	10/0/0010
	Project Nan		Date of Evaluation	10/2/2019
•			Wetland Site Name	W6B
Wetland Type			Assessor Name/Organization	Emily Dunnigan/WLS
Leve	el III Ecoregio		Nearest Named Water Body	Banner Branch
	River Bas		USGS 8-Digit Catalogue Unit	03010103
	Coun		NCDWR Region	Winston-Salem
	Yes 🛛 N	No Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.528942, -80.209730
Please cir	cle and/or m		ot be within the assessment area) stressors is apparent. Consider departure finclude, but are not limited to the following.	from reference, if appropriate, in
		modifications (examples: ditches, dams, b		
			xamples: discharges containing obvious pollu	utants, presence of nearby septic
		ground storage tanks (USTs), hog lagoons		71
			ality, insect damage, disease, storm damage	, salt intrusion, etc.)
· 1	Habitat/plant	community alteration (examples: mowing,	, clear-cutting, exotics, etc.)	,
Is the ass	sessment ar	ea intensively managed? Yes	No	
	ry Consider Anadromous		valuated? ⊠Yes □No If Yes, check all that	at apply to the assessment area.
. —		otected species or State endangered or three	eatened species	
🗆		rian buffer rule in effect	•	
		ary Nursery Area (PNA)		
l □ F	Publicly own	ed property		
1 🗆 1		of Coastal Management Area of Environm		_
			upplemental classifications of HQW, ORW,	or Trout
		NCNHP reference community		
	Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed	sted stream	
What type	e of natural	stream is associated with the wetland, i	f any? (check all that apply)	
	Blackwater		· ···· (······ ···· ····· ···· ··· ···	
_	Brownwater			
		check one of the following boxes)	unar ☐ Wind ☐ Both	
. —	,		ana Li boni	
le the se-	accment -	on an a constal island?		
Is the ass	sessment ar	ea on a coastal island? 🔲 Yes 🛛		
				☐ Yes ⊠ No
Is the ass	essment ar	ea's surface water storage capacity or d	No luration substantially altered by beaver?	
Is the ass Does the	essment ar assessmen	ea's surface water storage capacity or d t area experience overbank flooding du	No No	
Is the ass Does the 1. Groun	sessment ar assessmen ad Surface C	ea's surface water storage capacity or o t area experience overbank flooding du Condition/Vegetation Condition – assess	No luration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric	No
Is the ass Does the 1. Groun Check	sessment ar assessmen ad Surface C a a box in ea	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess to column. Consider alteration to the gro	No luration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric ound surface (GS) in the assessment area ar	No No No No No No No No No No No No No N
Is the ass Does the 1. Groun Check assess	essment ar assessmen ad Surface C a a box in ea ement area.	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess the column. Consider alteration to the group Compare to reference wetland if applicable	No luration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric	No No No No No No No No No No No No No N
Is the ass Does the 1. Groun Check assess area ba	assessment ar assessment ar assessment area. assed on evice	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess to column. Consider alteration to the gro	No luration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric ound surface (GS) in the assessment area ar	No No No No No No No No No No No No No N
Is the ass Does the 1. Groun Check assess area ba	assessment ar assessmen ad Surface C a a box in ea sment area. ased on evic VS	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess the column. Consider alteration to the group Compare to reference wetland if applicable dence an effect.	No luration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric ound surface (GS) in the assessment area ar	No No No No No No No No No No No No No N
Is the ass Does the 1. Groun Check assess area ba GS A	assessment ar assessment area. assed on evice VS	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess the column. Consider alteration to the group Compare to reference wetland if applicable dence an effect. Not severely altered	No Iuration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric rund surface (GS) in the assessment area are e (see User Manual). If a reference is not app	No No vegetation structure (VS) in the plicable, then rate the assessment
Is the ass Does the 1. Groun Check assess area ba	assessment ar assessmen ad Surface C a a box in ea sment area. ased on evic VS	ea's surface water storage capacity or of tarea experience overbank flooding duration. Condition – assess the column. Consider alteration to the group Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the assessment.	No luration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric rund surface (GS) in the assessment area are e (see User Manual). If a reference is not app	No nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive
Is the ass Does the 1. Groun Check assess area ba GS A	assessment ar assessment area. assed on evice VS	ea's surface water storage capacity or of tarea experience overbank flooding duration. Condition – assess the column. Consider alteration to the group Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder training to the column of the second of the column of the second of the column of the colum	No luration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric rund surface (GS) in the assessment area are e (see User Manual). If a reference is not appeared to the compaction of	No Individual vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
Is the ass Does the 1. Groun Check assess area ba GS A	assessment ar assessment area. assed on evice VS	ea's surface water storage capacity or of tarea experience overbank flooding duration. Condition – assess the column. Consider alteration to the group Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traalteration examples: mechanical disturbar	No Juration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric rund surface (GS) in the assessment area are e (see User Manual). If a reference is not applicate the condition of the condition	No Individual vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
Is the ass Does the 1. Groun Check assess area ba GS A	assessment ar assessment area. assed on evice VS	ea's surface water storage capacity or of tarea experience overbank flooding duration. Condition – assess the column. Consider alteration to the group Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder training to the column of the second of the column of the second of the column of the colum	No Juration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric rund surface (GS) in the assessment area are e (see User Manual). If a reference is not applicate the condition of the condition	No Individual vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
Is the ass Does the 1. Groun Check assess area b: GS A B	assessment are assessment are a box in east area. assed on evice VS	ea's surface water storage capacity or of tarea experience overbank flooding duration. Condition – assess the column. Consider alteration to the group Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traalteration examples: mechanical disturbar	Iteration substantially altered by beaver? Iteration substantially altered by beaver? Iteration normal rainfall conditions? Yes Iteration with the second surface (GS) in the assessment area are (see User Manual). If a reference is not appropriately a second surface alteration exacts, bedding, fill, soil compaction, obvious noce, herbicides, salt intrusion [where appropriation)	No Individual vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure
Is the ass Does the 1. Groun Check assess area ba GS A B 2. Surface	assessment are assessment area. assed on evice VS	ea's surface water storage capacity or of tarea experience overbank flooding dure condition/Vegetation Condition – assess the column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traditeration examples: mechanical disturbandiversity [if appropriate], hydrologic alteration curvature of the service of	Iteration substantially altered by beaver? Iteration substantially altered by beaver? Iteration normal rainfall conditions? Yes Iteration with the assessment area are (see User Manual). If a reference is not applicate to the compaction of the	No nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less
Is the ass Does the 1. Groun Check assess area bi GS A B 2. Surface Check	assessment are assessment area. assed on evice VS ABB Ce and Sub-ce and Sub-ce a box in ea	ea's surface water storage capacity or of tarea experience overbank flooding dure condition/Vegetation Condition – assess the column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traalteration examples: mechanical disturbardiversity [if appropriate], hydrologic alterationsurface Storage Capacity and Duration ch column. Consider surface storage cap	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Found surface (GS) in the assessment area are Iteration exercises (ground surface alteration exercises, bedding, fill, soil compaction, obvious ance, herbicides, salt intrusion [where appropriation) — assessment area condition metric The active and duration (Surf) and sub-surface storage.	No nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub).
Is the ass Does the 1. Groun Check assess area bi GS A B 2. Surface Check Conside	assessment are assessment area. assed on evice VS ABB Ce and Sub-ce and Sub-ce abox in eader both increases	ea's surface water storage capacity or of tarea experience overbank flooding dure condition/Vegetation Condition – assess the column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traalteration examples: mechanical disturbard diversity [if appropriate], hydrologic alterations characteristic column. Consider surface storage capease and decrease in hydrology. A ditch see column.	Iuration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric rund surface (GS) in the assessment area are see User Manual). If a reference is not applicate to the decay of the seesment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious note, herbicides, salt intrusion [where approprion] - assessment area condition metric active and duration (Surf) and sub-surface stored to deserve the surface the surface the surface to deserve the surface that surface	No Indiversely No Indiversel
Is the ass Does the 1. Groun Check assess area bi GS A B 2. Surface Check Conside	assessment are assessment area. assed on evice VS ABB Ce and Sub-ce and Sub-ce abox in eader both increases	ea's surface water storage capacity or of tarea experience overbank flooding dure condition/Vegetation Condition – assess the column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traalteration examples: mechanical disturbard diversity [if appropriate], hydrologic alterations Column. Consider surface storage capacity and Duration checolumn. Consider surface storage capacity and decrease in hydrology. A ditch service of the column capacity and decrease in hydrology.	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Found surface (GS) in the assessment area are Iteration exercises (ground surface alteration exercises, bedding, fill, soil compaction, obvious ance, herbicides, salt intrusion [where appropriation) — assessment area condition metric The active and duration (Surf) and sub-surface storage.	No Indiversely No Indiversel
Is the ass Does the 1. Groun Check assess area bi GS A B 2. Surfac Check Consideep is	assessment are assessment area. assed on evidence of the second of the s	ea's surface water storage capacity or of tarea experience overbank flooding dure condition/Vegetation Condition – assess the column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traalteration examples: mechanical disturbard diversity [if appropriate], hydrologic alterations Column. Consider surface storage capacity and Duration checolumn. Consider surface storage capacity and decrease in hydrology. A ditch service of the column capacity and decrease in hydrology.	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Found surface (GS) in the assessment area are Seese User Manual). If a reference is not applicate, bedding, fill, soil compaction, obvious acce, herbicides, salt intrusion [where approprion] - assessment area condition metric acity and duration (Surf) and sub-surface stown of the surface of the	No Indiversely No Indiversel
Is the ass Does the 1. Groun Check assess area ba GS A B 2. Surface Check Consideep is Surf A B B	assessment are assessment area. assed on evid VS ABB Ce and Sub-ce and Sub-ce abox in eader both incress expected to Sub ABB	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess the column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traditeration examples: mechanical disturbard diversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration of Column. Consider surface storage cape ease and decrease in hydrology. A ditchest of affect both surface and sub-surface water water storage capacity and duration are not water storage capacity or duration are altered.	Iuration substantially altered by beaver? ring normal rainfall conditions? Yes rement area condition metric rund surface (GS) in the assessment area are re (see User Manual). If a reference is not app ressment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious race, herbicides, salt intrusion [where approprion) - assessment area condition metric racity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicab out altered. red, but not substantially (typically, not sufficed)	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It water only, while a ditch > 1 foot le.
Is the ass Does the 1. Groun Check assess area bi GS A B 2. Surface Check Consideep is Surf	assessment are assessment area. assed on evid VS ABB	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess the column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traditeration examples: mechanical disturband diversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration of Column. Consider surface storage cape ease and decrease in hydrology. A ditches to affect both surface and sub-surface water. Water storage capacity and duration are not water storage capacity or duration are altered.	Iuration substantially altered by beaver? ring normal rainfall conditions? Yes sment area condition metric rund surface (GS) in the assessment area are e (see User Manual). If a reference is not app ressment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious rice, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicab oot altered. ered, but not substantially (typically, not sufficients)	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It water only, while a ditch > 1 foot le.
Is the ass Does the 1. Groun Check assess area ba GS A B 2. Surface Check Consideep is Surf A B B	assessment are assessment area. assed on evid VS ABB Ce and Sub-ce and Sub-ce abox in eader both incress expected to Sub ABB	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess the column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traditeration examples: mechanical disturband diversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration of Column. Consider surface storage cape ease and decrease in hydrology. A ditches to affect both surface and sub-surface water. Water storage capacity and duration are not water storage capacity or duration are altered.	Iuration substantially altered by beaver? ring normal rainfall conditions? Yes rement area condition metric rund surface (GS) in the assessment area are re (see User Manual). If a reference is not app ressment area (ground surface alteration exacts, bedding, fill, soil compaction, obvious race, herbicides, salt intrusion [where approprion) - assessment area condition metric racity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicab out altered. red, but not substantially (typically, not sufficed)	nd vegetation structure (VS) in the policable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It water only, while a ditch > 1 foot le.
Is the ass Does the 1. Groun Check assess area back GS AB B 2. Surfact Check Consideep is Surf AB BB C	assessment ar assessment area. as box in east as as as as as as as as as as as as as	ea's surface water storage capacity or of tarea experience overbank flooding duration. Condition/Vegetation Condition – assess inch column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traditeration examples: mechanical disturbandiversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration ch column. Consider surface storage capease and decrease in hydrology. A ditch so affect both surface and sub-surface water water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subtex of the storage capacity or duration are subtex or duration, soil compact	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Found surface (GS) in the assessment area are Iteration exercises (ground surface alteration exercises, bedding, fill, soil compaction, obvious ace, herbicides, salt intrusion [where appropriation) - assessment area condition metric Found active and duration (Surf) and sub-surface states of the surface of the	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive a pollutants) (vegetation structure riate], exotic species, grazing, less prage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). The period of the control of the co
Is the ass Does the 1. Groun Check assess area ba GS A B 2. Surfac Check Consid deep is Surf A B C C C C C C C C C C C C C C C C C C	assessment ar assessment area. ased on evice VS A B B Ce and Subsequent area. ased on evice Subsequent area. Subsequent area and subsequent area area and subsequent area area area for both increases expected to Subsequent area area.	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess the column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the assisted sedimentation, fire-plow lanes, skidder translateration examples: mechanical disturband diversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration of the column. Consider surface storage capacity and decrease in hydrology. A ditchest of affect both surface and sub-surface water water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subjected by the compact of the column of the col	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Found surface (GS) in the assessment area are Iteration exercises (ground surface alteration exercises, bedding, fill, soil compaction, obvious ace, herbicides, salt intrusion [where appropriation) - assessment area condition metric Found acity and duration (Surf) and sub-surface stored to affect surface acity and deep is considered to affect surface acity and deep is considered to affect surface acity and the substantially (typically, not sufficient sufficient to acity and substantially (typically, not sufficient sufficient to acity and substantially altered (typically, alteration sufficient too, filling, excessive sedimentation, undergotype condition metric (skip for all marsher)	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Is the ass Does the 1. Groun Check assess area back GS A B 2. Surfact Consider deep is Surf A B C C C C C C C C C C C C C C C C C C	assessment ar assessment area. ased on evid VS A B B Ce and Sub-ca abox in earlier both incress expected to Sub A B CC Storage/Su Ca box in earlier b	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess the column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the assisted sedimentation, fire-plow lanes, skidder translateration examples: mechanical disturband diversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration of the column. Consider surface storage capacity and decrease in hydrology. A ditchest of affect both surface and sub-surface water water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subjected by the compact of the column of the col	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Found surface (GS) in the assessment area are Iteration exercises (ground surface alteration exercises, bedding, fill, soil compaction, obvious ace, herbicides, salt intrusion [where appropriation) - assessment area condition metric Found active and duration (Surf) and sub-surface states of the surface of the	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Is the ass Does the 1. Groun Check assess area back GS A B 2. Surfact Check Consideep is Surf A B C C C C C C C C C C C C C C C C C C	assessment ar assessment ar assessment area. ased on evid VS ABB Ce and Sub-ce and Sub-ce abox in early a box in early BB Co Storage/Sur a box in early BB	ea's surface water storage capacity or of tarea experience overbank flooding duration. Condition/Vegetation Condition – assess inch column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traditeration examples: mechanical disturbandiversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration ch column. Consider surface storage capease and decrease in hydrology. A ditch so affect both surface and sub-surface water water storage capacity and duration are not water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subject to the storage capacity or duration are altered water storage capacity or duration are subject to the appropriate storage capacity. Select the appropriate storage capacity and column.	Iteration substantially altered by beaver? Ining normal rainfall conditions? Sement area condition metric Fring normal rainfall conditions? Fring normal rainfall condition metric Fring normal rainfall condition metric acts. Fring normal rainfall condition metric acts. Fring normal rainfall condition metric acts. Fring normal rainfall condition metric Fring normal rainfall conditions. Fring normal rainfall conditions are acts. Fring normal rainfall conditions. Fring normal rainfall conditions? Fring normal rainfall conditio	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Is the ass Does the 1. Groun Check assess area back GS A B 2. Surfact Check Consideep is Surf A B C C C A 3a. Water Check A 3a.	assessment ar assessment area. as box in eastern a box in eastern both increased	ea's surface water storage capacity or of tarea experience overbank flooding duration. Condition/Vegetation Condition – assess inch column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traditeration examples: mechanical disturband diversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration ch column. Consider surface storage capacity and duration are not affect both surface and sub-surface water water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subjected to the storage capacity or duration are altered water storage capacity or duration are subjected to the storage capacity or duration are subjected to the storage capacity or duration are subjected to the storage capacity or duration are subjected to the surface Relief – assessment area/wetland arch column. Select the appropriate storage Majority of wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface relief – assessment area/wetland with depressions ables to the surface	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall conditions Fring normal	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Is the ass Does the 1. Groun Check assess area brown GS A B 2. Surfact Check Consideep is Surf A B C Check Consider A A A 3a.	assessment ar assessment area. as box in ease on evid VS AB Ce and Sub-ce and Sub-ce abox in ease der both incress expected to Sub AB BC Storage/Su A WT A A A B B B B	ea's surface water storage capacity or of tarea experience overbank flooding duration. Condition/Vegetation Condition – assess inch column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traditeration examples: mechanical disturbandiversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration ch column. Consider surface storage capacity and duration are not affect both surface and sub-surface water water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subjected by the storage capacity or duration are altered water storage capacity or duration are subjected by the storage capacity	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall conditions	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Is the ass Does the 1. Groun Check assess area brown GS A B 2. Surfact Check Consideep is Surf A B C Check Consider A A 3a.	assessment ar assessment area. as box in ease and Sub-ca a box in ease der both incress expected to Sub	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess inch column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder traditeration examples: mechanical disturband diversity [if appropriate], hydrologic alterations and decrease in hydrology. A ditch so affect both surface and sub-surface water water storage capacity and duration are now water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subjected by the storage capacity or duration are altered water storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are subjected by the storage capacity or duration are altered by the storage capacity or duration are subjected by the storage capacity or duration are altered by the storage capacity or duration are subjected by the sto	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall condition metric Fring normal rainfall conditions Fring normal	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Is the ass Does the 1. Groun Check assess area back GS A B 2. Surfact Check Consict deep is Surf A B CC 3. Water Check A 3a.	sessment ar assessment area. as box in ease don evice VS	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess the column. Consider alteration to the group Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered Severely altered over a majority of the assessed imentation, fire-plow lanes, skidder traditeration examples: mechanical disturband diversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration of Cholumn. Consider surface storage capacity and duration are not affect both surface and sub-surface water water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subject to a frace Relief – assessment area/wetland arch column. Select the appropriate storage Majority of wetland with depressions able of Majority of	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Yes Sement area condition metric Fring normal rainfall conditions? Fring norm	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Is the ass Does the 1. Groun Check assess area backs BB 2. Surface Check Consideep is Surf BB CC 3. Water Check AA 3a.	assessment ar assessment ar assessment area. ased on evid VS ABB BB	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess ich column. Consider alteration to the ground Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered over a majority of the ass sedimentation, fire-plow lanes, skidder tradition examples: mechanical disturband diversity [if appropriate], hydrologic alterations alteration examples: mechanical disturband diversity [if appropriate], hydrologic alterations and decrease in hydrology. A ditch so affect both surface and sub-surface water water storage capacity and duration are not water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subject to the appropriate storage capacity of water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subject to the appropriate storage capacity of wetland with depressions able to majority of wetland with depressions able to pond water < 3 inchest that maximum depth of inundation is great that maximum dept	Iteration substantially altered by beaver? Ining normal rainfall conditions? Yes Sement area condition metric Found surface (GS) in the assessment area are Iteration (GS) in the assessment area are Iteration executes (ground surface alteration executes, bedding, fill, soil compaction, obvious ace, herbicides, salt intrusion [where appropriation) - assessment area condition metric Iteration executes acide (GS) in the assessment area are acide (GS) in the assessment area are acide (GS) in the assessment area alteration (GV) - assessment area condition metric Iteration surface executes (GS) in the acide (TV) Iteration surface executes (TV) Iteration surface (TV)	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).
Is the ass Does the 1. Groun Check assess area back GS A B 2. Surface Check Consider GE Surf A B C Check Consider GE Surf A B C Check A 3a. 3b. 3b. 3b. 3b. 3b. 3b. 3b. 3c. assessment ar assessment ar assessment area. ased on evid VS A box in ear assed on evid VS B B B B C E and Sub- S expected to Sub B C C Storage/Sur A B B B B B B C C C B B Evidence B Evidence	ea's surface water storage capacity or of tarea experience overbank flooding duration/Vegetation Condition – assess the column. Consider alteration to the group Compare to reference wetland if applicable dence an effect. Not severely altered Severely altered Severely altered over a majority of the assessed imentation, fire-plow lanes, skidder traditeration examples: mechanical disturband diversity [if appropriate], hydrologic alterations. Surface Storage Capacity and Duration of Cholumn. Consider surface storage capacity and duration are not affect both surface and sub-surface water water storage capacity or duration are altered water storage capacity or duration are altered water storage capacity or duration are subject to a frace Relief – assessment area/wetland arch column. Select the appropriate storage Majority of wetland with depressions able of Majority of	Iteration substantially altered by beaver? Ining normal rainfall conditions? ☐ Yestern area condition metric Iteration surface (GS) in the assessment area are (see User Manual). If a reference is not applicate, bedding, fill, soil compaction, obvious nee, herbicides, salt intrusion [where appropriation] — assessment area condition metric acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicable of altered. Bered, but not substantially (typically, not sufficient tion, filling, excessive sedimentation, undergous type condition metric (skip for all marshed to pond water > 1 deep to pond water 6 inches to 1 foot deep to pond water 3 to 6 inches deep ter than 2 feet teen 1 and 2 feet	nd vegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive is pollutants) (vegetation structure riate], exotic species, grazing, less arage capacity and duration (Sub). It water only, while a ditch > 1 foot le. cient to change vegetation). It is to result in vegetation change pround utility lines).	

	Make soil ob	of rom each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. servations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional
	indicators. 4a. □A □B □C □D □D	Sandy soil Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features Loamy or clayey gleyed soil Histosol or histic epipedon
	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch
	4c. ⊠A □B	No peat or muck presence A peat or muck presence
5.	Discharge in	nto Wetland – opportunity metric
	of sub-surfac Surf Sub	
	⊠A ⊠ <i>A</i> □B □E	
	□c □(Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)
6.		opportunity metric (skip for non-riparian wetlands)
	to assessme	at apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining nt area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), miles and within the watershed draining to the assessment area (2M). 2M
	□A □A □B □E	B
		D □D ≥ 20% coverage of agricultural land (regularly plowed land) E □E ≥ 20% coverage of maintained grass/herb
	□G □G	
7.	Wetland Act	ing as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands)
		ssment area within 50 feet of a tributary or other open water?
	⊠Yes Wetlan	No If Yes, continue to 7b. If No, skip to Metric 8. d buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland.
	Record 7b. How m	l a note if a portion of the buffer has been removed or disturbed. uch of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make udgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
	□A □B	≥ 50 feet From 30 to < 50 feet
	⊠c □D	From 15 to < 30 feet From 5 to < 15 feet
	∏E 7c. Tributa	< 5 feet or buffer bypassed by ditches ry width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
	_	-feet wide ☐> 15-feet wide ☐ Other open water (no tributary present) ts of assessment area vegetation extend into the bank of the tributary/open water?
	⊠Yes	
	⊠Shel	tered – adjacent open water with width < 2500 feet <u>and</u> no regular boat traffic. osed – adjacent open water with width ≥ 2500 feet <u>or</u> regular boat traffic.
В.		Ith at the Assessment Area – wetland type/wetland complex condition metric (evaluate WT for all marshes and loody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest
	Check a box	in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and complex at the assessment area (WC). See User Manual for WT and WC boundaries.
	$\square A \qquad \square A$	A ≥ 100 feet
	□B □E	
	∏E ⊠E	From 30 to < 40 feet
	□F □F	
		From 5 to < 15 feet

4. Soil Texture/Structure – assessment area condition metric (skip for all marshes)

9.	Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)
	Answer for assessment area dominant landform. Answer for assessment area dominant landform. Evidence of short-duration inundation (< 7 consecutive days) Evidence of saturation, without evidence of inundation Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)
10.	Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)
	Consider recent deposition only (no plant growth since deposition). \[\begin{align*} \text{A} & Sediment deposition is not excessive, but at approximately natural levels. \[\begin{align*} \text{B} & Sediment deposition is excessive, but not overwhelming the wetland. \[\begin{align*} \text{C} & Sediment deposition is excessive and is overwhelming the wetland. \]
11.	Wetland Size – wetland type/wetland complex condition metric
	Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC FW (if applicable) A A A Soo acres B B From 100 to < 500 acres C C C From 50 to < 100 acres D D D From 25 to < 50 acres F From 10 to < 25 acres F From 5 to < 10 acres G G G G From 1 to < 5 acres H H H H H From 0.5 to < 1 acre II I From 0.1 to < 0.5 acre II From 0.01 to < 0.1 acre II I From 0.01 to < 0.1 acre II I From 0.01 to < 0.1 acre II I I From 0.01 to < 0.01 acre or assessment area is clear-cut
12.	Wetland Intactness – wetland type condition metric (evaluate for Pocosins only)
	 □A Pocosin is the full extent (≥ 90%) of its natural landscape size. □B Pocosin type is < 90% of the full extent of its natural landscape size.
12	Connectivity to Other Natural Areas – landscape condition metric
	13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide. Well Loosely A A ≥ 500 acres B B From 100 to < 500 acres C From 50 to < 100 acres D D From 10 to < 50 acres E E = E < 10 acres F Wetland type has a poor or no connection to other natural habitats 13b. Evaluate for marshes only.
	Yes No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.
14.	Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland) May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C." □ A 0 □ B 1 to 4 □ C 5 to 8
15.	Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)
	 □A Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area. □B Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata. □C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non-characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.
16.	Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)
	 □A Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). □B Vegetation diversity is low or has > 10% to 50% cover of exotics. □C Vegetation is dominated by exotic species (> 50 % cover of exotics).

17.	Vegetative Structure – assessment area/wetland type condition metric
	17a. Is vegetation present? ☐ Yes ☐ No If Yes, continue to 17b. If No, skip to Metric 18.
	17b. Evaluate percent coverage of assessment area vegetation for all marshes only . Skip to 17c for non-marsh wetlands.
	17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately. AA WT
	☐ A Canopy closed, or nearly closed, with natural gaps associated with natural processes ☐ B ☐ B Canopy present, but opened more than natural gaps ☐ C ☐ C Canopy sparse or absent
	Dense mid-story/sapling layer □ B □ B Moderate density mid-story/sapling layer □ C □ C Mid-story/sapling layer sparse or absent
	용
	ୂ ⊠A ⊠A Dense herb layer P □B □B Moderate density herb layer □C □C Herb layer sparse or absent
18.	Snags – wetland type condition metric (skip for all marshes)
	□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).□B Not A
19.	Diameter Class Distribution – wetland type condition metric (skip for all marshes)
	Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
	 Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH. Majority of canopy trees are < 6 inches DBH or no trees.
20.	Large Woody Debris – wetland type condition metric (skip for all marshes)
	Include both natural debris and man-placed natural debris. ☐A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ☐B Not A
21.	Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)
	Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.
	□A □B □C □D
22.	Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)
	Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.
	A Overbank <u>and</u> overland flow are not severely altered in the assessment area.
	□B Overbank flow is severely altered in the assessment area.□C Overland flow is severely altered in the assessment area.
	D Both overbank and overland flow are severely altered in the assessment area.

Notes

degraded due to cow access. Some areas lack tree cover

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name W	/6B	Date of Assessment 10/2	2/2019
Wetland Type H	leadwater Forest A	ssessor Name/Organization Emi	ly Dunnigan/WLS
Notes on Field Assessm	nent Form (Y/N)		YES
Presence of regulatory	· ·		NO
Wetland is intensively m	·		NO
Assessment area is loca	ated within 50 feet of a natural tributary	or other open water (Y/N)	YES
Assessment area is sub	stantially altered by beaver (Y/N)		NO
Assessment area exper	iences overbank flooding during norma	al rainfall conditions (Y/N)	NO
Assessment area is on a	a coastal island (Y/N)		NO
Sub-function Rating Su	mmary		
Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	MEDIUM
	Sub-surface Storage and	Condition	ПСП
Water Quality	Retention Pathogen Change	Condition Condition	HIGH
vvaler Quality	Pathogen Change	Condition/Opportunity	MEDIUM HIGH
		Opportunity Presence (Y/N)	YES
	Particulate Change	Condition	HIGH
	Tarticulate Change	Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA NA
	Soluble Change	Condition	MEDIUM
	Coldbic Change	Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
	Physical Change	Condition	HIGH
	, s. san e	Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
	Pollution Change	Condition	NA
	g .	Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	MEDIUM
	Vegetation Composition	Condition	MEDIUM
unction Rating Summa	arv		
Function	··· ,	Metrics	Rating
Hydrology		Condition	HIGH
Water Quality		Condition	HIGH
·		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
Habitat		Condition	LOW

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

110	ACE AID	ц	Accompanies	NCDMP#	
US	SACE AID #		Downey Dress -t-	NCDWR#	10/2/2010
١.		oject Nam		Date of Evaluation	10/2/2019
l A	pplicant/Ov			Wetland Site Name	W7
		tland Typ		Assessor Name/Organization	Emily Dunnigan/WLS
		Ecoregio		Nearest Named Water Body	Banner Branch
	F	River Basi		USGS 8-Digit Catalogue Unit	03010103
		Count		NCDWR Region	Winston-Salem
	☐ Ye	s 🛛 N	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.531412, -80.209907
Ple red	idence of ease circle cent past (for tank surface). Sign tank surface assess egulatory (Ana Fed NCI Abu Pub	stressors and/or m or instance Irological in face and s cs, underg ns of vege bitat/plant sment are dromous lerally pro DWR ripan its a Prima blicly owner Division	affecting the assessment area (may not ake note on the last page if evidence of se, within 10 years). Noteworthy stressors in modifications (examples: ditches, dams, be sub-surface discharges into the wetland (extround storage tanks (USTs), hog lagoons, tation stress (examples: vegetation mortate community alteration (examples: mowing, the aintensively managed? Yes Autions - Were regulatory considerations evident buffer rule in effect ary Nursery Area (PNA) and property of Coastal Management Area of Environm	ot be within the assessment area) tressors is apparent. Consider departure from the include, but are not limited to the following. eaver dams, dikes, berms, ponds, etc.) tamples: discharges containing obvious polluter.) lity, insect damage, disease, storm damage clear-cutting, exotics, etc.) No aluated? Yes No If Yes, check all the eatened species	rom reference, if appropriate, in stants, presence of nearby septic , salt intrusion, etc.)
	Des Abu	ignated N its a 303(d	CNHP reference community l)-listed stream or a tributary to a 303(d)-lister associated with the wetland, if	sted stream	5. Hou.
	Blad Brod Tida	ckwater wnwater al (if tidal,	check one of the following boxes)	unar 🗌 Wind 🔲 Both	
					☐ Yes ☒ No
				uration substantially altered by beaver? ing normal rainfall conditions?	
<u> </u>					<u> </u>
1.	Check a lassessme area base	oox in eac ent area. (ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app	
	\boxtimes A	⊠A □B ;	sedimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropron)	s pollutants) (vegetation structure
2.	Surface a	ınd Sub-S	Surface Storage Capacity and Duration -	- assessment area condition metric	
	Consider deep is ex Surf ⊠A □B	both incre cpected to Sub ⊠A □B	ase and decrease in hydrology. A ditch saffect both surface and sub-surface water Water storage capacity and duration are no Water storage capacity or duration are alte	red, but not substantially (typically, not suffice	water only, while a ditch > 1 foot le. cient to change vegetation).
3.	_		examples: draining, flooding, soil compact	stantially altered (typically, alteration sufficiention, filling, excessive sedimentation, undergoutype condition metric (skip for all marshet)	round utility lines).
J.		_			
			En column. Select the appropriate storage	e for the assessment area (AA) and the wet	anu type (w I).
	⊠C □D	□A □B □C □D	Majority of wetland with depressions able to Majority of wetland with depressions able to Majority of wetland with depressions able to Depressions able to pond water < 3 inches	o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep deep	
	□в≀	Evidence	that maximum depth of inundation is greate that maximum depth of inundation is betwe that maximum depth of inundation is less t	een 1 and 2 feet	

	Make soil ob	of rom each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. servations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional
	indicators. 4a. ⊠A □B □C □D □E	Sandy soil Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features Loamy or clayey gleyed soil Histosol or histic epipedon
	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch
	4c. ⊠A □B	No peat or muck presence A peat or muck presence
5.	Discharge in	nto Wetland – opportunity metric
	of sub-surfac Surf Sub	
	⊠A ⊠ <i>A</i> □B □E	
	□c □c	Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)
6.		opportunity metric (skip for non-riparian wetlands)
	to assessment and within 2 ws 5M	at apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining at area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), miles and within the watershed draining to the assessment area (2M). 2M
	□A □A □B □E	B
		D
	□G □G	
7.	Wetland Act	ing as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands)
		ssment area within 50 feet of a tributary or other open water?
		□No If Yes, continue to 7b. If No, skip to Metric 8. d buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland.
	7b. How m	a note if a portion of the buffer has been removed or disturbed. uch of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make udgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
	□A ⊠B □C	≥ 50 feet From 30 to < 50 feet From 15 to < 30 feet
	□D □E	From 5 to < 15 feet < 5 feet or buffer bypassed by ditches
	7c. Tributa	ry width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
	_	-feet wide
	⊠Yes 7e. Is strea	□No im or other open water sheltered or exposed?
	⊠Shel	tered – adjacent open water with width < 2500 feet <u>and</u> no regular boat traffic. osed – adjacent open water with width ≥ 2500 feet <u>or</u> regular boat traffic.
8.		Ith at the Assessment Area – wetland type/wetland complex condition metric (evaluate WT for all marshes and loody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest
	Check a box	in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and complex at the assessment area (WC). See User Manual for WT and WC boundaries.
	\Box A \Box A	\(\gamma \geq 100\) feet
		From 40 to < 50 feet

4. Soil Texture/Structure – assessment area condition metric (skip for all marshes)

9.	Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)
	Answer for assessment area dominant landform. Answer for assessment area dominant landform. Evidence of short-duration inundation (< 7 consecutive days) Evidence of saturation, without evidence of inundation Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)
10.	Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)
	Consider recent deposition only (no plant growth since deposition). \[\begin{align*} \text{Sediment deposition is not excessive, but at approximately natural levels.} \] \[\begin{align*} \text{Sediment deposition is excessive, but not overwhelming the wetland.} \] \[\begin{align*} \text{Consider recent deposition is not excessive, but at approximately natural levels.} \] \[\begin{align*} \text{Sediment deposition is excessive and is overwhelming the wetland.} \]
11.	Wetland Size – wetland type/wetland complex condition metric
	Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC FW (if applicable) A A A ≥ 500 acres B B B From 100 to < 500 acres C C C From 50 to < 100 acres From 10 to < 25 acres F F F F F F F F F F F F F F F F F F F
12.	Wetland Intactness – wetland type condition metric (evaluate for Pocosins only)
	 □A Pocosin is the full extent (≥ 90%) of its natural landscape size. □B Pocosin type is < 90% of the full extent of its natural landscape size.
40	Connectivity to Other Natural Areas – landscape condition metric
	13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide. Well Loosely A A ≥ 500 acres B B From 100 to < 500 acres C C From 50 to < 100 acres D D From 10 to < 50 acres E E < < 10 acres F Wetland type has a poor or no connection to other natural habitats 13b. Evaluate for marshes only.
	Yes No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.
14.	Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland) May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C." □ A 0 □ B 1 to 4 □ C 5 to 8
15.	Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)
	 □A Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area. □B Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata. □C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non-characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.
16.	Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)
	 □A Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). □B Vegetation diversity is low or has > 10% to 50% cover of exotics. □C Vegetation is dominated by exotic species (> 50 % cover of exotics).

17.	Vegetative Structure – assessment area/wetland type condition metric			
	17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.			
	17b. Evaluate percent coverage of assessment area vegetation for all marshes only . Skip to 17c for non-marsh wetlands.			
	17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately. AA WT			
	© ☑A ☑A Canopy closed, or nearly closed, with natural gaps associated with natural processes ☐ ☐ ☐ ☐ Canopy present, but opened more than natural gaps ☐ ☐ ☐ Canopy sparse or absent			
	Dense mid-story/sapling layer □ B □ B Moderate density mid-story/sapling layer □ C □ C Mid-story/sapling layer sparse or absent			
	G □A □A Dense shrub layer □B □B Moderate density shrub layer □S □C □C Shrub layer sparse or absent			
	후 점 점 Dense herb layer 후 급B 급B Moderate density herb layer 급C 급C Herb layer sparse or absent			
18.	Snags – wetland type condition metric (skip for all marshes)			
	□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).□B Not A			
19.	Diameter Class Distribution – wetland type condition metric (skip for all marshes)			
	Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.			
	☐B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.☐C Majority of canopy trees are < 6 inches DBH or no trees.			
20.	Large Woody Debris – wetland type condition metric (skip for all marshes)			
	Include both natural debris and man-placed natural debris. ☐A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ☐B Not A			
21.	Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)			
	Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.			
22.	Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)			
	Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.			
	 ☑A Overbank <u>and</u> overland flow are not severely altered in the assessment area. ☐B Overbank flow is severely altered in the assessment area. 			
	C Overland flow is severely altered in the assessment area.			
	D Both overbank and overland flow are severely altered in the assessment area.			

Notes

Microstegium. Connected to stream. No cattle access

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name W			2/2019
Wetland Type He	eadwater Forest	Assessor Name/Organization Emi	ily Dunnigan/WLS
Notes on Field Assessme	ent Form (Y/N)		YES
Presence of regulatory co	onsiderations (Y/N)		NO
Wetland is intensively ma	anaged (Y/N)		NO
Assessment area is locat	ed within 50 feet of a natural tributa	ry or other open water (Y/N)	YES
Assessment area is subs	tantially altered by beaver (Y/N)		NO
Assessment area experie	ences overbank flooding during norr	mal rainfall conditions (Y/N)	NO
Assessment area is on a	coastal island (Y/N)		NO
Sub-function Rating Sun	nmarv		
Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	HIGH
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
	Particulate Change	Condition	HIGH
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
	Physical Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	HIGH
	Landscape Patch Structure	Condition	MEDIUM
	Vegetation Composition	Condition	MEDIUM
Function Rating Summa	rv		
Function	•	Metrics	Rating
Hydrology		Condition	HIGH
Water Quality		Condition	HIGH
,		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
Habitat		Condition	HIGH

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

110	NOE NID #	Accompanies	NCDMP#	1
US	SACE AID #	Donner Drow	NCDWR#	10/2/2010
_	Project Nan		Date of Evaluation	10/2/2019
l A	pplicant/Owner Nan		Wetland Site Name	W8
	Wetland Tyr		Assessor Name/Organization	Emily Dunnigan/WLS
	Level III Ecoregio		Nearest Named Water Body	Banner Branch
	River Bas		USGS 8-Digit Catalogue Unit	03010103
	Coun		NCDWR Region	Winston-Salem
	☐ Yes 🛛 N	lo Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.526936, -80.200528
Ple	ease circle and/or m		tressors is apparent. Consider departure f	rom reference, if appropriate, in
rec		ce, within 10 years). Noteworthy stressors		
		modifications (examples: ditches, dams, b	eaver dams, dikes, berms, ponds, etc.) amples: discharges containing obvious pollu	stanta processos of poorby contia
		ground storage tanks (USTs), hog lagoons,		nants, presence of flearby septic
			lity, insect damage, disease, storm damage	salt intrusion etc.)
	Habitat/plant	community alteration (examples: mowing,	clear-cutting exotics etc.)	, sait intrasion, etc.)
	•		-	
Is	the assessment ar	ea intensively managed? Yes	No	
			aluated? ⊠Yes □No If Yes, check all tha	at apply to the assessment area.
$\ \ $	Anadromous	าเรก otected species or State endangered or thre	estanad snacias	
		rian buffer rule in effect	saterieu species	
		ary Nursery Area (PNA)		
	Publicly own			
		of Coastal Management Area of Environm	ental Concern (AEC) (including buffer)	
			upplemental classifications of HQW, ORW,	or Trout
		NCNHP reference community		
		d)-listed stream or a tributary to a 303(d)-lis	sted stream	
_		stream is associated with the wetland, if	any r (check all that apply)	
	Blackwater			
	Brownwater	check one of the following boxes)	unar □ Wind □ Both	
╽╙	riuai (II liual,	check one of the following boxes)	unar 📙 Wind 📙 Both	
Is	the assessment ar	ea on a coastal island? 🔲 Yes 🛛	No	
le ·	the assessment ar	ea's surface water storage canacity or d	uration substantially altered by beaver?	☐ Yes ⊠ No
טט	es me assessmen	t area experience overbank flooding dur	ing normal rainfall conditions? Yes	⊠ No
1.	Ground Surface C	Condition/Vegetation Condition – assess	ment area condition metric	
	Check a box in ea	ch column. Consider alteration to the group	und surface (GS) in the assessment area ar	nd vegetation structure (VS) in the
			(see User Manual). If a reference is not app	
	area based on evid		(manusi). If a rotorotto to flot app	and the decomposition
	GS VS			
		Not severely altered		
	⊟в ⊟в	Severely altered over a majority of the asse	essment area (ground surface alteration exa	
	_		acks, bedding, fill, soil compaction, obvious	
			ce, herbicides, salt intrusion [where appropr	
		diversity [if appropriate], hydrologic alteration		
2.	Surface and Sub-	Surface Storage Capacity and Duration -	- assessment area condition metric	
۷.				
			acity and duration (Surf) and sub-surface sto	
			1 foot deep is considered to affect surface	
		о anect both surface and sub-surface water	. Consider tidal flooding regime, if applicab	ie.
	Surf Sub ⊠A ⊠A	Water storage capacity and duration are no	at altered	
	□B □B		or allered. Fred, but not substantially (typically, not suffi	cient to change vegetation)
			estantially altered (typically, alteration sufficients	
			ion, filling, excessive sedimentation, underg	
_	W-1 0:			
3.	=		type condition metric (skip for all marshe	
			e for the assessment area (AA) and the wet	ana type (vv I).
	AA WT	ch column. Select the appropriate storage	` '	
		-		
	AA WT	Majority of wetland with depressions able t	o pond water > 1 deep	
	AA WT 3a. □A □A □B □B	Majority of wetland with depressions able t Majority of wetland with depressions able t	o pond water > 1 deep o pond water 6 inches to 1 foot deep	
	AA WT 3a. □A □A	Majority of wetland with depressions able t	o pond water > 1 deep o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	
	AA WT 3a. □A □A □B □B □C □C □D □D	Majority of wetland with depressions able t Majority of wetland with depressions able t Majority of wetland with depressions able t Depressions able to pond water < 3 inches	o pond water > 1 deep o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep s deep	
	AA WT 3a. □A □A □B □B □C □C □D □D □D 3b. □A Evidence	Majority of wetland with depressions able t Majority of wetland with depressions able t Majority of wetland with depressions able t Depressions able to pond water < 3 inches that maximum depth of inundation is great	o pond water > 1 deep o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep s deep er than 2 feet	
	AA WT 3a.	Majority of wetland with depressions able t Majority of wetland with depressions able t Majority of wetland with depressions able t Depressions able to pond water < 3 inches	o pond water > 1 deep o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep c deep er than 2 feet een 1 and 2 feet	

	Make soil ob	of rom each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. servations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional
	indicators. 4a. □A □B □C □D □D	Sandy soil Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) Loamy or clayey soils not exhibiting redoximorphic features Loamy or clayey gleyed soil Histosol or histic epipedon
	4b. ⊠A □B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch
	4c. ⊠A □B	No peat or muck presence A peat or muck presence
5.	Discharge in	nto Wetland – opportunity metric
		in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples e discharges include presence of nearby septic tank, underground storage tank (UST), etc.
	⊠A ⊠A □B □E	
	□c □c	
6.	Land Use -	opportunity metric (skip for non-riparian wetlands)
	to assessme	at apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining at area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), miles and within the watershed draining to the assessment area (2M). 2M
	□A □A □B □E ⊠C ⊠C	B DB Confined animal operations (or other local, concentrated source of pollutants
		D
	Ğ Ğ	
7.	Wetland Act	ing as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands)
		ssment area within 50 feet of a tributary or other open water?
	⊠Yes Wetlan	□No If Yes, continue to 7b. If No, skip to Metric 8. d buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland.
	Record 7b. How m	a note if a portion of the buffer has been removed or disturbed. uch of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make
	buπer j ∏A ∏B	udgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.) ≥ 50 feet From 30 to < 50 feet
	□c ⊠D	From 15 to < 30 feet From 5 to < 15 feet
	∏E 7c. Tributa	< 5 feet <u>or</u> buffer bypassed by ditches ry width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
	_	-feet wide
	□Yes	⊠No
	⊠Shel	ım or other open water sheltered or exposed? tered – adjacent open water with width < 2500 feet <u>and</u> no regular boat traffic. osed – adjacent open water with width ≥ 2500 feet <u>or</u> regular boat traffic.
В.		Ith at the Assessment Area – wetland type/wetland complex condition metric (evaluate WT for all marshes and oody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest
	Check a box	in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and complex at the assessment area (WC). See User Manual for WT and WC boundaries.
	$\square A \qquad \square A$	\(\gamma \geq 100\) feet
	⊠E ⊠E	From 30 to < 40 feet

4. Soil Texture/Structure – assessment area condition metric (skip for all marshes)

9.	Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)
	Answer for assessment area dominant landform. □ A Evidence of short-duration inundation (< 7 consecutive days) □ B Evidence of saturation, without evidence of inundation □ C Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)
10.	Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)
	Consider recent deposition only (no plant growth since deposition). \[\textstyle A \text{Sediment deposition is not excessive, but at approximately natural levels.} \] \[\text{Sediment deposition is excessive, but not overwhelming the wetland.} \] \[\text{Consider recent deposition is not excessive, but at approximately natural levels.} \] \[\text{Sediment deposition is excessive and is overwhelming the wetland.} \]
11.	Wetland Size – wetland type/wetland complex condition metric
	Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC FW (if applicable) A A A ≥ 500 acres B B B From 100 to < 500 acres C C From 50 to < 100 acres D D D From 25 to < 50 acres F F F From 10 to < 25 acres F F F From 5 to < 10 acres G G G From 1 to < 5 acres H H H From 0.5 to < 1 acre XI XI From 0.1 to < 0.5 acre XI XI XI XI XI XI XI XI XI XI XI XI XI X
12	Wetland Intactness – wetland type condition metric (evaluate for Pocosins only)
	□ A Pocosin is the full extent (≥ 90%) of its natural landscape size. □ B Pocosin type is < 90% of the full extent of its natural landscape size.
13.	Connectivity to Other Natural Areas – landscape condition metric
	13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide. Well Loosely A A ≥ 500 acres B B From 100 to < 500 acres C C From 50 to < 100 acres D D From 10 to < 50 acres E C From 50 to < 100 acres F C C C Wetland type has a poor or no connection to other natural habitats
	13b. Evaluate for marshes only. ☐ Yes ☐ No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.
14.	Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)
	May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C." A 0 B 1 to 4 C 5 to 8
15.	Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)
	 ✓A Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area. ✓B Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata. ✓C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non-characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.
16.	Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)
	 □A Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). □B Vegetation diversity is low or has > 10% to 50% cover of exotics. □C Vegetation is dominated by exotic species (> 50 % cover of exotics).

17	Vege	atative St	ructure —	assessment area/wetland type condition metric
•••		Is vegeta	ation pres	
	17b.	Evaluate □A □B	≥ 25% c	coverage of assessment area vegetation for all marshes only . Skip to 17c for non-marsh wetlands. overage of vegetation overage of vegetation
		structur		each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider ace above the assessment area (AA) and the wetland type (WT) separately.
		©⊠A □B □C	⊠A □B □C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
	Mid-Story	□A ⊠B □C	□A ⊠B □C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
	Shrub	B □A B □C	□A ⊠B □C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
	Herb	A DB DC	⊠a □B □C	Dense herb layer Moderate density herb layer Herb layer sparse or absent
18.	Snag	js – wetla	and type	condition metric (skip for all marshes)
	□A ⊠B	Large Not A		more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
19.				oution – wetland type condition metric (skip for all marshes)
	⊠A	Majo pres	-	nopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are
	□B □C	Majo	rity of can	nopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH. nopy trees are < 6 inches DBH or no trees.
20.				wetland type condition metric (skip for all marshes)
	Inclu ⊠A □B		e logs (mo	oris and man-placed natural debris. Ore than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
21.	_			r Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)
				est describes the amount of interspersion between vegetation and open water in the growing season. Patterned d areas, while solid white areas indicate open water.
			□A	□B □C □D
		6		
22.	-	_		ty – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)
	Exan man-	nples of a made be	ctivities th rms. beav	at may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, er dams, and stream incision. Documentation required if evaluated as B, C, or D.
	\square A	Over	bank <u>and</u>	overland flow are not severely altered in the assessment area.
	⊠B □C	Over	land flow	r is severely altered in the assessment area. is severely altered in the assessment area.
	□D	Both	overbank	and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Water			0/2/2019
Wetland Type He	eadwater Forest	Assessor Name/Organization E	mily Dunnigan/WLS
Notes on Field Assessme	ent Form (Y/N)		NO
Presence of regulatory co	onsiderations (Y/N)		NO
Wetland is intensively ma	anaged (Y/N)		NO
Assessment area is locat	ted within 50 feet of a natural tributa	ry or other open water (Y/N)	YES
Assessment area is subs	stantially altered by beaver (Y/N)		NO
Assessment area experie	ences overbank flooding during norr	mal rainfall conditions (Y/N)	NO
Assessment area is on a	coastal island (Y/N)		NO
Sub-function Rating Sun	nmarv		
Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	MEDIUM
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N	l) <u>NO</u>
	Particulate Change	Condition	MEDIUM
		Condition/Opportunity	NA
		Opportunity Presence (Y/N	l) <u>NA</u>
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N	l) <u>NO</u>
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N	l) <u>NO</u>
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N	l) NA
Habitat	Physical Structure	Condition	HIGH
	Landscape Patch Structure	Condition	MEDIUM
	Vegetation Composition	Condition	HIGH
unction Rating Summa	rv		
Function	•	Metrics	Rating
Hydrology		Condition	HIGH
Water Quality		Condition	LOW
,		Condition/Opportunity	LOW
		Opportunity Presence (Y/N	
Habitat		Condition	HIGH

Appendix 9 – WOTUS Information

U.S. ARMY CORPS OF ENGINEERS

WILMINGTON DISTRICT

Action Id. SAW-2018-01760 County: Stokes U.S.G.S. Quad: NC-Nettleridge

NOTIFICATION OF JURISDICTIONAL DETERMINATION

Requestor: Jason and April Pendleton

Address: <u>P.O. Box 1000</u>

Lawsonville, NC 27022

Telephone Number: **336-601-1480**

E-mail: jpendleton.nc@outlook.com

Size (acres)38.2Nearest TownLawsonvilleNearest WaterwayBanner BranchRiver BasinRoanoke

USGS HUC 03010103 Coordinates Latitude: 36.525421

Longitude: -80.203265

Location description: The review area is located on the south side of NC Highway 704E; approximately 1.7-2.0 miles east of the intersection of NC Highway 704E and NC Highway 8. PINs: 6041-51-6912, 6041-54-2358, 6041-74-9397, 6041-63-2233, 6041-72-9563, 6041-42-1746. Reference review area description shown in Jurisdictional Determination Request package entitled "Figure 2, USGS Topographic Map".

Indicate Which of the Following Apply:

A. Preliminary Determination

can be verified by the Corps.

	There appear to be waters, including wetlands on the above described project area/property, that may be subject to Section 404 of the Clean Water Act (CWA)(33 USC § 1344) and/or Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403). The waters, including wetlands have been delineated, and the delineation has been verified by the Corps to be sufficiently accurate and reliable. The approximate boundaries of these waters are shown on the enclosed delineation map dated undated. Therefore this preliminary jurisdiction determination may be used in the permit evaluation process, including determining compensatory mitigation. For purposes of computation of impacts, compensatory mitigation requirements, and other resource protection measures, a permit decision made on the basis of a preliminary JD will treat all waters and wetlands that would be affected in any way by the permitted activity on the site as if they are jurisdictional waters of the U.S. This preliminary determination is not an appealable action under the Regulatory Program Administrative Appeal Process (Reference 33 CFR Part 331). However, you may request an approved JD, which is an appealable action, by contacting the Corps district for further instruction.
	There appear to be waters, including wetlands on the above described project area/property, that may be subject to Section 404 of the Clean Water Act (CWA)(33 USC § 1344) and/or Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403). However, since the waters, including wetlands have not been properly delineated, this preliminary jurisdiction determination may not be used in the permit evaluation process. Without a verified wetland delineation, this preliminary determination is merely an effective presumption of CWA/RHA jurisdiction over all of the waters, including wetlands at the project area, which is not sufficiently accurate and reliable to support an enforceable permit decision. We recommend that you have the waters, including wetlands on your project area/property delineated. As the Corps may not be able to accomplish this wetland delineation in a timely manner, you may wish to obtain a consultant to conduct a delineation that can be verified by the Corps.
В.	Approved Determination
	There are Navigable Waters of the United States within the above described project area/property subject to the permit requirements of Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403) and Section 404 of the Clean Water Act (CWA)(33 USC § 1344). Unless there is a change in law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.
	There are waters , including wetlands on the above described project area/property subject to the permit requirements of Section 404 of the Clean Water Act (CWA) (33 USC § 1344). Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.
	We recommend you have the waters, including wetlands on your project area/property delineated. As the Corps may not be able to accomplish this wetland delineation in a timely manner, you may wish to obtain a consultant to conduct a delineation that

SA	W-2018-01760 The waters, including wetlands on your project area/property have been delineated and the delineation has been verified by the Corps. The approximate boundaries of these waters are shown on the enclosed delineation map dated DATE. We strongly suggest you have this delineation surveyed. Upon completion, this survey should be reviewed and verified by the Corps. Once verified, this survey will provide an accurate depiction of all areas subject to CWA jurisdiction on your property which, provided there is no change in the law or our published regulations, may be relied upon for a period not to exceed five years.
	The waters, including wetlands have been delineated and surveyed and are accurately depicted on the plat signed by the Corps Regulatory Official identified below on <u>DATE</u> . Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.
	There are no waters of the U.S., to include wetlands, present on the above described project area/property which are subject to the permit requirements of Section 404 of the Clean Water Act (33 USC 1344). Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.
	The property is located in one of the 20 Coastal Counties subject to regulation under the Coastal Area Management Act (CAMA). You should contact the Division of Coastal Management in Morehead City, NC, at (252) 808-2808 to determine their requirements.
con plac con rega	cement of dredged or fill material within waters of the US, including wetlands, without a Department of the Army permit may stitute a violation of Section 301 of the Clean Water Act (33 USC § 1311). Placement of dredged or fill material, construction or cement of structures, or work within navigable waters of the United States without a Department of the Army permit may stitute a violation of Sections 9 and/or 10 of the Rivers and Harbors Act (33 USC § 401 and/or 403). If you have any questions arding this determination and/or the Corps regulatory program, please contact <u>Bryan Roden-Reynolds</u> at <u>704-510-1440</u> or <u>van.roden-reynolds@usace.army.mil</u> .
C.	Basis For Determination: <u>See the preliminary jurisdictional determination</u> <u>form dated 2/13/2020.</u>
D.	Remarks: None.
E.	Attention USDA Program Participants
ide: Act	s delineation/determination has been conducted to identify the limits of Corps' Clean Water Act jurisdiction for the particular site ntified in this request. The delineation/determination may not be valid for the wetland conservation provisions of the Food Security of 1985. If you or your tenant are USDA Program participants, or anticipate participation in USDA programs, you should request extified wetland determination from the local office of the Natural Resources Conservation Service, prior to starting work.
F.	Appeals Information (This information applies only to approved jurisdictional determinations as indicated in B. eve)
dete Not	s correspondence constitutes an approved jurisdictional determination for the above described site. If you object to this ermination, you may request an administrative appeal under Corps regulations at 33 CFR Part 331. Enclosed you will find a diffication of Appeal Process (NAP) fact sheet and request for appeal (RFA) form. If you request to appeal this determination you set submit a completed RFA form to the following address:
	US Army Corps of Engineers South Atlantic Division Attn: Phillip Shannin, Review Officer 60 Forsyth Street SW, Room 10M15 Atlanta, Georgia 30303-8801
und	order for an RFA to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal ler 33 CFR part 331.5, and that it has been received by the Division Office within 60 days of the date of the NAP. Should you ide to submit an RFA form, it must be received at the above address by Not applicable .

It is not necessary to submit an RFA form to the Division Office if you do not object to the determination in this correspondence.

Digitally signed by RODEN REYNOLDS.BRYAN.KENNETH.1263385574 Date: 2020.02.13 12:30:54 -05'00'

RODEN
REYNOLDS.BRYAN.KENNETH.1263385574

SAW-2018-01760

The Wilmington District is committed to providing the highest level of support to the public. To help us ensure we continue to do so, please complete the Customer Satisfaction Survey located at http://corpsmapu.usace.army.mil/cm apex/f?p=136:4:0

Copy furnished:

Agent: Water and Land Solutions

Kayne Van Stell

Address: 7721 Six Forks Road, Suite 130

Raleigh, NC 27615

Telephone Number: <u>919-818-8481</u>

E-mail: <u>kayne@waterlandsolutions.com</u>

Property Owner: <u>DTB Farms of Stokes County, LLC</u>

Anthony Boles

Address: <u>1133 Salty Lane</u>

Lawsonville, NC 27022

Telephone Number: <u>336-408-6907</u>

E-mail: gowatkins.on.behalf.of.wls@gmail.com

Property Owner: Gene Young

Gregory Young

Address: <u>2241 Moore Road</u>

Lawsonville, NC 27022

Telephone Number: <u>336-430-6805</u>

E-mail: <u>youngcw@bellsouth.net</u>

Property Owner: Gilmer O'Neil Watkins

Address: <u>0 Clark Road</u>

Lawsonville, NC 27022

Telephone Number: <u>336-817-6495</u>

E-mail: **gowatkins.on.behalf.of.wls@gmail.com**

NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL					
Applicant:, Jason and April Pendleton	File Number: SAW-2018-01760	Date: <u>02/24/2020</u>			
Attached is:	See Section below				
INITIAL PROFFERED PERMIT (Standard Perm	A				
PROFFERED PERMIT (Standard Permit or Lette	В				
PERMIT DENIAL	С				
APPROVED JURISDICTIONAL DETERMINATION		D			
PRELIMINARY JURISDICTIONAL DETERMINATION		Е			

SECTION I - The following identifies your rights and options regarding an administrative appeal of the above decision. Additional information may be found at or http://www.usace.army.mil/Missions/CivilWorks/RegulatoryProgramandPermits.aspx or the Corps regulations at 33 CFR Part 331.

A: INITIAL PROFFERED PERMIT: You may accept or object to the permit.

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- OBJECT: If you object to the permit (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section II of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections and may: (a) modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit should be issued as previously written. After evaluating your objections, the district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below.

B: PROFFERED PERMIT: You may accept or appeal the permit

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final
 authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your
 signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all
 rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the
 permit.
- APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- **C: PERMIT DENIAL:** You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.

D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information.

- ACCEPT: You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps within 60 days of the date of this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD.
- APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the district engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- **E: PRELIMINARY JURISDICTIONAL DETERMINATION**: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD.

proffered permit in clear concise statements. You may attac objections are addressed in the administrative record.)	11 &	2 3			
ADDITIONAL INFORMATION: The appeal is limited to a review of the administrative record, the Corps memorandum for the record of the appeal conference or meeting, and any supplemental information that the review officer has determined is needed to clarify the administrative record. Neither the appellant nor the Corps may add new information or analyses to the record. However, you may provide additional information to clarify the location of information that is already in the administrative record.					
POINT OF CONTACT FOR QUESTIONS OR INFORMAT	ΓΙΟΝ:				
If you have questions regarding this decision and/or the appeal process you may contact: District Engineer, Wilmington Regulatory Division Attn: Bryan Roden-Reynolds Charlotte Regulatory Office U.S Army Corps of Engineers 8430 University Executive Park Drive, Suite 615 Charlotte, North Carolina 28262	you have questions regarding this decision and/or the peal process you may contact: strict Engineer, Wilmington Regulatory Division tn: Bryan Roden-Reynolds arlotte Regulatory Office S Army Corps of Engineers 30 University Executive Park Drive, Suite 615 If you only have questions regarding the appeal process you may contact: Mr. Phillip Shannin, Administrative Appeal Review Officer CESAD-PDO U.S. Army Corps of Engineers, South Atlantic Division 60 Forsyth Street, Room 10M15 Atlanta, Georgia 30303-8801				
RIGHT OF ENTRY: Your signature below grants the right of entry to Corps of Engineers personnel, and any government consultants, to conduct investigations of the project site during the course of the appeal process. You will be provided a 15 day notice of any site investigation, and will have the opportunity to participate in all site investigations.					
Signature of appellant or agent.	Date:	Telephone number:			

For appeals on Initial Proffered Permits send this form to:

District Engineer, Wilmington Regulatory Division, Attn: Bryan Roden-Reynolds, 69 Darlington Avenue, Wilmington, North Carolina 28403

For Permit denials, Proffered Permits and Approved Jurisdictional Determinations send this form to:

SECTION II - REQUEST FOR APPEAL or OBJECTIONS TO AN INITIAL PROFFERED PERMIT

Division Engineer, Commander, U.S. Army Engineer Division, South Atlantic, Attn: Mr. Phillip Shannin, Administrative Appeal Officer, CESAD-PDO, 60 Forsyth Street, Room 10M15, Atlanta, Georgia 30303-8801 Phone: (404) 562-5137

PRELIMINARY JURISDICTIONAL DETERMINATION (PJD) FORM

BACKGROUND INFORMATION

- A. REPORT COMPLETION DATE FOR PJD: 02/24/2020
- **B. NAME AND ADDRESS OF PERSON REQUESTING PJD:**, Jason and April Pendleton, P.O. Box 1000, Lawsonville, NC 27022
- C. DISTRICT OFFICE, FILE NAME, AND NUMBER: Wilmington District, Banner Branch Mitigation Project, SAW-2018-01760
- **D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION:** The review area is located on the south side of NC Highway 704E; approximately 1.7-2.0 miles east of the intersection of NC Highway 704E and NC Highway 8. PINs: 6041-51-6912, 6041-54-2358, 6041-74-9397, 6041-63-2233, 6041-72-9563, 6041-42-1746. Reference review area description shown in Jurisdictional Determination Request package entitled "Figure 2, USGS Topographic Map".

(USE THE TABLE BELOW TO DOCUMENT MULTIPLE AQUATIC RESOURCES AND/OR AQUATIC RESOURCES AT DIFFERENT SITES)

State: NC County: Stokes City: Lawsonville Center coordinates of site (lat/long in degree decimal format): Latitude: 36.525421 Longitude: -80.203265

Universal Transverse Mercator:

Name of nearest waterbody: Banner Branch

- E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
- ☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 02/12/2020

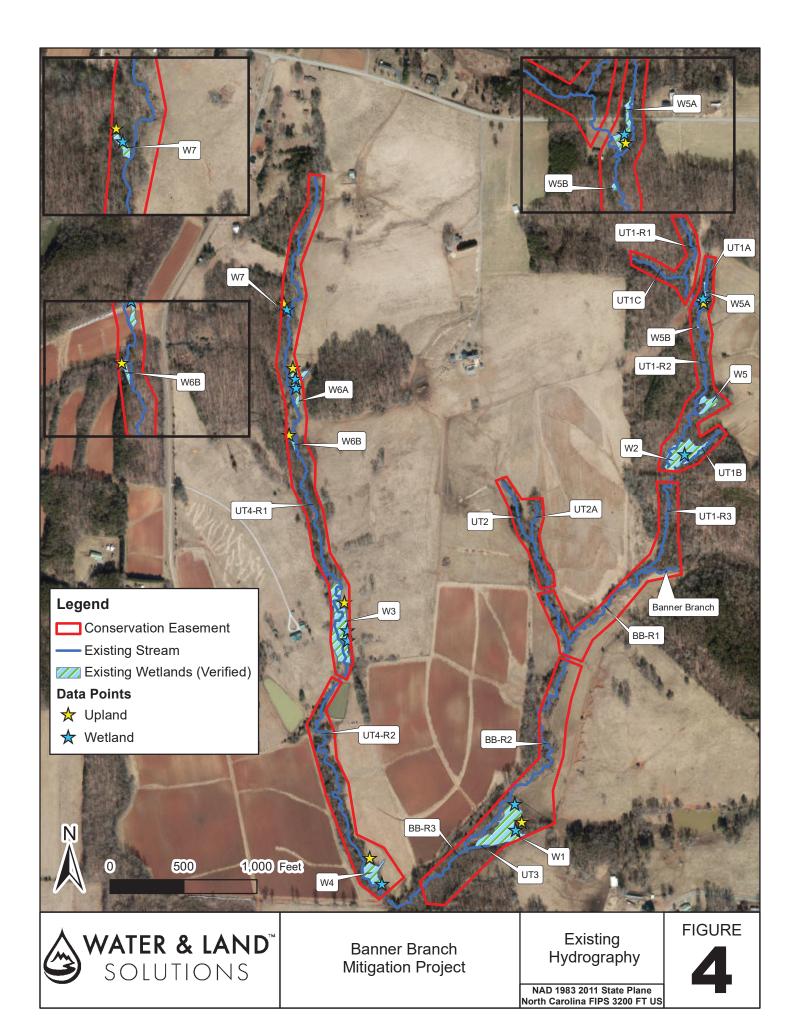
TABLE OF AQUATIC RESOURCES INREVIEW AREA WHICH "MAY BE" SUBJECT TO REGULATORY JURISDICTION.

Site Number	Latitude (decimal degrees)	Longitude (decimal	Estimated amount of aquatic resources in review area (acreage and linear feet, if applicable	Type of aquatic resources (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)
SEE ATTACHD TABLE					

- 1) The Corps of Engineers believes that there may be jurisdictional aquatic resources in the review area, and the requestor of this PJD is hereby advised of his or her option to request and obtain an approved JD (AJD) for that review area based on an informed decision after having discussed the various types of JDs and their characteristics and circumstances when they may be appropriate.
- 2) In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "pre- construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an AJD for the activity, the permit applicant is hereby made aware that: (1) the permit applicant has elected to seek a permit authorization based on a PJD, which does not make an official determination of jurisdictional aquatic resources; (2) the applicant has the option to request an AJD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an AJD could possibly result in less compensatory mitigation being required or different special conditions; (3) the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5)

undertaking any activity in reliance upon the subject permit authorization without requesting an AJD constitutes the applicant's acceptance of the use of the PJD; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a PJD constitutes agreement that all aquatic resources in the review area affected in any way by that activity will be treated as jurisdictional, and waives any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an AJD or a PJD, the JD will be processed as soon as practicable. Further, an AJD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331. If, during an administrative appeal, it becomes appropriate to make an official determination whether geographic jurisdiction exists over aquatic resources in the review area, or to provide an official delineation of jurisdictional aquatic resources in the review area, the Corps will provide an AJD to accomplish that result, as soon as is practicable. This PJD finds that there "may be" waters of the U.S. and/or that there "may be" navigable waters of the U.S. on the subject review area, and identifies all aquatic features in the review area that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA. Data reviewed for PJD (check all that apply)


Checked items should be included in subject file. Appropriately reference sources below where

indicated for all checked items:	
Maps, plans, plots or plat submitted by or on behalf of the PJD request Map: Figures 2-4	stor:
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
☑ Office concurs with data sheets/delineation report.	
Office does not concur with data sheets/delineation report. Ra	ationale:
☐ Data sheets prepared by the Corps:	
Corps navigable waters' study:	
U.S. Geological Survey Hydrologic Atlas:	
USGS NHD data.	
USGS 8 and 12 digit HUC maps.	
☑ U.S. Geological Survey map(s). Cite scale & quad name: Figure 2, U	SGS Topographic Map (1:24,000 Nettleridge,
NC)	
Natural Resources Conservation Service Soil Survey. Citation: Figur	e 3, NRCS Soil Map (Soil Survey of Stokes
County)	
National wetlands inventory map(s). Cite name:	_
State/local wetland inventory map(s):	
FEMA/FIRM maps:	
☐ 100-year Floodplain Elevation is: (National Geodetic	c Vertical Datum of 1929)
☐ Photographs: ☐ Aerial (Name & Date): Figure 4, Existing Hyd	lrology
or Other (Name & Date):	
Previous determination(s). File no. and date of response letter:	
☑ Other information (please specify): NCDWQ Stream Identification	Forms (Version 4.11) Dated 03/08/2018 and
03/22/2018	
IMPORTANT NOTE: The information recorded on this form has no verified by the Corps and should not be relied upon for later jurisdict RODEN REYNOLDS.BRYAN.KENNETH.126 3385574	
ENNETH.1263385574 Date: 2020.02.13 12:30:32 -05'00'	
2/13/2020 (REQU	ure and date of person requesting PJD UIRED, unless obtaining the signature is ticable) ¹

¹ Districts may establish timeframes for requester to return signed PJD forms. If the requester does not respond within the established time frame, the district may presume concurrence and no additional follow up is necessary prior to finalizing an action.

Feature	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resources in review area (acreage and linear feet, if applicable	Type of aquatic resources (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)
Stream UT1-R1	36.53319700	-80.20068300	612.5 linear feet	Non-wetland	404
Stream UT1-R2	36.53010600	-80.20034200	1915.4 linear feet	Non-wetland	404
Stream UT1-R3	36.52760600	-80.20105000	1081 linear feet	Non-wetland	404
Stream UT1A	36.53184400	-80.20022500	410.3 linear feet	Non-wetland	404
Stream UT1B	36.52900300	-80.20001400	391.3 linear feet	Non-wetland	404
Stream UT1C	36.53230300	-80.20140000	527.6 linear feet	Non-wetland	404
Stream UT2	36.52690600	-80.20406100	1346.7 linear feet	Non-wetland	404
Stream UT2A	36.52737500	-80.20411400	289.2 linear feet	Non-wetland	404
Stream UT3	36.52178900	-80.20294700	138.8 linear feet	Non-wetland	404
Stream BB-R1	36.52630000	-80.20209200	696 linear feet	Non-wetland	404
Stream BB-R2	36.52378300	-80.20397500	1759 linear feet	Non-wetland	404
Stream BB-R3	36.52053600	-80.39008900	1137 linear feet	Non-wetland	404
Stream UT4-R1	36.53078100	-80.20986700	5077.33 linear feet	Non-wetland	404
Stream UT4-R2	36.52152200	-80.20833600	1889 linear feet	Non-wetland	404
Wetland W1	36.52225000	-80.20449600	1.01 acres	Wetland	404

Feature	Latitude (decimal degrees)	Longitudo	Estimated amount of aquatic resources in review area (acreage and linear feet, if applicable	Type of aquatic resources (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)
Wetland W2	36.52881700	-80.20065800	0.8 acre	Wetland	404
Wetland W3	36.52545400	-80.20030700	1.05 acres	Wetland	404
Wetland W4	36.52104200	-80.20784000	0.32 acre	Wetland	404
Wetland W5	36.52916300	-80.20045300	0.2 acre	Wetland	404
Wetland W5A	36.53169600	-80.20030700	0.12 acre	Wetland	404
Wetland W5B	36.53121100	-80.20039500	0.01 acre	Wetland	404
Wetland W6A	36.52905300	-80.20971100	0.29 acre	Wetland	404
Wetland W6B	36.52901500	-80.20976500	0.05 acre	Wetland	404
Wetland W7	36.53149200	-80.20999400	0.04 acre	Wetland	404

Project/Site: Banner Branch Mitigation Site	_ City/County: Stokes		Sampling Date: 2018 03-09
Applicant/Owner: Water & Land Solutions		State: NC	Sampling Point: 14
Investigator(s): G Lankford	_ Section, Township, Ra	nge:	
			concave Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.522250		ng: <u>-80.204496</u>	Datum: WGS 84
Soil Map Unit Name: Codorus loam, 0 to 2 percent slopes,	occasionally flooded	MWI classific	cation:
Are climatic / hydrologic conditions on the site typical for this time of y	year? Yes ✓ No L	(If no, explain in R	Remarks.)
Are Vegetation Soil , or Hydrology significantl	ly disturbed? Are '	"Normal Circumstances" p	present? Yes 🔽 No 🔙
Are Vegetation, Soil, or Hydrology naturally p	oroblematic? (If ne	eeded, explain any answe	ers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showin	a sampling point l	ocations transacts	s important features etc
Outside The Property of The Pr			, important reatures, etc.
Hydrophytic Vegetation Present? Yes No	Is the Sampled	I Area	¬
Hydric Soil Present? Yes ✓ No	within a Wetlar	nd? Yes <u>√</u>	No
Wetland Hydrology Present? Yes ✓ No	<u> </u>		
Remarks:			
MLRA 136 Southern Piedmont			
wetland point for W1			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indica	ators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil	Cracks (B6)
Surface Water (A1) True Aquatic		Sparsely Ve	getated Concave Surface (B8)
_	lfide Odor (C1)	Drainage Pa	
	zospheres on Living Root		
	Reduced Iron (C4)		Water Table (C2)
	Reduction in Tilled Soils (_	
Drift Deposits (B3) Thin Muck Su	, ,		isible on Aerial Imagery (C9)
	n in Remarks)	_	Stressed Plants (D1) Position (D2)
Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7)		Shallow Aqu	` '
Water-Stained Leaves (B9)			aphic Relief (D4)
Aquatic Fauna (B13)		✓ FAC-Neutral	
Field Observations:			
Surface Water Present? Yes No Depth (inche	es):		
Water Table Present? Yes ✓ No Depth (inche			
Saturation Present? Yes V No Depth (inche	·	etland Hydrology Preser	nt? Yes ✓ No
(includes capillary fringe)	,	, ,,	
Describe Recorded Data (stream gauge, monitoring well, aerial pho	tos, previous inspections	s), if available:	
Remarks:			
Remarks.			

/EGETATION (Five Strata) – Use scientific na	Sampling Point: 14				
0.011 11	Absolute	Dominant		Dominance Test worksheet:	
Tree Stratum (Plot size: 30" radius		Species?	Status	Number of Dominant Species	
_{1.} Salix nigra	20	Yes	OBL		(A)
2				Total Number of Dominant	
3				4	B)
4				(
				Percent of Dominant Species That Are OBL_FACW_or_FAC: 100	(A (D)
5				That Are OBL, FACW, or FAC: 100 (A/B)
6	65			Prevalence Index worksheet:	
	00 :	= Total Cov	er	Total % Cover of: Multiply by:	
50% of total cover:	20% of	total cover:		OBL species x 1 =	
Sapling Stratum (Plot size: 30" radius					
1. Alnus serrulata	5	Yes	OBL	FACW species x 2 =	
2				FAC species x 3 =	
				FACU species x 4 =	
3				UPL species x 5 =	
4				Column Totals: (A)	(B)
5					
6				Prevalence Index = B/A =	-
	5	= Total Cov	er	Hydrophytic Vegetation Indicators:	
50% of total cover:	20% of	total cover:		✓ 1 - Rapid Test for Hydrophytic Vegetation	
Shrub Stratum (Plot size:)				2 - Dominance Test is >50%	
				3 - Prevalence Index is ≤3.0 ¹	
1				4 - Morphological Adaptations ¹ (Provide suppo	ortina
2				data in Remarks or on a separate sheet)	nung
3				Problematic Hydrophytic Vegetation ¹ (Explain))
4				= 1 100.0a.a. 1ya.opya.o vogotaa.o (2xp.a)	
5				¹ Indicators of hydric soil and wetland hydrology mu	4
6				be present, unless disturbed or problematic.	ISI
		= Total Cov	er	Definitions of Five Vegetation Strata:	
50% of total cover:	200/ of	total agyar:		Definitions of Five vegetation strata.	
	20% 01	total cover.		Tree – Woody plants, excluding woody vines,	
Herb Stratum (Plot size: 30" radius)	15	Vaa	EACH	approximately 20 ft (6 m) or more in height and 3 in	
1. Solidago canadensis	45	Yes	FACU	(7.6 cm) or larger in diameter at breast height (DBI	٦).
2. Leptochloa panicea	35	Yes	FACW	Sapling – Woody plants, excluding woody vines,	
3				approximately 20 ft (6 m) or more in height and les	S
4				than 3 in. (7.6 cm) DBH.	
5				Shrub – Woody plants, excluding woody vines,	
6				approximately 3 to 20 ft (1 to 6 m) in height.	
				Hard All back and a second for a superior of the standard second of	
7				Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody	ng
8				plants, except woody vines, less than approximatel	ly 3
9				ft (1 m) in height.	,
10				Woody vine All woody vines regardless of heigh	ht
11				Woody vine – All woody vines, regardless of heigh	IL.
	80	= Total Cov	er		
50% of total cover: 40	200/ of	total cover:	16		
	20 /6 01	iolai covei.			
Woody Vine Stratum (Plot size:)					
1					
2					
3					
4					
5.					
<u>. </u>		= Total Cov	or	Hydrophytic	
		- TOTAL COV	CI	Vegetation Present? Yes ✓ No	
50% of total cover:	20% of	total cover:		165 T NO	
Remarks: (Include photo numbers here or on a separate s	heet.)				

Profile Desc	ription: (Describe t	o the dep	th needed to docur	nent the i	indicator	or confirn	n the absence of	indicators.)
Depth	Matrix		Redo	x Feature	S			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-2	7.5YR 3/2	98					SL	
2-8	7.5YR 4/4	85	7.5YR 3/4	10	С	PL	CL	
8-16	7.5YR 4/2	83	7.5YR 4/6	15	С	PL	SL	
			7.5YR 3/4	4	С	M		
16-22	N 2.5/1		7.5YR 3/4	7	С	PL	SCL	
22-27	N 2.5/1	100					SL	
	-				-			
1Type: C-C	oncentration, D=Depl	etion RM-	-Reduced Matrix MS	S-Masker		aine	² Location: PL –	Pore Lining, M=Matrix.
Hydric Soil		elion, Kivi-	-Neduced Matrix, Mc	3=IVIASKE	J Sand Gra	aii i5.		ors for Problematic Hydric Soils ³ :
Histosol			☐ Dark Surface	(S7)				n Muck (A10) (MLRA 147)
	pipedon (A2)		Polyvalue Be		ce (S8) (N	ILRA 147.		est Prairie Redox (A16)
☐ Black Hi			Thin Dark Su					MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye			,		dmont Floodplain Soils (F19)
	d Layers (A5)		✓ Depleted Ma					MLRA 136, 147)
2 cm Mu	ick (A10) (LRR N)		Redox Dark	Surface (F	- 6)		Ver	y Shallow Dark Surface (TF12)
	d Below Dark Surface	(A11)	Depleted Dai				Oth	er (Explain in Remarks)
	ark Surface (A12)		✓ Redox Depre					
	Mucky Mineral (S1) (L	RR N,	☐ Iron-Mangan		es (F12) (LRR N,		
	147, 148)		MLRA 13	•	/MI DA 42	c 422)	³ Indias	store of budrophytic vegetation and
	Bleyed Matrix (S4) Ledox (S5)		Umbric Surfa Piedmont Flo					ntors of hydrophytic vegetation and nd hydrology must be present,
	Matrix (S6)		Red Parent N					s disturbed or problematic.
	_ayer (if observed):		rtou r drone n	natoriai (i		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		o dictarbed of problematic.
Type:								
	ches):						Hydric Soil P	resent? Yes Vo No
Remarks:	, <u>-</u>							
1								

Project/Site: Banner Branch Mitigation Site	City/County: Stokes	Sampling	Date: 2019 09-12
Applicant/Owner: Water & Land Solutions		State: NC Sampl	
Investigator(s): G Lankford	Section, Township, Range:	· <u></u> ·	
	ocal relief (concave, convex, non	e); concave-concave	Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.521760	Long: -80.	204466	Datum: WGS 84
Soil Map Unit Name: Codorus loam, 0 to 2 percent slopes, of		NWI classification:	
Are climatic / hydrologic conditions on the site typical for this time of y		 If no, explain in Remarks.)	
		Circumstances" present?	Yes No No
		xplain any answers in Rema	
	,	,	,
SUMMARY OF FINDINGS – Attach site map showing	g sampling point location	ns, transects, impor	tant features, etc.
Hydrophytic Vegetation Present? Yes No No No No No No No N	Is the Sampled Area		
Hydric Soil Present? Yes ✓ No	within a Wetland?	Yes <u>√</u> No	
Wetland Hydrology Present? Yes ✓ No	_		
Remarks:			
MLRA 136 Southern Piedmont			
wetland point for W1			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicators (mini	mum of two required)
Primary Indicators (minimum of one is required; check all that apply))	Surface Soil Cracks (B	66)
Surface Water (A1) True Aquatic I	Plants (B14)	Sparsely Vegetated Co	oncave Surface (B8)
High Water Table (A2) Hydrogen Sulf	ide Odor (C1)	Drainage Patterns (B1	0)
Saturation (A3) Oxidized Rhiz	ospheres on Living Roots (C3)	Moss Trim Lines (B16)	
Water Marks (B1) Presence of R	leduced Iron (C4)	Dry-Season Water Tab	ole (C2)
Sediment Deposits (B2) Recent Iron R	eduction in Tilled Soils (C6)	Crayfish Burrows (C8)	
Drift Deposits (B3)	rface (C7)	Saturation Visible on A	
Algal Mat or Crust (B4)	in Remarks)	Stunted or Stressed PI	` '
Iron Deposits (B5)	,	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3)	(()
✓ Water-Stained Leaves (B9)		Microtopographic Relie	
Aquatic Fauna (B13)		FAC-Neutral Test (D5)	
Field Observations:	-1.		
Surface Water Present? Yes No Depth (inches			
Water Table Present? Yes No Depth (inches			I
Saturation Present? Yes No Depth (inchest (includes capillary fringe)	3): Wetland H	ydrology Present? Yes	✓ No
Describe Recorded Data (stream gauge, monitoring well, aerial pho	os, previous inspections), if avail	lable:	
Remarks:			
Area is within a moderate drought in late summer.			

/EGETATION (Five Strata) – Use scientific na	Sampling Point: 205			
	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: 30" radius) 1. Acer rubrum	% Cover 60	Species? Yes	Status FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
2. Liriodendron tulipifera	5	No	FACU	111at7110 OBE,1710W, 011710.
<u> </u>				Total Number of Dominant Species Across All Strata: 3 (B)
3				Species Across All Strata: 3 (B)
···				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 100 (A/B)
6	65		-	Prevalence Index worksheet:
		= Total Cov		Total % Cover of: Multiply by:
50% of total cover: <u>33</u>	20% of	total cover:	13	OBL species x 1 =
Sapling Stratum (Plot size:)				FACW species x 2 =
1				FAC species x 3 =
2				FACU species x 4 =
3				
4				UPL species x 5 =(D)
5				Column Totals: (A) (B)
6				Prevalence Index = B/A =
		= Total Cov		Hydrophytic Vegetation Indicators:
500/ /				✓ 1 - Rapid Test for Hydrophytic Vegetation
50% of total cover:	20% of	total cover:	-	✓ 2 - Dominance Test is >50%
Shrub Stratum (Plot size:)				3 - Prevalence Index is ≤3.0 ¹
1				
2				4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
3				Problematic Hydrophytic Vegetation (Explain)
4				- Problematic Hydrophytic Vegetation (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
	:	= Total Cov	er	Definitions of Five Vegetation Strata:
50% of total cover:	20% of	total cover:		
Herb Stratum (Plot size: 30" radius)	2070 01	total cover.		Tree – Woody plants, excluding woody vines,
1. Impatiens capensis	15	Yes	FACW	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).
2. Woodwardia areolata	15	Yes	FACW	
3. Vernonia noveboracensis	2	No	FACW	Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less
3. Vernonia noveboracensis		140	TACT	than 3 in. (7.6 cm) DBH.
4				, ,
5				Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
6				approximately 3 to 20 ft (1 to 0 fil) in height.
7				Herb – All herbaceous (non-woody) plants, including
8				herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10				
11				Woody vine – All woody vines, regardless of height.
	32	= Total Cov	er	
50% of total cover: 16		total cover:	_	
	20 /6 01	total cover.		
Woody Vine Stratum (Plot size:)				
1			•	
2				
3				
4				
5				Hydrophytic
	:	= Total Cov	er	Vegetation
50% of total cover:	20% of	total cover:		Present? Yes ✓ No No
Remarks: (Include photo numbers here or on a separate s				

Profile Desc	ription: (Describe t	to the dep	th needed to docun	nent the	indicator	or confirm	the absence	of indicators.)
Depth	Matrix			x Feature				
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	<u>Remarks</u>
0-7	7.5YR 4/3	98	7.5YR 3/4	2			CL	
7-12	7.5YR 4/2	85	7.5YR 4/6	20	С	PL	CL	
12-18	7.5YR 5/1	83	7.5YR 5/6	15	С	PL	SC	
			2.5YR 5/1	2	С	М		
18-25	7.5YR 5/1		7.5YR 4/4	10	С	PL	SC	
-								
		etion, RM=	Reduced Matrix, MS	S=Masked	d Sand Gra	ains.		L=Pore Lining, M=Matrix.
Hydric Soil I			_					ators for Problematic Hydric Soils ³ :
Histosol	` '		Dark Surface		(00) (1)	U D A 447		cm Muck (A10) (MLRA 147)
☐ Histic Ep	stic (A3)		Polyvalue Be Thin Dark Su		. , .		148) L C	oast Prairie Redox (A16) (MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye			47, 140)	✓ P	iedmont Floodplain Soils (F19)
	Layers (A5)		✓ Depleted Mat		(- –)		_	(MLRA 136, 147)
	ck (A10) (LRR N)		Redox Dark S	,	,			ery Shallow Dark Surface (TF12)
	Below Dark Surface	e (A11)	Depleted Dar				.□ 0	ther (Explain in Remarks)
	irk Surface (A12) lucky Mineral (S1) (L	DD N	✓ Redox Depre✓ Iron-Mangane			DDM		
	iucky Mineral (51) (L . 147, 148)	.KK N,	MLRA 136		es (F12) (LKK N,		
	leyed Matrix (S4)		Umbric Surfa		(MLRA 13	6, 122)	³ Ind	icators of hydrophytic vegetation and
	edox (S5)		Piedmont Flo					tland hydrology must be present,
	Matrix (S6)		Red Parent M	1aterial (F	21) (MLR	A 127, 147	') unl	less disturbed or problematic.
	ayer (if observed):							
, , <u> </u>	y content (SC)							
Depth (inc	ches): 12 inches						Hydric Soil	Present? Yes V No No
Remarks:								

Project/Site: Banner Branch Mitigation Site	City/County: Stokes	Samplin	ng Date: 2019 09-12
Applicant/Owner: Water & Land Solutions	·	State: NC Samp	
Investigator(s): G Lankford	Section, Township, Range		
Landform (hillslope, terrace, etc.): floodplain Lo		(, none): concave-concave	Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.521242	Long:	-80.205335	Datum: WGS 84
Soil Map Unit Name: Codorus loam, 0 to 2 percent slopes, of	occasionally flooded	NWI classification:	
Are climatic / hydrologic conditions on the site typical for this time of y	vear? Yes ✓ No	(If no, explain in Remarks.)	
Are Vegetation Soil , or Hydrology significantly	y disturbed? Are "No	ormal Circumstances" present?	Yes ✓ No
Are Vegetation , Soil , or Hydrology naturally pr	roblematic? (If need	led, explain any answers in Rem	narks.)
SUMMARY OF FINDINGS – Attach site map showing	g sampling point loc	ations, transects, impo	rtant features, etc.
		· -	·
Hydrophytic Vegetation Present? Yes No ✓	Is the Sampled Ar	rea	
Hydric Soil Present? Yes No ✓	within a Wetland?	? Yes No _	
Wetland Hydrology Present? Yes No✓	<u>- </u>		
Remarks:			
MLRA 136 Southern Piedmont upland point for W4			
upland point for vv4			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicators (min	imum of two required)
Primary Indicators (minimum of one is required; check all that apply))	Surface Soil Cracks (E	B6)
Surface Water (A1) True Aquatic F	,	Sparsely Vegetated C	
High Water Table (A2) Hydrogen Sulf	` '	Drainage Patterns (B1	•
	cospheres on Living Roots (C		
	Reduced Iron (C4)	Dry-Season Water Ta	
	teduction in Tilled Soils (C6)		
Drift Deposits (B3) Algal Mat or Crust (B4) Thin Muck Su		Saturation Visible on A	
Iron Deposits (B5)	I III Nemanoj	Geomorphic Position	, ,
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3)	` '
Water-Stained Leaves (B9)		Microtopographic Reli	
Aquatic Fauna (B13)		FAC-Neutral Test (D5	
Field Observations:			
Surface Water Present? Yes No Depth (inches			
Water Table Present? Yes No Depth (inches	s): <u>-28</u>		
Saturation Present? Yes V No Depth (inches	s): <u>-28</u> Wetla	and Hydrology Present? Yes	No ✓
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photostructure)	tos previous inspections) if	f availahla:	
Describe Necorded Data (Stream gauge, mornioring won, dental pro-	los, previous irispectione, ii	i avaliabic.	
Remarks:			
Area in a moderate drought in late summer.			
Alea in a moderate drought in late sammer.			

- 20" radius	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 20" radius)		Species?		Number of Dominant Species
1. Liriodendron tulipifera	80	Yes	FACU	That Are OBL, FACW, or FAC: 2 (A)
2. Acer rubrum	5	No	FAC	Total Number of Dominant
3. Salix nigra	2	No	OBL	Species Across All Strata: 2 (B)
4				
5				Percent of Dominant Species That Are OBL FACW or FAC: 100 (A/B)
			·	That Are OBL, FACW, or FAC: 100 (A/B)
6	07		· ——	Prevalence Index worksheet:
	01	= Total Cov	/er	Total % Cover of: Multiply by:
50% of total cover: <u>44</u>	20% of	total cover:	<u>: 17 </u>	
Sapling Stratum (Plot size:)				
				FACW species $\frac{4}{45}$ x 2 = $\frac{8}{105}$
				FAC species 45 $\times 3 = 135$
2				FACU species <u>82</u> x 4 = <u>328</u>
3				UPL species x 5 =
4				Column Totals: 133 (A) 473 (B)
5				(5)
6				Prevalence Index = $B/A = 3.56$
		= Total Cov		Hydrophytic Vegetation Indicators:
F00/ of total across				1 - Rapid Test for Hydrophytic Vegetation
50% of total cover:	20% 01	total cover	·	2 - Dominance Test is >50%
Shrub Stratum (Plot size:)				
1		-		3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
3				
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				
				¹ Indicators of hydric soil and wetland hydrology must
6			·	be present, unless disturbed or problematic.
		= Total Cov	/er	Definitions of Five Vegetation Strata:
50% of total cover:	20% of	total cover	:	Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 20" radius				approximately 20 ft (6 m) or more in height and 3 in.
1. Microstegium vimineum	40	Yes	FAC	(7.6 cm) or larger in diameter at breast height (DBH).
2. Agrimonia parviflora	2	No	FACW	Continue Manda plants analystic successive
3. Elymus virginicus	2	No	FACW	Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less
5. <u>—1,111.00 vingilinous</u>				than 3 in. (7.6 cm) DBH.
4				
5				Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
6				approximately 3 to 20 ft (1 to 0 fil) in height.
7				Herb – All herbaceous (non-woody) plants, including
8			<u> </u>	herbaceous vines, regardless of size, and woody
9.				plants, except woody vines, less than approximately 3 ft (1 m) in height.
10			· ·	it (1 m) in noight.
11.				Woody vine – All woody vines, regardless of height.
11:	44	Tatal Car		
		= Total Cov	_	
50% of total cover: <u>22</u>	20% of	total cover:	<u>:</u> 9	
Woody Vine Stratum (Plot size: 20" radius				
1. Lonicera japonica	2		FACU	
2.				
_				
3				
4	· 			
5				Hydrophytic
	:	= Total Cov	/er	Vegetation
50% of total cover:	20% of	total cover		Present? Yes No
		.5.61 00 001		<u>l</u>
Remarks: (Include photo numbers here or on a separate s	siieet.)			

Profile Desc	ription: (Describe t	o the dep	th needed to docur	nent the	indicator	or confirn	n the absence	of indicators.)
Depth	Matrix		Redo	x Feature	s			
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-8	7.5YR 4/4	100					SL	
8-14	7.5YR 4/6	96	7.5YR 5/8	4	С	PL	SL	
14-22	7.5YR 4/2	85	7.5YR 4/6	15	С	PL	SL	
22-28	7.5YR 3/1	95	7.5YR 3/4	5	С	M	SL	
28-36	7.5YR 4/6	100					cS	gravel ~ 10%
				-				
					·			
-								
¹Type: C=Co	oncentration, D=Depl	etion, RM:	=Reduced Matrix, MS	S=Masked	d Sand Gra	ains.	² Location: Pl	L=Pore Lining, M=Matrix.
Hydric Soil I	ndicators:						Indica	ators for Problematic Hydric Soils ³ :
Histosol			Dark Surface	e (S7)			<u> </u>	cm Muck (A10) (MLRA 147)
Histic Ep	ipedon (A2)		Polyvalue Be	low Surfa	ice (S8) (N	ILRA 147,	. 148) \square C	oast Prairie Redox (A16)
Black His			Thin Dark Su			47, 148)	_	(MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye		(F2)		<u>Ц</u> Р	iedmont Floodplain Soils (F19)
	Layers (A5)		Depleted Ma		>			(MLRA 136, 147)
	ck (A10) (LRR N) I Below Dark Surface	(//1/)	Redox Dark	,	,			ery Shallow Dark Surface (TF12) hther (Explain in Remarks)
	rk Surface (A12)	(A11)	Redox Depre					The (Explain in Kemarks)
	lucky Mineral (S1) (L	RR N.	☐ Iron-Mangan			RR N.		
	147, 148)	,	MLRA 13		, ,	,		
	leyed Matrix (S4)		Umbric Surfa	•	(MLRA 13	6, 122)	³ Ind	icators of hydrophytic vegetation and
	edox (S5)		Piedmont Flo	odplain S	Soils (F19)	(MLRA 14	18) we	tland hydrology must be present,
	Matrix (S6)		Red Parent N	Material (F	21) (MLR	A 127, 147	7) unl	less disturbed or problematic.
Restrictive L	.ayer (if observed):							
Type:								
Depth (inc	ches):		<u> </u>				Hydric Soil	Present? Yes No
Remarks:								

Project/Site: Banner Branch Mitigation Site	_ City/County: Stokes	Sampling I	Date: 2019 09-30
Applicant/Owner: Water & Land Solutions		State: NC Samplin	g Point: 248
Investigator(s): G Lankford	_ Section, Township, Range:		
	_ocal relief (concave, convex, none	e): concave-concave	Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.52881			Datum: WGS 84
Soil Map Unit Name: Fairview-Poplar Forest complex, 15 to		NWI classification:	<u> </u>
Are climatic / hydrologic conditions on the site typical for this time of		f no, explain in Remarks.)	
	,	Circumstances" present? You	es 🗸 No
		plain any answers in Remar	
, com , or rivarology materially p	in needed, ex	tpiani any anowero in itema	No.)
SUMMARY OF FINDINGS – Attach site map showing	ng sampling point location	ns, transects, importa	ant features, etc.
Hydrophytic Vegetation Present? Yes No No	Is the Sampled Area		
Hydric Soil Present? Yes ✓ No	within a Wetland?	Yes <u>√</u> No <u></u>	
Wetland Hydrology Present? Yes ✓ No	1		
Remarks:	- 1		
MLRA 136 Southern Piedmont			
wetland data pt for W2			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicators (minim	um of two required)
Primary Indicators (minimum of one is required; check all that apply		Surface Soil Cracks (B6)	
Surface Water (A1) True Aquatic		Sparsely Vegetated Con	
	Ilfide Odor (C1)	✓ Drainage Patterns (B10)	
	zospheres on Living Roots (C3)	Moss Trim Lines (B16)	
	Reduced Iron (C4)	Dry-Season Water Table	e (C2)
	Reduction in Tilled Soils (C6)	Crayfish Burrows (C8)	(0=)
Drift Deposits (B3)		Saturation Visible on Ae	rial Imagery (C9)
	in in Remarks)	Stunted or Stressed Plar	
Iron Deposits (B5)	·	✓ Geomorphic Position (D2	
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3)	
Water-Stained Leaves (B9)		Microtopographic Relief	(D4)
Aquatic Fauna (B13)		FAC-Neutral Test (D5)	
Field Observations:			
Surface Water Present? Yes No Depth (inches	es):		
Water Table Present? Yes No V Depth (inches	es):	г	
Saturation Present? Yes No Depth (inche	es): Wetland Hy	ydrology Present? Yes 💄	✓ No
(includes capillary fringe)		ahla.	
Describe Recorded Data (stream gauge, monitoring well, aerial pho	otos, previous inspections), ir avail	able:	
Remarks:			
Area above obstructed crossing culvert and wetland is	neavily impacted by livesto	OCK.	

EGETATION (Five Strata) – Use scientific na	Sampling Point: 248			
	Absolute			Dominance Test worksheet:
Tree Stratum (Plot size:)		Species?		Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
1				That Are OBL, FACW, or FAC: 3 (A)
2				Total Number of Dominant Species Across All Strata: 3 (B)
3				Species Across All Strata: 3 (B)
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 100 (A/B)
6		= Total Cov		Prevalence Index worksheet:
				Total % Cover of: Multiply by:
50% of total cover:	20% of	total cover:		OBL species x 1 =
Sapling Stratum (Plot size:)				FACW species x 2 =
1				FAC species x 3 =
2				FACU species x 4 =
3				UPL species x 5 =
4				Column Totals: (A) (B)
5	. ———			
6				Prevalence Index = B/A =
	:	= Total Cov	er	Hydrophytic Vegetation Indicators:
50% of total cover:	20% of	total cover:		1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size: 20" radius				✓ 2 - Dominance Test is >50%
1. Alnus serrulata	25	Yes	OBL	3 - Prevalence Index is ≤3.0 ¹
2. Acer rubrum	10	Yes	FAC	4 - Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
3				Problematic Hydrophytic Vegetation ¹ (Explain)
4				
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
		= Total Cov		Definitions of Five Vegetation Strata:
50% of total cover: 18	20% of	total cover:	7	Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 20" radius)				approximately 20 ft (6 m) or more in height and 3 in.
1. Microstegium vimineum	70	Yes	FAC	(7.6 cm) or larger in diameter at breast height (DBH).
2. Impatiens capensis	10	No	FACW	Sapling – Woody plants, excluding woody vines,
3. Panicum anceps	5	No	FAC	approximately 20 ft (6 m) or more in height and less
_{4.} Carex lurida	5	No	OBL	than 3 in. (7.6 cm) DBH.
5				Shrub – Woody plants, excluding woody vines,
6				approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
8				herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10				Woody vine – All woody vines, regardless of height.
11				Troody Tillo 7th Woody Tillos, regardless of Height.
	90	= Total Cov	er	
50% of total cover: 45	20% of	total cover:	18	
Woody Vine Stratum (Plot size:)				
1				
2	· <u> </u>			
3				
4				
5				
		= Total Cov	er	Hydrophytic Vegetation
500/ of total cover				Present? Yes No No
50% of total cover:		ioiai cover:		
Remarks: (Include photo numbers here or on a separate s	sileet.)			

Profile Desc	ription: (Describe t	o the dep	th needed to docum	nent the i	ndicator	or confirm	the absence	of indicators.)
Depth	Matrix	•	Redo	x Feature	S			,
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-6	7.5YR 4/2	100	7.5YR 4/6	20	С	PL	SCL	
6-11	7.5YR 4/1	90	7.5YR 4/6	20	С	PL	SCL	
11-20	N 6/-	90	7.5YR 4/6	35	С	PL/M	SC	
	-							
	·							
					-			
	oncentration, D=Depl	etion, RM=	Reduced Matrix, MS	S=Masked	d Sand Gra	ains.	² Location: PL	=Pore Lining, M=Matrix.
Hydric Soil I								tors for Problematic Hydric Soils ³ :
Histosol			Dark Surface		(00) (8)	U DA 447		cm Muck (A10) (MLRA 147)
☐ Black Hi	oipedon (A2)		Polyvalue Be Thin Dark Su				148)	past Prairie Redox (A16) (MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye			47, 140)	√ pi	edmont Floodplain Soils (F19)
	Layers (A5)		Depleted Ma	,	1 2)		<u> </u>	(MLRA 136, 147)
	ick (A10) (LRR N)		Redox Dark		-6)		□ Ve	ery Shallow Dark Surface (TF12)
	Below Dark Surface	e (A11)	Depleted Dar	k Surface	(F7)			ther (Explain in Remarks)
_	ark Surface (A12)		✓ Redox Depre					
	lucky Mineral (S1) (L	RR N,	Iron-Mangan		es (F12) (LRR N,		
	147, 148)		MLRA 13	•			3	
	Sleyed Matrix (S4)		Umbric Surfa					cators of hydrophytic vegetation and
	edox (S5) Matrix (S6)		☐ Piedmont Flo					tland hydrology must be present, ess disturbed or problematic.
	_ayer (if observed):		Red Falelit is	nateriai (i	ZI) (WILK	H 127, 147	Ulli	ess disturbed of problematic.
Type:	-ayer (ii observea).							
Depth (inc	ches).						Hydric Soil	Present? Yes No
Remarks:							Tiyano con	100 <u>100 100 100 100 100 100 100 100 100</u>
Nemaiks.								

Project/Site: Banner Branch Mitigation Site	City/County: Stokes	Samplin	g Date: 2019 10-10
Applicant/Owner: Water & Land Solutions			ling Point: 255
Investigator(s): G Lankford	Section, Township, Range:	· ·	·
• ()	ocal relief (concave, convex, non	e): concave-concave	Slope (%): <u>~2</u> %
Subregion (LRR or MLRA): LRR P Lat: 36.529163	Long: -80.	200453	Datum: WGS 84
Soil Map Unit Name: Fairview-Poplar Forest complex, 15 to			
Are climatic / hydrologic conditions on the site typical for this time of y		If no, explain in Remarks.)	
		Circumstances" present?	Yes ✓ No
		xplain any answers in Rem	narks.)
SUMMARY OF FINDINGS – Attach site map showing	g sampling point location	ns, transects, impor	tant features, etc.
Hudaanhatia Vanatatian Brasant?			
Hydrophytic Vegetation Present? Yes Hydric Soil Present? Yes No ✓ No ✓	Is the Sampled Area within a Wetland?	Yes No	$\overline{}$
Wetland Hydrology Present? Yes No ✓	_ within a wettand:	162 NO_	<u> </u>
Remarks:	-		
MLRA 136 Southern Piedmont			
upland data point for W5			
Spraint asia point is: 115			
HYDROLOGY			
Wetland Hydrology Indicators:	•	Secondary Indicators (mini	• •
Primary Indicators (minimum of one is required; check all that apply)		Surface Soil Cracks (E	
Surface Water (A1) True Aquatic F	,	Sparsely Vegetated Co	
High Water Table (A2) Hydrogen Sulf	, ,	Drainage Patterns (B1	•
	ospheres on Living Roots (C3)	Moss Trim Lines (B16)	
	deduced Iron (C4)	Dry-Season Water Tal	
	eduction in Tilled Soils (C6)	Crayfish Burrows (C8) Saturation Visible on A	
Drift Deposits (B3) Algal Mat or Crust (B4) Thin Muck Sur		Stunted or Stressed P	
Iron Deposits (B5)	iii Kemarka)	Geomorphic Position (` '
Inundation Visible on Aerial Imagery (B7)	, and the second second second second second second second second second second second second second second se	Shallow Aquitard (D3)	` '
Water-Stained Leaves (B9)		Microtopographic Relie	
Aquatic Fauna (B13)		FAC-Neutral Test (D5)	
Field Observations:		<u> </u>	
Surface Water Present? Yes No Depth (inches	s):		
Water Table Present? Yes No Depth (inches			
Saturation Present? Yes V No Depth (inches		ydrology Present? Yes	No ✓
(includes capillary fringe)			
Describe Recorded Data (stream gauge, monitoring well, aerial phot	os, previous inspections), if avail	lable:	
Remarks:			
Remarks.			

/EGETATION (Five Strata) – Use scientific n	ames of	plants.		Sampling Point: 255
20" radius	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 30" radius) 1. Acer rubrum	% Cover 15	Species? Yes	Status FAC	Number of Dominant Species
**	10	Yes	FACU	That Are OBL, FACW, or FAC: 4 (A)
2. Liriodendron tulipifera 3. Prunus serotina	4	No	FACU	Total Number of Dominant
٠ <u></u>	-	-		Species Across All Strata: 6 (B)
4				Percent of Dominant Species
5	-	-		That Are OBL, FACW, or FAC: 67 (A/B)
6				Prevalence Index worksheet:
	29	= Total Cov	er	Total % Cover of: Multiply by:
50% of total cover: 15	20% of	total cover:	6	OBL species x 1 =
Sapling Stratum (Plot size:)				FACW species x 2 =
1				FAC species x 3 =
2				
3				FACU species x 4 =
4				UPL species x 5 =
5				Column Totals: (A) (B)
6				Prevalence Index = B/A =
		= Total Cov	er	Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
50% of total cover:	20% 01	total cover:		2 - Dominance Test is >50%
Shrub Stratum (Plot size: 30" radius 1. Ligustrum sinense	2	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
1. Elgustrum sinense 2. Carpinus caroliniana	2	Yes	FAC	4 - Morphological Adaptations ¹ (Provide supporting
	1	Yes		data in Remarks or on a separate sheet)
3. Fraxinus pennsylvanica		162	FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
4				
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
	5	= Total Cov	er	Definitions of Five Vegetation Strata:
50% of total cover: 3	20% of	total cover:	1	Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 30" radius				approximately 20 ft (6 m) or more in height and 3 in.
1. Microstegium vimineum	30	Yes	FAC	(7.6 cm) or larger in diameter at breast height (DBH).
2.				Sapling – Woody plants, excluding woody vines,
3				approximately 20 ft (6 m) or more in height and less
4.				than 3 in. (7.6 cm) DBH.
5.				Shrub – Woody plants, excluding woody vines,
6				approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
8				herbaceous vines, regardless of size, and woody
9				plants, except woody vines, less than approximately 3 ft (1 m) in height.
10				it (1 m) in neight.
11		-		Woody vine - All woody vines, regardless of height.
··· <u> </u>	30	= Total Cov	er	
50% of total cover:	20% of	total cover:		
Woody Vine Stratum (Plot size: 30" radius)				
1				
2				
3				
4				
5				Hydrophytic
		= Total Cov	er	Vegetation
50% of total cover:	20% of	total cover:		Present? Yes V No No
Remarks: (Include photo numbers here or on a separate	sheet.)			1

Profile Desc	ription: (Describe	o the dep	th needed to docur	nent the	indicator	or confirn	n the absence	of indicators.)
Depth	Matrix		Redo	x Feature	S			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	<u>Texture</u>	Remarks
0-12	7.5YR 4/6	100					CL	
12-20	7.5YR 4/3	90	7.5YR 4/6	10	С	PL	SL	angular quartz gravel ~5%
12 20	7.011(4/0		7.011(4/0			<u> </u>		angular quartz graver 070
					-			
					-			
1- 0.0							21 5	
	oncentration, D=Depl	etion, RM=	Reduced Matrix, MS	>=Masked	s Sand Gr	ains.		L=Pore Lining, M=Matrix.
Hydric Soil								ators for Problematic Hydric Soils ³ :
Histosol	` '		Dark Surface					cm Muck (A10) (MLRA 147)
	oipedon (A2)		Polyvalue Be				, 148) 🔲 C	coast Prairie Redox (A16)
Black Hi			Thin Dark Su			147, 148)	_	(MLRA 147, 148)
	en Sulfide (A4)		Loamy Gleye		(F2)		<u>Ц</u> Р	iedmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma				—	(MLRA 136, 147)
	ıck (A10) (LRR N)		Redox Dark	,				ery Shallow Dark Surface (TF12)
	d Below Dark Surface	e (A11)	Depleted Dai				<u> </u>	other (Explain in Remarks)
	ark Surface (A12)		Redox Depre					
	lucky Mineral (S1) (L	RR N,	☐ Iron-Mangan		es (F12) (LRR N,		
	A 147, 148)		MLRA 13	•				
	Bleyed Matrix (S4)		Umbric Surfa					icators of hydrophytic vegetation and
	Redox (S5)		Piedmont Flo					tland hydrology must be present,
	Matrix (S6)		Red Parent N	/laterial (F	21) (MLR	A 127, 14	7) un	less disturbed or problematic.
Restrictive I	Layer (if observed):							
Type:								
Depth (in	ches):						Hydric Soil	Present? Yes No V
Remarks:								

Project/Site: Banner Branch Mitigation Site	City/County: Stokes	Sam	pling Date: 2019 09-18
Applicant/Owner: Water & Land Solutions		State: NC Sa	ampling Point: 218
Investigator(s): G Lankford	Section, Township, Range:		
Landform (hillslope, terrace, etc.): floodplain	ocal relief (concave, convex, none	_{e):} <u>concave-conca</u>	ve Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.525454		200307	Datum: WGS 84
Soil Map Unit Name: Fairview-Poplar Forest complex, 15 to	25% slopes, mod.eroded	NWI classification:	
Are climatic / hydrologic conditions on the site typical for this time of y	ear? Yes ✓ No (I	lf no, explain in Remarl	ks.)
Are Vegetation Soil, or Hydrology significantl	y disturbed? Are "Normal (Circumstances" preser	nt? Yes 🚺 No 🔃
Are Vegetation, Soil, or Hydrology naturally p	roblematic? (If needed, ex	xplain any answers in F	Remarks.)
SUMMARY OF FINDINGS – Attach site map showin	g sampling point location	ns, transects, ım _l	portant features, etc.
Hydrophytic Vegetation Present? Yes Ve	In the Country I Amer		
Hydric Soil Present? Yes ✓ No	Is the Sampled Area within a Wetland?	Yes 🗸 🖊	No C
Wetland Hydrology Present? Yes ✓ No			
Remarks:	-		
MLRA 136 Southern Piedmont			
wetland point for W3			
HYDROLOGY			
		0 1 1 1 1 1 1 1	
Wetland Hydrology Indicators:	ı	_	minimum of two required)
Primary Indicators (minimum of one is required; check all that apply		Surface Soil Crack	
Surface Water (A1) True Aquatic I			ed Concave Surface (B8)
✓ High Water Table (A2) ☐ Hydrogen Sull ☐ Saturation (A3) ☐ Oxidized Rhiz	ospheres on Living Roots (C3)	Drainage Patterns Moss Trim Lines (I	
	educed Iron (C4)	Dry-Season Water	
	eduction in Tilled Soils (C6)	Crayfish Burrows (
Drift Deposits (B3)			on Aerial Imagery (C9)
Algal Mat or Crust (B4) Other (Explain	` '	Stunted or Stresse	
Iron Deposits (B5)		✓ Geomorphic Positi	ion (D2)
Inundation Visible on Aerial Imagery (B7)	J	Shallow Aquitard (D3)
Water-Stained Leaves (B9)		Microtopographic	Relief (D4)
Aquatic Fauna (B13)	,	✓ FAC-Neutral Test	(D5)
Field Observations:			
Surface Water Present? Yes No Depth (inche			
Water Table Present? Yes Vo Depth (inche	, 		
Saturation Present? Yes V No Depth (inche	s): <u>-8</u> Wetland Hy	ydrology Present?	Yes ✓ No
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial pho	os, previous inspections), if avail	lable:	
	,, ,,		
Remarks:			
Area above is heavily impacted by livestock.			
1			

VEGETATION (Five Strata) – Use scientific n	ames of p	plants.		Sampling Point: 218
		Dominant		Dominance Test worksheet:
Tree Stratum (Plot size:)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC: 5 (A)
2				Total Number of Dominant
3				Species Across All Strata: 7 (B)
4				
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 72 (A/B)
6				That Ale OBE, I AOW, OIT AO.
		= Total Cov		Prevalence Index worksheet:
				Total % Cover of: Multiply by:
50% of total cover:	20% of	total cover:		OBL species x 1 =
Sapling Stratum (Plot size:)				FACW species x 2 =
1				FAC species x 3 =
2				FACU species x 4 =
3				UPL species x 5 =
4				
5				Column Totals: (A) (B)
6				Prevalence Index = B/A =
		= Total Cov		Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
50% of total cover:	20% of	total cover:		
Shrub Stratum (Plot size:)				✓ 2 - Dominance Test is >50%
1				3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
3				
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
		= Total Cov		
				Definitions of Five Vegetation Strata:
50% of total cover:	20% of	total cover:		Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 20" radius			0.01	approximately 20 ft (6 m) or more in height and 3 in.
_{1.} Murdannia keisak	60	Yes	OBL	(7.6 cm) or larger in diameter at breast height (DBH).
2. Vernonia noveboracensis	10	No	FACW	Sapling – Woody plants, excluding woody vines,
3. Carex lurida	10	No	OBL	approximately 20 ft (6 m) or more in height and less
4. Polygonum pensylvanicum	5	No	FACW	than 3 in. (7.6 cm) DBH.
5				Shrub – Woody plants, excluding woody vines,
6.				approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
		-		herbaceous vines, regardless of size, and woody
8				plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10	. ———			Woody vine – All woody vines, regardless of height.
11	75			, , ,
	75	= Total Cov	er	
50% of total cover: 38	20% of	total cover:	15	
Woody Vine Stratum (Plot size: 20" radius				
1				
2.				
3				
4				
5				Hydrophytic
		= Total Cov	er	Vegetation
50% of total cover:	20% of	total cover:		Present? Yes No
Remarks: (Include photo numbers here or on a separate s	sheet.)			1
In heavily disturbed pasture.	,			

Profile Desc	ription: (Describe t	o the dep	th needed to docur	nent the i	ndicator	or confirm	the absence o	f indicators.)
Depth	Matrix			x Feature				•
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10YR 3/3	100	10YR 4/2	10	D	PL	LS	
4-9	10YR 5/1	90	10YR 4/2	20	С	PL	SC	
9-12	N 5/-	90	7.5YR 4/6	15	С	PL	SC	
12-27	N 5/-		10YR 4/3	5	С	PL	SL	
27-32	7.5YR 5/6		5YR 5/6	2	С	PL	SL	
								_
-								
	oncentration, D=Depl	etion, RM=	Reduced Matrix, MS	S=Masked	d Sand Gra	ains.	² Location: PL=	Pore Lining, M=Matrix.
Hydric Soil I	ndicators:						Indicate	ors for Problematic Hydric Soils ³ :
Histosol			Dark Surface					m Muck (A10) (MLRA 147)
	pipedon (A2)		Polyvalue Be		. , .			ast Prairie Redox (A16)
Black His			Thin Dark Su			47, 148)		MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye		(F2)			dmont Floodplain Soils (F19)
	Layers (A5)		✓ Depleted Ma					MLRA 136, 147)
	ck (A10) (LRR N)	(0.4.4)	Redox Dark	,	,			ry Shallow Dark Surface (TF12)
	d Below Dark Surface ork Surface (A12)	e (A11)	☐ Depleted Date ☐ Redox Depre				Otr	ner (Explain in Remarks)
	lucky Mineral (S1) (L	RR N	☐ Iron-Mangan			RR N		
	147, 148)	ixix i v ,	MLRA 13		63 (1 12) (1	-IXIX I 4 ,		
	leyed Matrix (S4)		Umbric Surfa	•	MLRA 13	6. 122)	³ Indic	ators of hydrophytic vegetation and
	edox (S5)		Piedmont Flo					and hydrology must be present,
	Matrix (S6)		Red Parent N					ss disturbed or problematic.
Restrictive L	ayer (if observed):							
Type:			<u></u>					
Depth (inc	ches):						Hydric Soil P	resent? Yes Vo No
Remarks:								

Project/Site: Banner Branch Mitigation Site	City/County: Stokes	Samp	ling Date: 2019 09-18
Applicant/Owner: Water & Land Solutions		_ State: NC Sar	mpling Point: 220
Investigator(s): G Lankford	Section, Township, Range:		
	ocal relief (concave, convex, nor	_{ne):} concave-concav	'e Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.525454			Datum: WGS 84
Soil Map Unit Name: Fairview-Poplar Forest complex, 15 to			
Are climatic / hydrologic conditions on the site typical for this time of y		(If no, explain in Remarks	s.)
		Circumstances" present	
		explain any answers in Re	
, com , or rivarious in materials p	(ii riodda, c	Apian any anomoro in re-	omano.)
SUMMARY OF FINDINGS – Attach site map showin	g sampling point location	ons, transects, imp	ortant features, etc.
Hydrophytic Vegetation Present? Yes No	- Is the Sampled Area		
Hydric Soil Present? Yes ✓ No	within a Wetland?	Yes <u>√</u> No	。 <u> </u>
Wetland Hydrology Present? Yes ✓ No			
Remarks:	<u>'</u>		
MLRA 136 Southern Piedmont			
wetland point for W3			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicators (m	ninimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks	s (B6)
Surface Water (A1) True Aquatic	·		Concave Surface (B8)
	fide Odor (C1)	Drainage Patterns (
	cospheres on Living Roots (C3)	Moss Trim Lines (B	·
1 	Reduced Iron (C4)	Dry-Season Water	· ·
Sediment Deposits (B2)	Reduction in Tilled Soils (C6)	Crayfish Burrows (C	
☐ Drift Deposits (B3) ☐ Thin Muck Su	rface (C7)	Saturation Visible o	n Aerial Imagery (C9)
Algal Mat or Crust (B4) Other (Explain	n in Remarks)	Stunted or Stressed	l Plants (D1)
Iron Deposits (B5)		✓ Geomorphic Position	n (D2)
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D	03)
Water-Stained Leaves (B9)		Microtopographic R	
Aquatic Fauna (B13)		FAC-Neutral Test (I	D5)
Field Observations:			
Surface Water Present? Yes No Depth (inche			
Water Table Present? Yes ✓ No Open Depth (inche	,		
Saturation Present? Yes V No Depth (inche	s): <u>-15</u> Wetland H	lydrology Present? Ye	es V No L
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial pho	tos previous inspections) if ava	ilahle.	
Describe Necorded Data (Stream gauge, monitoring wen, denar price	too, previous inspections), ii ava	mable.	
Remarks:			
Area above is heavily impacted by livestock.			
Area above is fleavily impacted by livestock.			

VEGETATION (Five Strata) – Use scientific n	ames of p	piants.		Sampling Point: 220
= 20" radius	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 20" radius		Species?		Number of Dominant Species
1. Acer rubrum	55	Yes	FAC	That Are OBL, FACW, or FAC: 3 (A)
2				Total Number of Dominant
3				Species Across All Strata: 3 (B)
4				
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
6				That Are OBE, I AGW, OT AG.
<u> </u>	55	= Total Cov	or	Prevalence Index worksheet:
				Total % Cover of: Multiply by:
50% of total cover:	20% of	total cover:		OBL species x 1 =
Sapling Stratum (Plot size:)				FACW species x 2 =
1				FAC species x 3 =
2				FACU species x 4 =
3				
4				UPL species x 5 =
5				Column Totals: (A) (B)
				Prevalence Index = B/A =
6				
		= Total Cov	er	Hydrophytic Vegetation Indicators:
50% of total cover:	20% of	total cover:		1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size:)				2 - Dominance Test is >50%
1		·		3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations (Provide supporting
3				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
	:	= Total Cov	er	Definitions of Five Vegetation Strata:
50% of total cover:	20% of	total cover:		Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 20" radius				approximately 20 ft (6 m) or more in height and 3 in.
1. Microstegium vimineum	55	Yes	FAC	(7.6 cm) or larger in diameter at breast height (DBH).
2. Polygonum pensylvanicum	75	Yes	FACW	Continue Manda de acalendia e constitucione
3. Impatiens capensis	2	No	OBL	Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less
4. Amaranthus spinosus	2	No	FACU	than 3 in. (7.6 cm) DBH.
	-			Observed - Washington and John Committee -
5				Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
				herbaceous vines, regardless of size, and woody
8				plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10				Woody vine – All woody vines, regardless of height.
11	404			
	134	= Total Cov	er	
50% of total cover: 37	20% of	total cover:	27	
Woody Vine Stratum (Plot size:)	_			
`				
1				
12				
1				
1	·			
1				Hydrophytic
1				Hydrophytic Vegetation
1		= Total Cov	er	
1	20% of	= Total Cov	er	Vegetation

Profile Desc	ription: (Describe	to the dep	th needed to docur	ment the	indicator	or confirn	n the absence o	of indicators.)
Depth	Matrix		Redo	x Feature	es			
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-4	10YR 3/3	100					L	
4-11	10YR 4/2	10	10YR 3/4	20	С	PL	SL	
11-21	10YR 4/3	100	10111071			·	SL	
·						. ———	-	
21-30	10YR 2/1	100					SL	
	-							
					-			
¹Type: C=Co	oncentration, D=Depl	etion RM	-Reduced Matrix M	S-Maske	d Sand Gr	ains	² Location: PL	=Pore Lining, M=Matrix.
Hydric Soil I		etion, ixivi	-iteaucea Matrix, Mi	0-Maske	u Sanu Gi	ali is.		tors for Problematic Hydric Soils ³ :
Histosol			☐ Dark Surface	(S7)				cm Muck (A10) (MLRA 147)
	oipedon (A2)		Polyvalue Be		ace (S8) (I	/II RA 147.		past Prairie Redox (A16)
☐ Black His			Thin Dark Su					(MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye			,,		edmont Floodplain Soils (F19)
	Layers (A5)		✓ Depleted Ma		(- –)			(MLRA 136, 147)
	ck (A10) (LRR N)		Redox Dark		F6)			ery Shallow Dark Surface (TF12)
	Below Dark Surface	e (A11)	Depleted Da	,	,			her (Explain in Remarks)
Thick Da	ark Surface (A12)	, ,	✓ Redox Depre					, ,
Sandy M	lucky Mineral (S1) (L	.RR N,	☐ Iron-Mangan			LRR N,		
MLRA	147, 148)		MLRA 13	6)				
Sandy G	leyed Matrix (S4)		Umbric Surfa	ace (F13)	(MLRA 13	86, 122)	³ Indic	cators of hydrophytic vegetation and
	edox (S5)		Piedmont Flo	odplain S	Soils (F19)	(MLRA 14	48) wetl	and hydrology must be present,
□ Stripped	Matrix (S6)		Red Parent I	Material (I	-21) (MLR	A 127, 147	7) unle	ess disturbed or problematic.
Restrictive L	ayer (if observed):							
Type:								
Depth (inc	ches):						Hydric Soil F	Present? Yes <u>✓</u> No <u></u>
Remarks:								

Hydrophytic Vegetation Present?

/EGETATION (Five Strata) – Use scientific n				Sampling Point: 219
Tree Stratum (Plot size: 20" radius)	Absolute % Cover	Dominant Species?		Dominance Test worksheet:
1. Acer rubrum	EΟ	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
2		-		
3.				Total Number of Dominant Species Across All Strata: 4 (B)
4			· ·	(b)
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 50 (A/B)
6.				That Are OBE, I ACW, OIT AC (A/B)
		= Total Cov	er	Prevalence Index worksheet:
50% of total cover:				Total % Cover of: Multiply by:
Sapling Stratum (Plot size:)	2070 01	total cover.		OBL species x 1 =
1				FACW species x 2 =
2				FAC species $\frac{54}{75}$ $x = \frac{162}{300}$
3				FACU species $\frac{75}{2}$ $x = 400$
4				UPL species $\frac{2}{134}$ $x = 5 = \frac{10}{472}$
5				Column Totals: <u>131</u> (A) <u>472</u> (B)
6				Prevalence Index = B/A = 3.60
	:	= Total Cov	er	Hydrophytic Vegetation Indicators:
50% of total cover:	20% of	total cover:		1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size: 20" radius				2 - Dominance Test is >50%
1. Lindera benzoin	4	Yes	FAC	3 - Prevalence Index is ≤3.0 ¹
2. Ligustrum japonicum	2	Yes	UPL	4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5				1
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
	6	= Total Cov	er	Definitions of Five Vegetation Strata:
50% of total cover: 3	20% of	total cover:	2	
Herb Stratum (Plot size: 20" radius				Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in.
1. Digitaria sanguinalis	60	Yes	FACU	(7.6 cm) or larger in diameter at breast height (DBH).
2. Paspalum notatum	5	No	FACU	Sapling – Woody plants, excluding woody vines,
3. Andropogon virginicus	5	No	FACU	approximately 20 ft (6 m) or more in height and less
4. Eleusine indica	5	No	FACU	than 3 in. (7.6 cm) DBH.
5				Shrub – Woody plants, excluding woody vines,
6				approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
8				herbaceous vines, regardless of size, and woody
9				plants, except woody vines, less than approximately 3 ft (1 m) in height.
10				Washing Allowed wines recordless of being
11				Woody vine – All woody vines, regardless of height.
	75	= Total Cov	er	
50% of total cover: 38	20% of	total cover:	15	
Woody Vine Stratum (Plot size:)				
1				
2				
3				
4				
			-	I and the second

5							
	= Total Cover						
50% of total cover:	20% of total cover:						
Remarks: (Include photo numbers here or on a separate sheet.)							
Area is heavily grazed.							

Profile Desc	cription: (Describe	to the dep	th needed to docun	nent the i	indicator	or confirn	n the absence of ind	icators.)
Depth	Matrix			x Feature		. 2	_	
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-11	5YR 4/4	100					SCL	
11-19	5YR 4/6	100					SCL	
19-24	5YR 5/6	75	5YR 4/6	20	С	PL	SC	
			5YR 6/4	5	С	PL		
							<u></u>	
					-			
								•
	oncentration, D=Dep	letion, RM:	=Reduced Matrix, MS	S=Masked	d Sand Gra	ains.	² Location: PL=Pore	e Lining, M=Matrix. or Problematic Hydric Soils ³ :
Hydric Soil Histosol			Dowle Cumfood	(07)				uck (A10) (MLRA 147)
	oipedon (A2)		☐ Dark Surface☐ Polyvalue Be		ce (S8) (N	II RA 147.		rairie Redox (A16)
	stic (A3)		Thin Dark Su				, -	A 147, 148)
	en Sulfide (A4)		Loamy Gleye			. ,		nt Floodplain Soils (F19)
	d Layers (A5)		Depleted Mat					A 136, 147)
	uck (A10) (LRR N)	(8.4.4)	Redox Dark S	,	,			allow Dark Surface (TF12)
	d Below Dark Surface ark Surface (A12)	e (A11)	Depleted Dar		. ,		U Otner (E	Explain in Remarks)
	/lucky Mineral (S1) (L	.RR N.	☐ Iron-Mangane			LRR N.		
	A 147, 148)	,	MLRA 130			,		
	Bleyed Matrix (S4)		Umbric Surfa					of hydrophytic vegetation and
-	Redox (S5)		Piedmont Flo					nydrology must be present,
	Matrix (S6)		Red Parent M	Material (F	21) (MLR	A 127, 147	7) unless di	sturbed or problematic.
	Layer (if observed):							
	ches):						Hydric Soil Prese	ent? Yes No No
Remarks:								

Project/Site: Banner Branch Mitigation Site	City/County: Stokes	Sampl	ing Date: Sept 9 2019
Applicant/Owner: Water & Land Solutions		State: NC Sam	
Investigator(s): G Lankford	Section, Township, Range: _		
Landform (hillslope, terrace, etc.): floodplain L	ocal relief (concave, convex, n	one): concave-concave	e Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.521042	2 Long: <u>-</u> 8	0.20784	Datum: WGS 84
Soil Map Unit Name: Codorus loam, 0 to 2 percent slopes,	occasionally flooded	NWI classification:	
Are Vegetation , Soil , or Hydrology naturally p	ly disturbed? Are "Norm oroblematic? (If needed	(If no, explain in Remarks nal Circumstances" present? , explain any answers in Re	P Yes No No emarks.)
SUMMARY OF FINDINGS – Attach site map showin	g sampling point locat	ions, transects, impo	ortant features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: Yes No Yes No No Remarks:	Is the Sampled Area within a Wetland?	Yes No	,
MLRA 136 Southern Piedmont wetland point for W4			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicators (mi	inimum of two required)
Primary Indicators (minimum of one is required; check all that apply	1)	Surface Soil Cracks	· · · · · · · · · · · · · · · · · · ·
Surface Water (A1) True Aquatic		_	Concave Surface (B8)
	Ifide Odor (C1)	Drainage Patterns (E	
	zospheres on Living Roots (C3)		,
1 	Reduced Iron (C4)	Dry-Season Water T	· ·
	Reduction in Tilled Soils (C6)	Crayfish Burrows (C	` '
☐ Drift Deposits (B3) ☐ Thin Muck Su	ırface (C7)	Saturation Visible or	n Aerial Imagery (C9)
Algal Mat or Crust (B4) Other (Explai	n in Remarks)	Stunted or Stressed	Plants (D1)
Iron Deposits (B5)		Geomorphic Position	n (D2)
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D:	3)
Water-Stained Leaves (B9)		Microtopographic Re	
Aquatic Fauna (B13)		✓ FAC-Neutral Test (D	05)
Field Observations:			
Surface Water Present? Yes No Depth (inche			
	es):		
Saturation Present? Yes No ✓ Depth (inche (includes capillary fringe)	s): Wetland	Hydrology Present? Ye	es V No L
Describe Recorded Data (stream gauge, monitoring well, aerial pho	utos, previous inspections), if a	vailable:	
Remarks:			
At the time of the investigation the area is within a mod	lerate drought in late sur	nmer.	

/EGETATION (Five Strata) – Use scientific na	Sampling Point: 209			
0011 11	Absolute	Dominant		Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: 30" radius) 1. Acer rubrum	5	Species? Yes	Status FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
2				
3				Total Number of Dominant Species Across All Strata: 4 (B)
4				
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 75 (A/B)
6.				That Ale OBL, FACW, of FAC. 10 (A/B)
<u> </u>		= Total Cov	er	Prevalence Index worksheet:
F00/ - f (- 1 - 1				Total % Cover of: Multiply by:
50% of total cover:	20% of	total cover:		OBL species x 1 =
Sapling Stratum (Plot size: 30" radius	10	Voc	OBL	FACW species x 2 =
1. Alnus serrulata	10	Yes	OBL	FAC species x 3 =
2. Ligustrum sinense	10	Yes	FACU	FACU species x 4 =
3				UPL species x 5 =
4				Column Totals: (A) (B)
5				(-)
6				Prevalence Index = B/A =
	10	= Total Cov	er	Hydrophytic Vegetation Indicators:
50% of total cover:	20% of	total cover:		✓ 1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size:)				✓ 2 - Dominance Test is >50%
1				3 - Prevalence Index is ≤3.0 ¹
				4 - Morphological Adaptations ¹ (Provide supporting
2				data in Remarks or on a separate sheet)
3				Problematic Hydrophytic Vegetation ¹ (Explain)
4				
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
		= Total Cov	er	Definitions of Five Vegetation Strata:
50% of total cover:	20% of	total cover:		Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 30" radius)				approximately 20 ft (6 m) or more in height and 3 in.
1. Polygonum pensylvanicum	70	Yes	FACW	(7.6 cm) or larger in diameter at breast height (DBH).
2. Polygonum sagittatum	10	No	OBL	Sapling – Woody plants, excluding woody vines,
3				approximately 20 ft (6 m) or more in height and less
4.				than 3 in. (7.6 cm) DBH.
5.				Shrub – Woody plants, excluding woody vines,
6				approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
8				herbaceous vines, regardless of size, and woody
9.				plants, except woody vines, less than approximately 3
				ft (1 m) in height.
10			-	Woody vine – All woody vines, regardless of height.
11	80	Tatal Cau		
40		= Total Cov		
50% of total cover: 40	20% of	total cover:	16	
Woody Vine Stratum (Plot size: 30" radius				
1. Lonicera japonica	3		FACU	
2				
3				
4				
5				
	3	= Total Cov	er	Hydrophytic Vegetation
50% of total cover:				Present? Yes No No
		ioiai cover:		
Remarks: (Include photo numbers here or on a separate s	oneet.)			

Profile Desc	ription: (Describe t	o the dep	th needed to docur	nent the	indicator	or confirn	n the absence	e of indicators.)
Depth	Matrix		Redo	x Feature	s			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-12	7.5YR 4/2	90	7.5YR 3/4	10	С	PL	SiL	
12-21	7.5YR 4/1	85	7.5YR 4/6	15	С	PL	SCL	
						-		
					·		-	
							-	
						·		
				-				
							-	
	oncentration, D=Depl	etion, RM:	=Reduced Matrix, M	S=Maske	d Sand Gr	ains.		PL=Pore Lining, M=Matrix.
Hydric Soil								ators for Problematic Hydric Soils ³ :
Histosol			Dark Surface					2 cm Muck (A10) (MLRA 147)
	pipedon (A2)		Polyvalue Be				, 148) 🔲 🤇	Coast Prairie Redox (A16)
Black Hi			Thin Dark Su			147, 148)		(MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye		(F2)		<u> </u>	Piedmont Floodplain Soils (F19)
	d Layers (A5)		✓ Depleted Ma		>			(MLRA 136, 147)
	ick (A10) (LRR N)	(0.4.4)	Redox Dark	,	,			/ery Shallow Dark Surface (TF12)
	d Below Dark Surface	e (A11)	Depleted Da				Ш,	Other (Explain in Remarks)
	ark Surface (A12)	DD N	Redox Depre			I DD N		
	lucky Mineral (S1) (L	KK N,	Iron-Mangan		ses (F12) (LKK N,		
	A 147, 148) Gleyed Matrix (S4)		MLRA 13 Umbric Surfa		/MI D A 14	26 122\	3Inc	dicators of hydrophytic vegetation and
	ledox (S5)		Piedmont Flo					etland hydrology must be present,
	Matrix (S6)		Red Parent N					nless disturbed or problematic.
	_ayer (if observed):		Ned i aleitti	viateriai (i	Z1) (IVILI	A 121, 14	7) ui	iless disturbed of problematic.
	Layer (ii observea).							
Type:							l a .	., , , ,
	ches):						Hydric Soi	I Present? Yes <u>√</u> No <u></u>
Remarks:								

Project/Site: Banner Branch Mitigation Site	City/County: Stokes	Sampling	Date: 2019 09-12
Applicant/Owner: Water & Land Solutions		State: NC Sample	
Investigator(s): G Lankford	Section, Township, Range:	· .	
Landform (hillslope, terrace, etc.): floodplain Lo	ocal relief (concave, convex, no	ne): concave-concave	Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.520728	Long: -8 0	.207552	Datum: WGS 84
Soil Map Unit Name: Codorus loam, 0 to 2 percent slopes, of	occasionally flooded	NWI classification:	-
Are climatic / hydrologic conditions on the site typical for this time of y	ear? Yes No No	(If no, explain in Remarks.)	
Are Vegetation Soil , or Hydrology significantly	y disturbed? Are "Norma	I Circumstances" present?	Yes No
Are Vegetation Soil , or Hydrology naturally p	roblematic? (If needed, e	explain any answers in Rem	arks.)
SUMMARY OF FINDINGS – Attach site map showing	g sampling point location	ons, transects, impor	tant features, etc.
Hydrophytic Vegetation Present? Yes No No	In the Complet Area		
Hydric Soil Present? Yes No ✓	Is the Sampled Area within a Wetland?	Yes No	✓
Wetland Hydrology Present? Yes No ✓			
Remarks:	-		
MLRA 136 Southern Piedmont			
upland point for W1			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicators (mini	mum of two required)
Primary Indicators (minimum of one is required; check all that apply)	1	Surface Soil Cracks (B	-
Surface Water (A1)		Sparsely Vegetated Co	
High Water Table (A2) Hydrogen Suli	,	Drainage Patterns (B1	
	ospheres on Living Roots (C3)	Moss Trim Lines (B16)	•
	deduced Iron (C4)	Dry-Season Water Tak	
Sediment Deposits (B2)	eduction in Tilled Soils (C6)	Crayfish Burrows (C8)	
Drift Deposits (B3)	rface (C7)	Saturation Visible on A	erial Imagery (C9)
Algal Mat or Crust (B4) Other (Explain	n in Remarks)	Stunted or Stressed Pl	` '
Iron Deposits (B5)		Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3)	
Water-Stained Leaves (B9)		Microtopographic Relie	
Aquatic Fauna (B13)		FAC-Neutral Test (D5)	
Field Observations: Surface Water Present? Yes No Depth (inches)	٥١.		
Carrage trater resents			
Water Table Present? Yes No Depth (inchess Saturation Present? Yes No Depth (inchess No Depth (inche		Hydrology Present? Yes	□ Na √
Saturation Present? Yes No Depth (inchest (includes capillary fringe)	s): wetiand r	Hydrology Present? Yes	No <u>▼</u>
Describe Recorded Data (stream gauge, monitoring well, aerial pho	tos, previous inspections), if ava	ailable:	
Remarks:			
At the time of the investigation the area is within a mod	erate drought in late sum	mer.	

VEGETATION (Five Strata) – Use scientific n	ames of	plants.		Sampling Point: 213
	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:) 1		Species?		Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
2				Total Number of Dominant
3				Species Across All Strata: 3 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: (A/B)
0		= Total Cov		Prevalence Index worksheet:
50% of total cover:	20% of	total cover	:	Total % Cover of: Multiply by: OBL species x 1 =
Sapling Stratum (Plot size:)				FACW species x 2 =
1				FAC species x 3 =
2				FACU species x 4 =
3				UPL species x 5 =
4				Column Totals: (A) (B)
5				(3)
6				Prevalence Index = B/A =
		= Total Cov	/er	Hydrophytic Vegetation Indicators:
50% of total cover:	20% of	total cover		1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size:)	20 70 0.	10101 00101	·	✓ 2 - Dominance Test is >50%
				3 - Prevalence Index is ≤3.0 ¹
1				4 - Morphological Adaptations ¹ (Provide supporting
2				data in Remarks or on a separate sheet)
3				Problematic Hydrophytic Vegetation ¹ (Explain)
4				
5			· ——	¹ Indicators of hydric soil and wetland hydrology must
6			· ——	be present, unless disturbed or problematic.
		= Total Cov	/er	Definitions of Five Vegetation Strata:
50% of total cover:	20% of	total cover	·	Tree Meady plants and discount discount
Herb Stratum (Plot size: 20" radius				Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in.
1. Digitaria serotina	50	Yes	FAC	(7.6 cm) or larger in diameter at breast height (DBH).
2. Panicum anceps	30	Yes	FAC	Sapling – Woody plants, excluding woody vines,
3. Polygonum pensylvanicum	20	Yes	FACW	approximately 20 ft (6 m) or more in height and less
4.		-		than 3 in. (7.6 cm) DBH.
5			·	Shrub – Woody plants, excluding woody vines,
6				approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
8				herbaceous vines, regardless of size, and woody
9				plants, except woody vines, less than approximately 3 ft (1 m) in height.
10				
11	-			Woody vine – All woody vines, regardless of height.
	100	= Total Cov	/er	
50% of total cover: 50				
·	20% 01	total cover	: 20	
Woody Vine Stratum (Plot size:)				
1				
2		-		
3	-	-		
4				
5				Hydrophytic
		= Total Cov	/er	Vegetation
50% of total cover:		total cover	·	Present? Yes ✓ No No
Remarks: (Include photo numbers here or on a separate sepont is within active pasture. Recently mowed				
in included the second of the	- · · · · · · · · · · · · · · · · · · ·			

Profile Desc	ription: (Describe	to the dep	th needed to docun	nent the i	ndicator	or confirm	the absence of in	dicators.)
Depth	Matrix		Redo	x Feature:	S			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-7	7.5YR 3/4	100					SL	
7-18	7.5YR 4/6	100					CL	
18-26	7.5YR 5/6	85	5YR 4/6	С	PL	PL	SCL	
10-20	7.511 3/0	- 65	311 4/0		FL	<u> </u>	<u> </u>	
-						·		
	-							
1- 0.0							2,	
		letion, RM:	=Reduced Matrix, MS	S=Masked	Sand Gr	ains.		re Lining, M=Matrix.
Hydric Soil				(0-1)				for Problematic Hydric Soils ³ :
Histosol	` '		Dark Surface		(00) (1			Muck (A10) (MLRA 147)
	oipedon (A2)		Polyvalue Be					Prairie Redox (A16)
Black Hi			Thin Dark Su			147, 148)		RA 147, 148) ont Floodplain Soils (F19)
	n Sulfide (A4) d Layers (A5)		Loamy Gleye Depleted Mat		F2)			RA 136, 147)
	ick (A10) (LRR N)		Redox Dark		·6)			hallow Dark Surface (TF12)
	d Below Dark Surface	- (Δ11)	Depleted Dar		,			(Explain in Remarks)
	ark Surface (A12)	<i>(</i> /(11)	Redox Depre				Outlot	(Explain in Normano)
	lucky Mineral (S1) (L	.RR N.	☐ Iron-Mangan			LRR N.		
	\ 147, 148)	,	MLRA 13		oo (<u>_</u>) (,		
	Gleyed Matrix (S4)		Umbric Surfa	•	MLRA 13	6, 122)	³ Indicato	rs of hydrophytic vegetation and
	Redox (S5)		Piedmont Flo					hydrology must be present,
	Matrix (S6)		Red Parent N					disturbed or problematic.
Restrictive I	Layer (if observed):			-				
Type:								
	ches):						Hydric Soil Pres	ent? Yes No ✓
Remarks:							,	
Nomano.								

Project/Site: Banner Branch Mitigation Site	City/County: Stokes	Sam	pling Date: 2019 10-10
Applicant/Owner: Water & Land Solutions		State: NC Sa	
Investigator(s): G Lankford	_ Section, Township, Range:		
Landform (hillslope, terrace, etc.): floodplain L	ocal relief (concave, convex,	none): concave-conca	ve Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.531696	Long: <u>-</u>	80.200307	Datum: WGS 84
Soil Map Unit Name: Clifford sandy clay loam, 8 to 15% slo	pes, mod. eroded	NWI classification:	
Are Vegetation, Soil, or Hydrology naturally p	y disturbed? Are "Non roblematic? (If neede	(If no, explain in Remark mal Circumstances" presen d, explain any answers in F	nt? Yes ✓ No Remarks.)
SUMMARY OF FINDINGS – Attach site map showin	g sampling point loca	tions, transects, imp	oortant features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: Yes No Yes No No No No No Remarks:	Is the Sampled Are within a Wetland?		No
MLRA 136 Southern Piedmont			
wetland data pt for W5			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
		Drainage Patterns	d Concave Surface (B8) (B10)
Water Marks (B1)	Reduced Iron (C4)	Dry-Season Water	Table (C2)
	Reduction in Tilled Soils (C6)	Crayfish Burrows (·
Drift Deposits (B3) Thin Muck Su	` '		on Aerial Imagery (C9)
	n in Remarks)	Stunted or Stresse	
Iron Deposits (B5)		Geomorphic Positi Shallow Aquitard (` '
☐ Inundation Visible on Aerial Imagery (B7) ✓ Water-Stained Leaves (B9)		Microtopographic I	,
Aquatic Fauna (B13)		FAC-Neutral Test	
Field Observations:			(23)
Surface Water Present? Yes No Depth (inche	s):		
Water Table Present? Yes Vo Depth (inche	s): <u>-14</u>		
Saturation Present? Yes Ves No Depth (inche	s): <u>-14</u> Wetlan	d Hydrology Present?	res ✓ No
(includes capillary fringe)	to a manifest in an artist of it	- vellalata	
Describe Recorded Data (stream gauge, monitoring well, aerial pho	tos, previous inspections), ir a	avallable:	
Remarks:			
Area above obstructed crossing culvert and wetland is	heavily impacted by liv	estock.	
	, ,		

'EGETATION (Five Strata) – Use scientific ι	Sampling Point: 250					
20" radius	Absolute	Dominant		Dominance Test worksheet:		
Tree Stratum (Plot size: 20" radius) 1 Acer rubrum	<u>% Cover</u> 75	Species? Yes		Number of Dominant Species		
"			FAC	That Are OBL, FACW, or FAC: 5 (A)		
2				Total Number of Dominant		
3				Species Across All Strata: 7 (B)		
4				Percent of Dominant Species		
5		-		That Are OBL, FACW, or FAC: 72 (A/B)		
6						
	75	= Total Cov	er	Prevalence Index worksheet:		
50% of total cover:	20% of	total cover:		Total % Cover of: Multiply by:		
Sapling Stratum (Plot size:)				OBL species x 1 =		
1				FACW species x 2 =		
2				FAC species x 3 =		
3				FACU species x 4 =		
				UPL species x 5 =		
4				Column Totals: (A) (B)		
5				Decorder on Index		
6				Prevalence Index = B/A =		
		= Total Cov		Hydrophytic Vegetation Indicators:		
50% of total cover:	20% of	total cover:	·	1 - Rapid Test for Hydrophytic Vegetation		
Shrub Stratum (Plot size: 20" radius)				2 - Dominance Test is >50%		
1. Lindera benzoin	_ 5		FAC	3 - Prevalence Index is ≤3.0 ¹		
2. Prunus serotina	2	Yes	FACU	4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)		
3	_	-		Problematic Hydrophytic Vegetation ¹ (Explain)		
4				Froblematic Hydrophytic Vegetation (Explain)		
5				The disease of hydric ceil and westered hydrology reves		
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.		
	7	= Total Cov	er	Definitions of Five Vegetation Strata:		
50% of total cover: 4	50% of total cover: 4 20% of total cover: 2					
Herb Stratum (Plot size: 20" radius	20 % of total cover.			Tree – Woody plants, excluding woody vines,		
1. Microstegium vimineum	80	Yes	FAC	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).		
•						
2		-		Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less		
	_			than 3 in. (7.6 cm) DBH.		
4				Observe AM and a standard and a stan		
5				Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.		
6						
7				Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody		
8				plants, except woody vines, less than approximately 3		
9				ft (1 m) in height.		
10		-		Woody vine – All woody vines, regardless of height.		
11				The same of the sa		
	80	= Total Cov	er			
50% of total cover:	20% of	total cover:				
Woody Vine Stratum (Plot size: 20" radius						
_{1.} Lonicera japonica	3	Yes	FACU			
2. Toxicodendron radicans	2	Yes	FAC			
3. Smilax rotundifolia	2	Yes	FAC			
4.	<u> </u>					
5.	_					
-	7	= Total Cov	rer	Hydrophytic Vegetation		
500/ -t A		total cover:	_	Present? Yes No No		
50% of total cover: 4		ioiai cover:	<u>-</u>			
Remarks: (Include photo numbers here or on a separate	sneet.)					

Profile Desc	ription: (Describe	to the dep	oth needed to docur	ment the	indicator	or confirr	n the absence	e of indicators.)
Depth	Matrix		Redo	x Feature	s			
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-2	7.5YR 2.5/2	100					L	
2-14	7.5YR 3/1	90	5YR 3/4	20	С	PL	SCL	micaeous
14-36	7.5YR 3/1	90	7.5YR 2.5/2	5	С	PL	SL	
					· -		-	
				-				
					· <u> </u>	- ——		
					· -		-	
¹ Type: C=C	oncentration, D=Dep	oletion, RM	l=Reduced Matrix, M	S=Maske	d Sand Gr	ains.	² Location: F	PL=Pore Lining, M=Matrix.
Hydric Soil								cators for Problematic Hydric Soils ³ :
Histosol	(A1)		Dark Surface	e (S7)				2 cm Muck (A10) (MLRA 147)
Histic Ep	oipedon (A2)		Polyvalue Be	elow Surfa	ace (S8) (I	VILRA 147	, 148) 🔲 (Coast Prairie Redox (A16)
■ Black Hi	stic (A3)		Thin Dark Su			147, 148)	_	(MLRA 147, 148)
	en Sulfide (A4)		Loamy Gleye		(F2)		<u>✓</u> ı	Piedmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma					(MLRA 136, 147)
	ick (A10) (LRR N)	()	Redox Dark	,	,			Very Shallow Dark Surface (TF12)
	d Below Dark Surfac	e (A11)	Depleted Da				Ш,	Other (Explain in Remarks)
	ark Surface (A12) Mucky Mineral (S1) (I DD N	Redox Depre			I DD N		
	147, 148)	LKK N,	MLRA 13		665 (1712) (LKK N,		
	Gleyed Matrix (S4)		Umbric Surfa	-	(MLRA 13	36, 122)	3Inc	dicators of hydrophytic vegetation and
	Redox (S5)		Piedmont Flo					etland hydrology must be present,
	Matrix (S6)		Red Parent N					nless disturbed or problematic.
	Layer (if observed)	:			, ,			,
Type:								
Depth (in	ches):						Hydric Soi	I Present? Yes 🚺 No 🛄
Remarks:	,							
rtomanto.								

Project/Site: Banner Branch Mitigation Site	City/County: Stokes		Sampling Date: 2019 10-10
Applicant/Owner: Water & Land Solutions		_ State: NC	_ Sampling Point: 251
Investigator(s): G Lankford	Section, Township, Range:		
Landform (hillslope, terrace, etc.): floodplain Lo	ocal relief (concave, convex, non	ne): linear-conc	vex Slope (%): ~2%
Subregion (LRR or MLRA): LRR P Lat: 36.531968	Long:80.	.200459	Datum: WGS 84
Soil Map Unit Name: Fairview-Poplar Forest complex, 15 to	25% slopes, mod.eroded	NWI classifica	ition:
Are climatic / hydrologic conditions on the site typical for this time of y	ear? Yes 🗸 No 🗸 ((If no, explain in Re	emarks.)
Are Vegetation Soil, or Hydrology significantly	y disturbed? Are "Normal	Circumstances" pr	resent? Yes 🚺 No 🛄
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, e	explain any answers	s in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing	g sampling point locatio	ns, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes Vo			
Hydric Soil Present? Yes No ✓	Is the Sampled Area within a Wetland?	Yes	No ✓
Wetland Hydrology Present? Yes No ✓	. Within a Welland.	100	<u></u>
Remarks:	•		
MLRA 136 Southern Piedmont			
upland data point for W5			
HS 04W			
LIVEROL COV			
HYDROLOGY			
Wetland Hydrology Indicators:			ors (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)		Surface Soil C	` '
Surface Water (A1) True Aquatic F		_	etated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulf	, ,	Drainage Patt	
	ospheres on Living Roots (C3)	Moss Trim Lir	
	educed Iron (C4)		Vater Table (C2)
	eduction in Tilled Soils (C6)	Crayfish Burro	
Drift Deposits (B3) Algal Mat or Crust (B4) Thin Muck Su	, ,		sible on Aerial Imagery (C9) ressed Plants (D1)
Iron Deposits (B5)	iii Neillaiks)	Geomorphic F	
Inundation Visible on Aerial Imagery (B7)		Shallow Aquit	,
Water-Stained Leaves (B9)			phic Relief (D4)
Aquatic Fauna (B13)		FAC-Neutral	, ,
Field Observations:		<u> </u>	<u> </u>
Surface Water Present? Yes No ✓ Depth (inches	s):		
Water Table Present? Yes No Depth (inches	,		
Saturation Present? Yes V No Depth (inches		lydrology Present	? Yes No V
(includes capillary fringe)	· ——		
Describe Recorded Data (stream gauge, monitoring well, aerial photostream)	os, previous inspections), if avai	ilable:	
Remarks:			

Sampling Po	oint: 251
-------------	-----------

20" madius	Absolute		Indicator	Dominance Test worksheet:	
Tree Stratum (Plot size: 20" radius		Species?		Number of Dominant Species	
1. Acer rubrum	50	Yes	FAC	That Are OBL, FACW, or FAC: 3	(A)
2				Total Number of Dominant	
3				Species Across All Strata: 4	(B)
4					(=)
				Percent of Dominant Species	(4.5)
5				That Are OBL, FACW, or FAC: 75	(A/B)
ō	50			Prevalence Index worksheet:	
	30	= Total Cov	/er	Total % Cover of: Multiply	hv.
50% of total cover:	20% of	total cover	:	OBL species x 1 =	
Sapling Stratum (Plot size:)					
1				FACW species x 2 =	
2				FAC species x 3 =	
				FACU species x 4 =	
3				UPL species x 5 =	
4				Column Totals: (A)	(B)
5					
6				Prevalence Index = B/A =	
		= Total Cov	ver .	Hydrophytic Vegetation Indicators:	
50% of total cover: 20% of total cover:			1 - Rapid Test for Hydrophytic Vegetat	tion	
Shrub Stratum (Plot size: 20" radius	20 /0 01	total cover		2 - Dominance Test is >50%	
. Lindora honzoin	1	Yes	FAC	3 - Prevalence Index is ≤3.0 ¹	
••	2		- ——		la accessa and a se
2. Ligustrum japonicum	2	Yes	UPL	4 - Morphological Adaptations (Provided data in Remarks or on a separate s	
3				Problematic Hydrophytic Vegetation¹ (•
4				Problematic Hydrophytic Vegetation (Explain)
5					
6				¹ Indicators of hydric soil and wetland hydro	
<u> </u>	6	– Total Ca	ıor	be present, unless disturbed or problemation	C.
	6 = Total Cover		/ C I	Definitions of Five Vegetation Strata:	
0			^	Dominiono di Fivo Vogotationi di ata.	
50% of total cover: 3	20% of	total cover	: 2		es.
Herb Stratum (Plot size: 20" radius		total cover	: 2	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height	
Herb Stratum (Plot size: 20" radius	60	total cover	<u>2</u> FAC	Tree – Woody plants, excluding woody vin	and 3 in.
Herb Stratum (Plot size: 20" radius				Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height	and 3 in. ght (DBH).
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida	60 5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (5.6 cm) woody plants, excluding woody	and 3 in. ght (DBH). vines,
Herb Stratum (Plot size: 20" radius) 1. Microstegium vimineum	60 5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height	and 3 in. ght (DBH). vines,
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida 3	60 5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm). Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH.	and 3 in. ght (DBH). vines, and less
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida 3	5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm). Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vince the street of the stree	and 3 in. ght (DBH). vines, and less ines,
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida 3	5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm). Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH.	and 3 in. ght (DBH). vines, and less ines,
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida 3	5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm). Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants	and 3 in. ght (DBH). vines, and less ines, t. , including
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida 3. 4. 5. 6. 7.	5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm). Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and size.	and 3 in. ght (DBH). vines, and less ines, t. , including woody
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida 3. 4. 5. 6. 7. 8. 8.	5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm). Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm). DBH. Shrub – Woody plants, excluding woody vapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than approximately woody vines, less than approximately 3 to 20 ft (1 to 6 m).	and 3 in. ght (DBH). vines, and less ines, t. , including woody
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida 3	5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm). Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and size.	and 3 in. ght (DBH). vines, and less ines, t. , including woody
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida 3. 4. 5. 6. 7. 8. 9. 10.	5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm). Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm). DBH. Shrub – Woody plants, excluding woody vapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than approximately woody vines, less than approximately 3 to 20 ft (1 to 6 m).	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida 3	5	Yes No	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody wapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height.	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3. 4. 5. 6. 7. 8. 9. 10. 11. 11.	65	Yes No Total Cov	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody wapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height.	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex Iurida 3. 4. 5. 6. 7. 8. 9. 10.	65	Yes No Total Cov	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody wapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height.	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	65	Yes No Total Cov	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody wapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height.	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	60 5	Yes No = Total Cover total cover	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody wapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height.	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	60 5	Yes No Total Cover	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody wapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height.	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	60 5	Yes No Total Cover total cover	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody wapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height.	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	60 5	Yes No = Total Cover total cover	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody wapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height.	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	60 5	Yes No = Total Cover total cover	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody wapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height.	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	60 5	Yes No = Total Cover total cover	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height. Woody vine – All woody vines, regardless	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	60 5	Yes No = Total Cover total cover	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height (7.6 cm) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height. Woody vine – All woody vines, regardless Hydrophytic Vegetation	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	60 5	Yes No = Total Cover total cover	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height. Woody vine – All woody vines, regardless	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	60 5	Yes No = Total Cover total cover	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height sapling – Woody plants, excluding woody approximately 20 ft (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vapproximately 3 to 20 ft (1 to 6 m) in height Herb – All herbaceous (non-woody) plants herbaceous vines, regardless of size, and plants, except woody vines, less than apprift (1 m) in height. Woody vine – All woody vines, regardless Hydrophytic Vegetation	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3
Herb Stratum (Plot size: 20" radius 1. Microstegium vimineum 2. Carex lurida 3.	60 5	Yes No Total Cover Total Cover Total Cover Total Cover	FAC OBL	Tree – Woody plants, excluding woody vin approximately 20 ft (6 m) or more in height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height (7.6 cm) or larger in diameter at breast height specific plants (6 m) or more in height than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vapproximately 3 to 20 ft (1 to 6 m) in height herbaceous vines, regardless of size, and vaplants, except woody vines, less than apprift (1 m) in height. Woody vine – All woody vines, regardless Hydrophytic Vegetation Present? Yes No	and 3 in. ght (DBH). vines, and less ines, t. , including woody oximately 3

SOIL Sampling Point: 251

Profile Desc	ription: (Describe t	o the dept	h needed to docun	nent the i	ndicator o	or confirm	the absence	ce of indicators.)
Depth	Matrix		Redo	x Features				
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-11	7.5YR 3/4	100					SL	
11-19	7.5YR 4/6	100					S	
19-35	7.5YR 3/1	100					SL	
35-40	7.5YR 3/1	100					SCL	
					-			
								_
¹ Type: C=Co	oncentration, D=Depl	etion. RM=	——————————————————————————————————————	S=Masked	Sand Gra	ins.	² Location:	PL=Pore Lining, M=Matrix.
Hydric Soil I		0.000, 1.000	. roduood mann, me				Indi	cators for Problematic Hydric Soils ³ :
Histosol			■ Dark Surface	(S7)				2 cm Muck (A10) (MLRA 147)
	ipedon (A2)		Polyvalue Be		ce (S8) (M	LRA 147,		Coast Prairie Redox (A16)
Black His			Thin Dark Su				,	(MLRA 147, 148)
☐ Hydroge	n Sulfide (A4)		Loamy Gleye	ed Matrix (F2)			Piedmont Floodplain Soils (F19)
	Layers (A5)		Depleted Mat	trix (F3)			_	(MLRA 136, 147)
	ck (A10) (LRR N)		Redox Dark S	,	,			Very Shallow Dark Surface (TF12)
	Below Dark Surface	e (A11)	Depleted Dar					Other (Explain in Remarks)
	irk Surface (A12)	DD N	Redox Depre			DD N		
	lucky Mineral (S1) (L . 147, 148)	KK N,	Iron-Mangan		35 (F12) (L	LKK N,		
	leyed Matrix (S4)		Umbric Surfa	•	MI RΔ 13	6 122)	311	ndicators of hydrophytic vegetation and
	edox (S5)		Piedmont Flo					vetland hydrology must be present,
	Matrix (S6)		Red Parent N					inless disturbed or problematic.
	ayer (if observed):				, (, , , , , , , , , , , , , , , , , , ,
Type:	. ,							
Depth (inc	ches):						Hydric Sc	oil Present? Yes No V
Remarks:								

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Banner Branch Mitigation Site	City/County: Stokes Sampling Date: 2019 09-18
Applicant/Owner: Water & Land Solutions	State: NC Sampling Point: 221
Investigator(s): G Lankford	Section, Township, Range:
Landform (hillslope, terrace, etc.): floodplain	ocal relief (concave, convex, none): concave-linear Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.529053	L _{ong:} 80.209711 _{Datum:} WGS 84
Soil Map Unit Name: Fairview-Poplar Forest complex, 15 to	25% slopes, mod.eroded NWI classification:
Are climatic / hydrologic conditions on the site typical for this time of year	
	v disturbed? Are "Normal Circumstances" present? Yes ✓ No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, explain any answers in Remarks.)
	
SUMMARY OF FINDINGS – Attach site map showing	g sampling point locations, transects, important features, etc.
Hadardaria Vanadria Brazado Van 🗸 Na	
Hydrophytic Vegetation Present? Hydric Soil Present? Yes No No No No No No No N	Is the Sampled Area within a Wetland? Yes No
Wetland Hydrology Present? Yes ✓ No ☐	Within a Wetland: Tes NO
Remarks:	•
MLRA 136 Southern Piedmont	
wetland point for W6	
area is oxbow adjacent to channel	
,	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	Plants (B14) Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulfi	
	ospheres on Living Roots (C3) Moss Trim Lines (B16)
	educed Iron (C4)
	eduction in Tilled Soils (C6) Crayfish Burrows (C8)
Drift Deposits (B3) Thin Muck Sur Others (Fixelsia	
Algal Mat or Crust (B4)	in Remarks)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	✓ FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No Depth (inches	s):
Water Table Present? Yes No Depth (inches	
Saturation Present? Yes No Depth (inches	
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photo	os, previous inspections), if available:
Remarks:	
Area above is heavily impacted by livestock.	

EGETATION (Five Strata) – Use scientific n			In all a - C - :		Point: 221	
Free Stratum (Plot size: 20" radius)	Absolute	Dominant		Dominance Test worksheet:		
Acor rubrum	15	Species? Yes	FAC	Number of Dominant Species	2	
·				That Are OBL, FACW, or FAC:	3	(A)
2				Total Number of Dominant		
3				Species Across All Strata:	3	(B)
4. <u> </u>						
5.				Percent of Dominant Species That Are OBL, FACW, or FAC:	100	(A/B)
				That Are OBL, FACW, or FAC.	100	(A/D)
6		Tatal Cau		Prevalence Index worksheet:		
	10	= Total Cov	er	Total % Cover of:	Multiply by:	
50% of total cover:	20% of	total cover:		OBL species x		
Sapling Stratum (Plot size:)				FACW species x		
l,						
2.				FAC species x		
				FACU species x	4 =	_
3				UPL species x	5 =	
4				Column Totals: (A	.)	(B)
5						
S				Prevalence Index = B/A =		_
		= Total Cov	er	Hydrophytic Vegetation Indica	tors:	
50% of total cover:	20% of	total cover		1 - Rapid Test for Hydrophy	tic Vegetation	
	20 /6 01	total cover.		2 - Dominance Test is >50%	•	
Shrub Stratum (Plot size:)				3 - Prevalence Index is ≤3.0		
1						
2				4 - Morphological Adaptation data in Remarks or on a		
3						
4. <u> </u>				Problematic Hydrophytic Ve	getation (Expla	iin)
5						
5				¹ Indicators of hydric soil and wet		must
J				be present, unless disturbed or p		
		= Total Cov		Definitions of Five Vegetation	Strata:	
50% of total cover:	20% of	total cover:		Tree – Woody plants, excluding	woody vines	
Herb Stratum (Plot size: 20" radius)				approximately 20 ft (6 m) or more	e in height and	
_{1.} Microstegium vimineum	70	Yes	FAC	(7.6 cm) or larger in diameter at	breast height (D	BH).
Polygonum pensylvanicum	5	No	FACW	Sapling – Woody plants, exclud	ina woody vinos	
3				approximately 20 ft (6 m) or more	e in height and l	ess
J		· 		than 3 in. (7.6 cm) DBH.	o in noight and i	000
+. <u> </u>	-					
5				Shrub – Woody plants, excludin approximately 3 to 20 ft (1 to 6 n		
5				approximately 3 to 20 ft (1 to 6 ff	ı, ırı riciyitt.	
7				Herb - All herbaceous (non-woo		
3	_			herbaceous vines, regardless of		
9. <u> </u>			·	plants, except woody vines, less	than approxima	ately 3
				ft (1 m) in height.		
10		· 		Woody vine - All woody vines,	regardless of he	ight.
11						
	75	= Total Cov	er			
50% of total cover: 38	20% of	total cover:	15			
Noody Vine Stratum (Plot size:)						
l						
2	-	. ———				
3						
4						
5				Hadron bada		
		= Total Cov	er	Hydrophytic Vegetation		
				Present? Yes	No	
50% of total cover:	20% of	total cover:				

Remarks: (Include photo numbers here or on a separate sheet.) In heavily disturbed pasture.

SOIL Sampling Point: 221

Profile Desc	ription: (Describe t	o the dep	th needed to docun	nent the i	ndicator	or confirm	the absence	of indicators.)
Depth	Matrix	•		k Feature				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-3	10YR 3/2	80	10YR 3/4	20	С	PL	SiL	churned by livestock
3-11	10YR 3/1	85	10YR 4/6	15	С	PL	L	
11-22	10YR 2.5/1	100					SL	pebbles/small gravel ~5%
11-22	1011(2.0/1	100						pebbles/small graver 570
-								
17			Dadwaad Matrix MC	Maalaa			21 tion . DI	Dana Lining M. Matrix
Hydric Soil I		etion, RM=	Reduced Matrix, MS	s=Masked	Sand Gra	ains.	Location: Pl	L=Pore Lining, M=Matrix. ators for Problematic Hydric Soils ³ :
			David Confess	(07)				_
Histosol	(A1) ipedon (A2)		Dark Surface Polyvalue Be		00 (CO) (N	II DA 147		cm Muck (A10) (MLRA 147) oast Prairie Redox (A16)
☐ Black His			Thin Dark Su		. , .		146)	(MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye			47, 140)	┌┐╻	iedmont Floodplain Soils (F19)
	Layers (A5)		Depleted Mat		172)			(MLRA 136, 147)
	ck (A10) (LRR N)		Redox Dark S		·6)			ery Shallow Dark Surface (TF12)
	Below Dark Surface	e (A11)	Depleted Dar	,	,			ther (Explain in Remarks)
	rk Surface (A12)	, (, , , ,)	Redox Depre				•	(27) (27) (27) (27) (27)
	ucky Mineral (S1) (L	RR N.	☐ Iron-Mangane			LRR N,		
	147, 148)	,	MLRA 136		, ,	,		
	leyed Matrix (S4)		Umbric Surfa	-	(MLRA 13	6, 122)	³ Indi	icators of hydrophytic vegetation and
	edox (S5)		Piedmont Flo					tland hydrology must be present,
	Matrix (S6)		Red Parent M					ess disturbed or problematic.
Restrictive L	ayer (if observed):			-				-
Type:								
Depth (inc	ches):						Hydric Soil	Present? Yes V No No
Remarks:							1,	
Remarks.								

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Banner Branch Mitigation Site	City/County: Stokes Sampling Date: 2019 09-18
Applicant/Owner: Water & Land Solutions	State: NC Sampling Point: 224
	Section, Township, Range:
Landform (hillslope, terrace, etc.): floodplain Loc	cal relief (concave, convex, none): concave-linear Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.530144	Long: <u>-80.209699</u> Datum: <u>WGS 84</u>
Soil Map Unit Name: Fairview-Poplar Forest complex, 15 to 2	25% slopes, mod.eroded NWI classification:
Are climatic / hydrologic conditions on the site typical for this time of ye	
Are Vegetation Soil , or Hydrology significantly	
Are Vegetation, Soil, or Hydrology naturally pro	
, or , just a grant of the property of the pro	(, , , , , , , , , , , , , , , , , ,
SUMMARY OF FINDINGS – Attach site map showing	sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No No Vegetation Present?	Is the Sampled Area
Hydric Soil Present? Yes ✓ No No No No No No No	within a Wetland? Yes No
Wetland Hydrology Present? Yes Ves No Remarks:	
MLRA 136 Southern Piedmont wetland data pt for 224	
area appears to have significant disturbance to soils	
area appears to have signmeant distance to some	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	ants (B14) Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulfice	de Odor (C1)
Saturation (A3) Oxidized Rhizo	spheres on Living Roots (C3) Moss Trim Lines (B16)
1 =	duced Iron (C4) Dry-Season Water Table (C2)
	duction in Tilled Soils (C6) Crayfish Burrows (C8)
Drift Deposits (B3)	
Algal Mat or Crust (B4)	
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations: Surface Water Present? Yes No Depth (inches)	
Saturation Present? Yes ✓ No Depth (inches) (includes capillary fringe)	: <u>-12</u> Wetland Hydrology Present? Yes <u>✓</u> No
Describe Recorded Data (stream gauge, monitoring well, aerial photo	s, previous inspections), if available:
Remarks:	
Area above is heavily impacted by livestock.	
water table rising	

/EGETATION (Five Strata) – Use scientific n	Absolute	'	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 20" radius)		Species?		
1. Acer rubrum	15	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
2.				
3				Total Number of Dominant Species Across All Strata: 4 (B)
4				Openics / toross / tir ctrata.
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 75 (A/B)
6				That Are OBL, FACW, or FAC: 75 (A/B)
<u> </u>		= Total Cov	er	Prevalence Index worksheet:
50% of total cover:	20% of	total cover:		Total % Cover of: Multiply by:
Sapling Stratum (Plot size:)				OBL species x 1 =
1				FACW species x 2 =
2.				FAC species x 3 =
3				FACU species x 4 =
4				UPL species x 5 =
5				Column Totals: (A) (B)
6				Prevalence Index = B/A =
		= Total Cov		Hydrophytic Vegetation Indicators:
50% of total cover:				1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size: 20" radius)	20% 01	total cover.		2 - Dominance Test is >50%
1. Alnus serrulata	25	Yes	OBL	3 - Prevalence Index is ≤3.0 ¹
·· ·				4 - Morphological Adaptations ¹ (Provide supporting
2				data in Remarks or on a separate sheet)
3				Problematic Hydrophytic Vegetation ¹ (Explain)
4				
6.	-			¹ Indicators of hydric soil and wetland hydrology must
<u> </u>	25	= Total Cov	or .	be present, unless disturbed or problematic.
FOOV of total across				Definitions of Five Vegetation Strata:
50% of total cover: <u>Herb Stratum</u> (Plot size: <u>20" radius</u>)	20% 01	total cover.		Tree – Woody plants, excluding woody vines,
1. Microstegium vimineum	30	Yes	FAC	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).
2. Murdannia keisak	25	Yes	OBL	
3. Perilla frutescens	15	Yes	FACU	Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less
4. Polygonum pensylvanicum	5	No	FACW	than 3 in. (7.6 cm) DBH.
			171011	Shrub Woody plants, evaluding woody vines
5				Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
6				
7				Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody
8				plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10				Woody vine – All woody vines, regardless of height.
11	7.5	T-1-1-0		
20		= Total Cov		
50% of total cover: 38	20% of	total cover:	15	
Woody Vine Stratum (Plot size:)				
1				
2				
3				
4				
5				Hydrophytic
				I III GIODIII II O
	:	= Total Cov	er	Vegetation Present? Yes No

In heavily disturbed pasture.

SOIL Sampling Point: 224

Profile Desc	ription: (Describe	to the dep	oth needed to docur	nent the	indicator	or confirn	n the absence o	f indicators.)
Depth	Matrix			x Feature	es			
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-5	7.5YR 3/2	80	5YR 4/6	20	С	PL	SL	
5-12	7.5YR 2.5/1	85	5YR 4/6	10	С	PL	SL	
12-28	7.5YR 2.5/1	100	5YR 4/6	2	С	PL	SL	
				-		· ——		
					·			_
					· ——	·		
					<u> </u>			
¹ Type: C=C	oncentration, D=Dep	etion, RM	=Reduced Matrix, MS	S=Masked	d Sand Gr	ains.	² Location: PL=	Pore Lining, M=Matrix.
Hydric Soil			,					ors for Problematic Hydric Soils ³ :
Histosol	(A1)		Dark Surface					m Muck (A10) (MLRA 147)
	pipedon (A2)		Polyvalue Be	elow Surfa			, 148) 🔲 Coa	ast Prairie Redox (A16)
	stic (A3)		Thin Dark Su			147, 148)		MLRA 147, 148)
	en Sulfide (A4)		Loamy Gleye		(F2)			dmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma		==>			MLRA 136, 147)
	ick (A10) (LRR N) d Below Dark Surface	. (Λ11)	✓ Redox Dark Depleted Dark					y Shallow Dark Surface (TF12) er (Explain in Remarks)
	ark Surface (A12)	<i>(</i> //11)	Redox Depre		. ,			lei (Expiaiii iii Neiriaiks)
	lucky Mineral (S1) (L	RR N,	☐ Iron-Mangan			LRR N,		
	A 147, 148)	,	MLRA 13		, ,	,		
_	Gleyed Matrix (S4)		Umbric Surfa	•	(MLRA 13	6, 122)	³ Indica	ators of hydrophytic vegetation and
☐ Sandy F	Redox (S5)		Piedmont Flo	odplain S	Soils (F19)	(MLRA 14	48) wetla	and hydrology must be present,
	Matrix (S6)		Red Parent N	Material (F	F21) (MLR	A 127, 147	7) unles	ss disturbed or problematic.
Restrictive	Layer (if observed):							
Type:								
Depth (in	ches):						Hydric Soil P	resent? Yes 🔽 No 🖳
Remarks:								

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Banner Branch Mitigation Site	City/County: Stokes		Sampling Date: 2019 09-18
Applicant/Owner: Water & Land Solutions		State: NC	_ Sampling Point: 222
Investigator(s): G Lankford	Section, Township, Range:		
Landform (hillslope, terrace, etc.): toe slope	ocal relief (concave, convex, nor	ne): linear-conc	vex Slope (%): ~1%
Subregion (LRR or MLRA): LRR P Lat: 36.529978	Long: -80.	.209679	Datum: WGS 84
Soil Map Unit Name: Fairview-Poplar Forest complex, 15 to	25% slopes, mod.eroded	NWI classifica	ation:
Are climatic / hydrologic conditions on the site typical for this time of y	ear? Yes 🗸 No 🗸 ((If no, explain in Re	emarks.)
Are Vegetation Soil, or Hydrology significantly	y disturbed? Are "Normal	Circumstances" pr	resent? Yes 📈 No 📖
Are Vegetation, Soil, or Hydrology naturally pr	roblematic? (If needed, e	explain any answer	s in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing	g sampling point locatio	ns, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes ☐ No ✓			
Hydric Soil Present? Yes No 🗸	Is the Sampled Area within a Wetland?	Yes	No ✓
Wetland Hydrology Present? Yes No ✓	. Within a Wettana:	103	<u>. 110</u>
Remarks:	<u>- </u>		
MLRA 136 Southern Piedmont			
upland data point for W6			
area appears to have significant disturbance to soils			
LIV/DDC/ COV			
HYDROLOGY			
Wetland Hydrology Indicators:			ors (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)		Surface Soil C	
Surface Water (A1)			etated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulf		Drainage Patt	
	ospheres on Living Roots (C3)	Moss Trim Lir	
	educed Iron (C4)		Vater Table (C2)
	eduction in Tilled Soils (C6)	Crayfish Burro	
Drift Deposits (B3) Thin Muck Sur	, ,		sible on Aerial Imagery (C9) ressed Plants (D1)
Algal Mat or Crust (B4) Uother (Explain Iron Deposits (B5)	iii Keiliaiks)	Geomorphic F	
Inundation Visible on Aerial Imagery (B7)		Shallow Aquit	` '
Water-Stained Leaves (B9)			phic Relief (D4)
Aquatic Fauna (B13)		FAC-Neutral	, ,
Field Observations:			
Surface Water Present? Yes No Depth (inches	s):		
Water Table Present? Yes No Depth (inches			
Saturation Present? Yes V No Depth (inches		lydrology Present	? Yes No ✓
(includes capillary fringe)			<u></u> <u></u>
Describe Recorded Data (stream gauge, monitoring well, aerial photos	os, previous inspections), if ava	ilable:	
Remarks:			

VEGETATION (Five Strata) – Use scientific names of plants.

/EGETATION (Five Strata) – Use scientific n	ames of _l	olants.		Sampling Point: 222
		Dominant		Dominance Test worksheet:
Tree Stratum (Plot size:) 1		Species?		Number of Dominant Species That Are OBL, FACW, or FAC: (A)
2				
3				Total Number of Dominant Species Across All Strata: (B)
4				
5				Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
6				That Are OBE, FACW, OF FAC.
**		= Total Cov		Prevalence Index worksheet:
FOOV of total across				Total % Cover of: Multiply by:
50% of total cover:	20% 01	total cover.		OBL species x 1 =
Sapling Stratum (Plot size:)				FACW species x 2 =
1				FAC species x 3 =
2				FACU species x 4 =
3				UPL species x 5 =
4				Column Totals: (A) (B)
5				5 1 1 50
6				Prevalence Index = B/A =
		= Total Cov	er	Hydrophytic Vegetation Indicators:
50% of total cover:	20% of	total cover:		1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size:				2 - Dominance Test is >50%
1.				3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
<u>3.</u>				Problematic Hydrophytic Vegetation ¹ (Explain)
<u>4.</u>				Troblematic Hydrophytic Vegetation (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
	:	= Total Cov	er	Definitions of Five Vegetation Strata:
50% of total cover:	20% of	total cover:		
Herb Stratum (Plot size: 20" radius		•		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in.
1. Perilla frutescens	55	Yes	FACU	(7.6 cm) or larger in diameter at breast height (DBH).
2. Microstegium vimineum	5	No	FAC	Sapling – Woody plants, excluding woody vines,
3. Panicum anceps	5	No	FAC	approximately 20 ft (6 m) or more in height and less
4.				than 3 in. (7.6 cm) DBH.
5				Shrub – Woody plants, excluding woody vines,
6				approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
8				herbaceous vines, regardless of size, and woody
9				plants, except woody vines, less than approximately 3
10				ft (1 m) in height.
11	-			Woody vine - All woody vines, regardless of height.
	65	= Total Cov	er	
50% () 33				
	20% of	total cover:	10	
Woody Vine Stratum (Plot size:)				
1				
2				
3	-			
4				
5				Hydrophytic
		= Total Cov	er	Vegetation
50% of total cover:	20% of	total cover:		Present? Yes No Y
Remarks: (Include photo numbers here or on a separate	sheet.)			1
Area is heavily grazed.				

SOIL Sampling Point: 222

Profile Desc	ription: (Describe t	o the dep	th needed to docun	nent the	indicator	or confirm	the absence	e of indicators.)
Depth	Matrix		Redox	k Feature	s			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-3	7.5YR 4/4	100	-				SL	
3-14	7.5YR 4/6	100					SL	
14-25	7.5YR 5/4	85	7.5YR 4/6	15	С	PL	SL	small rounded gravel ~5%
25-28	7.5YR 4/3	95	7.5YR 4/6	5	С	PL	SL	
		-						
¹ Type: C=Co	oncentration, D=Depl	etion, RM:	=Reduced Matrix, MS	S=Masked	d Sand Gra	ains.	² Location: P	PL=Pore Lining, M=Matrix.
Hydric Soil I		,	,					ators for Problematic Hydric Soils ³ :
Histosol	(A1)		Dark Surface					2 cm Muck (A10) (MLRA 147)
	ipedon (A2)		Polyvalue Be				148)	Coast Prairie Redox (A16)
Black Hi			Thin Dark Su		, .	47, 148)	_	(MLRA 147, 148)
	n Sulfide (A4)		Loamy Gleye		(F2)		<u>∟</u> F	Piedmont Floodplain Soils (F19)
	Layers (A5)		Depleted Mat		-0)		┌ .	(MLRA 136, 147)
	ck (A10) (LRR N) I Below Dark Surface	Δ (Δ11)	Redox Dark S Depleted Dar	,	,			/ery Shallow Dark Surface (TF12) Other (Explain in Remarks)
	rk Surface (A12)	(////	Redox Depre		. ,			Julei (Explain in Remarks)
	lucky Mineral (S1) (L	RR N.	☐ Iron-Mangane			LRR N.		
-	147, 148)	,	MLRA 136		· · · · · · · · · · · · · · · · · · ·	,		
Sandy G	leyed Matrix (S4)		Umbric Surfa	ce (F13)	(MLRA 13	6, 122)	³ Inc	dicators of hydrophytic vegetation and
Sandy R	edox (S5)		Piedmont Flo	odplain S	Soils (F19)	(MLRA 14	8) we	etland hydrology must be present,
	Matrix (S6)		Red Parent M	1aterial (F	21) (MLR	A 127, 147	') un	lless disturbed or problematic.
Restrictive I	.ayer (if observed):							
Type:								
	ches):		<u></u>				Hydric Soil	Present? Yes No V
Remarks:								
ı								
ı								
ı								

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Banner Branch Mitigation Site	City/County: Stokes		Sampling Date: 2019 09-18
Applicant/Owner: Water & Land Solutions		State: NC	Sampling Point: 225
	Section, Township, Range:		
	cal relief (concave, convex,		concave Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.531492	Long: -	80.209994	Datum: WGS 84
Soil Map Unit Name: Fairview-Poplar Forest complex, 15 to			
Are climatic / hydrologic conditions on the site typical for this time of ye		(If no, explain in F	
Are Vegetation Soil , or Hydrology significantly		mal Circumstances"	
Are Vegetation, Soil, or Hydrology naturally pro		d, explain any answe	ers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing	sampling point loca	tions, transects	s, important features, etc.
Lhudaanhutia Vanatetiaa Brassat2			
Hydrophytic Vegetation Present? Yes ✓ No Hydric Soil Present? Yes ✓ No	Is the Sampled Are within a Wetland?	a Yes ✓	□ No □□
Wetland Hydrology Present? Yes ✓ No ☐	within a wettand:	163	<u> </u>
Remarks:			
MLRA 136 Southern Piedmont			
wetland data pt for W7			
area appears to have significant disturbance to soils			
HYDROLOGY			
Wetland Hydrology Indicators:		Cocondon India	atora (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)			ators (minimum of two required) I Cracks (B6)
	lonto (P14)	_ =	egetated Concave Surface (B8)
Surface Water (A1)			atterns (B10)
	spheres on Living Roots (C		, ,
	educed Iron (C4)	_	Water Table (C2)
	eduction in Tilled Soils (C6)	Crayfish Bu	
Drift Deposits (B3)			/isible on Aerial Imagery (C9)
Algal Mat or Crust (B4) Other (Explain	in Remarks)	Stunted or S	Stressed Plants (D1)
Iron Deposits (B5)		✓ Geomorphic	Position (D2)
Inundation Visible on Aerial Imagery (B7)		Shallow Aqu	
Water-Stained Leaves (B9)			raphic Relief (D4)
Aquatic Fauna (B13)		✓ FAC-Neutra	Il Test (D5)
Field Observations:			
Surface Water Present? Yes No Depth (inches)			
Water Table Present? Yes ✓ No Depth (inches) Saturation Present? Yes ✓ No Depth (inches)	· ———		V
Saturation Present? Yes No Depth (inches)): -13 wetian	d Hydrology Prese	nt? Yes 🔽 No 📗
Describe Recorded Data (stream gauge, monitoring well, aerial photo	s, previous inspections), if a	available:	
Remarks:			
Area above is heavily impacted by livestock.			
water table rising			

VEGETATION (Five Strata) – Use scientific names of plants.

VEGETATION (Five Strata) – Use scientific na	Sampling Point: 225			
00" "	Absolute			Dominance Test worksheet:
Tree Stratum (Plot size: 20" radius) 1. Acer rubrum	5	Species? Yes	Status FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
2				(/,
3				Total Number of Dominant Species Across All Strata: 3 (B)
4				Species Across Air Strata.
5				Percent of Dominant Species That Are OBL_FACW_or FAC: 100 (A/B)
6				That Are OBL, FACW, or FAC: 100 (A/B)
0		= Total Cov	or	Prevalence Index worksheet:
	<u> </u>			Total % Cover of: Multiply by:
50% of total cover:	20% of	total cover:		OBL species x 1 =
Sapling Stratum (Plot size:)				FACW species x 2 =
1				FAC species x 3 =
2				FACU species x 4 =
3				UPL species x 5 =
4				Column Totals: (A) (B)
5				、 , 、 ,
6				Prevalence Index = B/A =
		= Total Cov	er	Hydrophytic Vegetation Indicators:
50% of total cover:	20% of	total cover:		1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size: 20" radius				2 - Dominance Test is >50%
1. Alnus serrulata	5	Yes	OBL	3 - Prevalence Index is ≤3.0 ¹
2.				4 - Morphological Adaptations (Provide supporting
3				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				
6				¹ Indicators of hydric soil and wetland hydrology must
<u> </u>	5	= Total Cov	er	be present, unless disturbed or problematic.
500/ of total course.				Definitions of Five Vegetation Strata:
50% of total cover: <u>Herb Stratum</u> (Plot size: <u>20" radius</u>)	20% 01	total cover.		Tree – Woody plants, excluding woody vines,
1. Impatiens capensis	30	Yes	FACW	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).
2. Microstegium vimineum	25	Yes	FAC	
			1710	Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less
3				than 3 in. (7.6 cm) DBH.
4				Observation and a state of the
5				Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
6				, , , ,
7				Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody
8				plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10				Woody vine - All woody vines, regardless of height.
11	EE			
		= Total Cov		
50% of total cover: 28	20% of	total cover:	11	
Woody Vine Stratum (Plot size:)				
1				
2				
3				
4				
5				Hydrophytic
		= Total Cov	er	Vegetation
50% of total cover:	20% of	total cover:		Present? Yes V No No
Remarks: (Include photo numbers here or on a separate s				1
Relatively undisturbed and forested.	,			

Sampling Point: 225

SOIL

Profile Desc	Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	Matrix		Redox	k Feature	s					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-5	7.5YR 2.5/2	80	7.5YR 3/4	10	С	PL	SL			
5-15	7.5YR 3/1	100	5YR 4/6	10	С	PL	cSL	gravel ~10		
								AR @ -15		
				-	· 			AIT @ -13		
	·			-						
		etion, RM	=Reduced Matrix, MS	S=Masked	d Sand Gr	ains.		L=Pore Lining, M=Matrix.		
Hydric Soil I	ndicators:						Indica	ators for Problematic Hydric Soils ³ :		
L Histosol	(A1)		Dark Surface					cm Muck (A10) (MLRA 147)		
	pipedon (A2)		Polyvalue Bel		. , .		148) 🔲 C	coast Prairie Redox (A16)		
Black His	, ,		Thin Dark Su			47, 148)		(MLRA 147, 148)		
	n Sulfide (A4)		Loamy Gleye		(F2)		<u>Ц</u> Р	riedmont Floodplain Soils (F19)		
	Layers (A5)		Depleted Mat	` '				(MLRA 136, 147)		
	ck (A10) (LRR N)	(* ()	Redox Dark S	•	,			ery Shallow Dark Surface (TF12)		
	Below Dark Surface	e (A11)	Depleted Dar				По	Other (Explain in Remarks)		
	ark Surface (A12)	DD N	Redox Depre			I DD N				
	lucky Mineral (S1) (L	KK N,	Iron-Mangane		es (F12) (LKK N,				
	147, 148) Eleyed Matrix (S4)		MLRA 136	-	/MI D A 12	e 122\	3Ind	icators of hydrophytic vegetation and		
	edox (S5)		Piedmont Flo					etland hydrology must be present,		
	Matrix (S6)		Red Parent M					less disturbed or problematic.		
	ayer (if observed):		IXCUT AICHUN	iatoriai (i	Z1) (IVILIX	A 121, 171	1	ess disturbed of problematic.		
Type:	-ayor (oboo. vou).									
	-h\.						Unadaia Cail	Present? Yes V No No		
Depth (inc	cnes):						Hydric Soil	Present? Yes V No No		
Remarks:	R -auger refusal :	at -15 - ı	rock (boulder or b	edrock)					
,	t dager reraiem				,					

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Banner Branch Mitigation Site	City/County: Stokes Sampling Date: 2019 09-18
Applicant/Owner: Water & Land Solutions	State: NC Sampling Point: 226
	Section, Township, Range:
Landform (hillslope, terrace, etc.): toe slope Loc	al relief (concave, convex, none): linear-concave Slope (%): ~5%
Subregion (LRR or MLRA): LRR P Lat: 36.531516	Long: -80.209919 Datum: WGS 84
Soil Map Unit Name: Fairview-Poplar Forest complex, 15 to 2	25% slopes, mod.eroded NWI classification:
Are climatic / hydrologic conditions on the site typical for this time of year	
Are Vegetation Soil , or Hydrology significantly	
Are Vegetation , Soil , or Hydrology naturally pro	
, ,	(,
SUMMARY OF FINDINGS – Attach site map showing	sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No No I I I I I I I I I	Is the Sampled Area
Hydric Soil Present? Yes No V	within a Wetland? Yes No
Wetland Hydrology Present? Yes No V	
MLRA 136 Southern Piedmont upland data point for W7	
area appears to have significant disturbance to soils	
area appears to have significant distarbance to cons	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Pla	ants (B14) Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulfid	e Odor (C1) Drainage Patterns (B10)
	spheres on Living Roots (C3) Moss Trim Lines (B16)
Water Marks (B1) Presence of Rec	
	duction in Tilled Soils (C6)
Drift Deposits (B3) Thin Muck Surfa	
Algal Mat or Crust (B4) Other (Explain in	
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)	☐ Shallow Aquitard (D3) ☐ Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes No Depth (inches):	
Saturation Present? Yes No Depth (inches):	
(includes capillary fringe)	wetiand nydrology Present? Tes No
Describe Recorded Data (stream gauge, monitoring well, aerial photo-	s, previous inspections), if available:
Remarks:	

EGETATION (Five Strata) – Use scientific r	Absolute	Dominant	Indicator	Sampling Point: 226 Dominance Test worksheet:
Tree Stratum (Plot size: 30" radius)		Species?		
Acer rubrum	10	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
2 Liriodendron tulipifera	5	No	FACU	That Ale OBL, FACW, of FAC. (A)
		110	TACO	Total Number of Dominant
3	_			Species Across All Strata: 4 (B)
4				Demonstrat Demoise at Occasion
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 75 (A/B)
6				That Ale OBE, I AOW, OF I AO.
o	15	= Total Cov		Prevalence Index worksheet:
				Total % Cover of: Multiply by:
50% of total cover: 8	20% of	total cover:	3	OBL species x 1 =
Sapling Stratum (Plot size: 30" radius				
1. Cornus florida	35	Yes	FACU	FACW species x 2 =
_{2.} Diospyros virginiana	10	Yes	FAC	FAC species x 3 =
		. —	1710	FACU species x 4 =
3				UPL species x 5 =
4	_			Column Totals: (A) (B)
5				(3)
6				Prevalence Index = B/A =
	45	= Total Cov	or	Hydrophytic Vegetation Indicators:
00				
50% of total cover: 23	20% of	f total cover:	9	1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size:)				2 - Dominance Test is >50%
1				3 - Prevalence Index is ≤3.0 ¹
				4 - Morphological Adaptations (Provide supporting
			. ——	data in Remarks or on a separate sheet)
3		. —		Problematic Hydrophytic Vegetation ¹ (Explain)
4.		· ———		
5				1 Indicators of budgio sail and watland budgelogy must
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
		= Total Cov	er	
				Definitions of Five Vegetation Strata:
50% of total cover:	20% of	total cover:	·	Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 30" radius)				approximately 20 ft (6 m) or more in height and 3 in.
_{1.} Microstegium vimineum	80	Yes	FAC	(7.6 cm) or larger in diameter at breast height (DBH).
_{2.} Rubus argutus	5	No	FACU	Sapling – Woody plants, excluding woody vines,
3.				approximately 20 ft (6 m) or more in height and less
	-			than 3 in. (7.6 cm) DBH.
4		. —		
5	_			Shrub – Woody plants, excluding woody vines,
6	_			approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
8			· -	herbaceous vines, regardless of size, and woody
				plants, except woody vines, less than approximately 3
				ft (1 m) in height.
10	_	. —		Woody vine – All woody vines, regardless of height.
11				Trocay vines, regardless of magnit
	85	= Total Cov	er	
50% of total cover: 43	200/ 04	f total aguar	. 17	
	20% 01	i lolai cover.		
Woody Vine Stratum (Plot size:)				
1				
2				
3				
4				
5	_			Hydrophytic
		= Total Cov	er	Vegetation
50% of total cover:	20% of	f total cover:		Present? Yes <u>√</u> No

Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point: 226

Depth Matrix Redox Features Texture Remarks
0-1 7.5YR 2.5/2 100
1-12 5YR 4/6 100
12-21 5YR 5/6 85 5YR 4/4 10 C PL SL rounded gravel ~5% 1Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. 1Type: C=Concentration, D=Depletion, RM=Reduced Matrix. 1Depleted Matrix, MS=Masked Sand Grains. 2Depleted Matrix (F3) 1Depleted Matrix (F2) 1Depleted Matrix (F2) 1Depleted Matrix (F3) 1Depleted Matrix (F
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. PL=Pore Lining, M=Matrix. Plustosol Indicators: Indicators for Problematic Hydric Soils³: Histosol (A1) Histosol (A1) Polyvalue Below Surface (S7) Histic Epipedon (A2) Black Histic (A3) Thin Dark Surface (S9) (MLRA 147, 148) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Stratified Layers (A5) Depleted Matrix (F3) Redox Dark Surface (F6) Very Shallow Dark Surface (TF12)
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soils³: Histosol (A1) Histosol (A1) Polyvalue Below Surface (S7) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F2) Redox Dark Surface (F6) Very Shallow Dark Surface (TF12)
Hydric Soil Indicators: Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Stratified Layers (A5) Redox Dark Surface (F6) Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12)
Hydric Soil Indicators: Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Stratified Layers (A5) Redox Dark Surface (F6) Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12)
Hydric Soil Indicators: Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Stratified Layers (A5) Redox Dark Surface (F6) Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12)
Hydric Soil Indicators: Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Stratified Layers (A5) Redox Dark Surface (F6) Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12)
Hydric Soil Indicators: Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Stratified Layers (A5) Redox Dark Surface (F6) Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12)
Hydric Soil Indicators: Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Stratified Layers (A5) Redox Dark Surface (F6) Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12)
Hydric Soil Indicators: Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Stratified Layers (A5) Redox Dark Surface (F6) Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12)
Hydric Soil Indicators: Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Stratified Layers (A5) Redox Dark Surface (F6) Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12)
Hydric Soil Indicators: Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Stratified Layers (A5) Redox Dark Surface (F6) Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12)
Hydric Soil Indicators: Histosol (A1) Histosol (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Stratified Layers (A5) Redox Dark Surface (F6) Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Very Shallow Dark Surface (TF12)
Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Dark Surface (S8) (MLRA 147, 148) Dark Surface (S8) (MLRA 147, 148) Dark Surface (S8) (MLRA 147, 148) Dark Surface (S9) (MLRA 147, 1
☐ Histic Epipedon (A2) ☐ Polyvalue Below Surface (S8) (MLRA 147, 148) ☐ Coast Prairie Redox (A16) ☐ Black Histic (A3) ☐ Thin Dark Surface (S9) (MLRA 147, 148) (MLRA 147, 148) ☐ Hydrogen Sulfide (A4) ☐ Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19) ☐ Stratified Layers (A5) ☐ Depleted Matrix (F3) (MLRA 136, 147) ☐ 2 cm Muck (A10) (LRR N) ☐ Redox Dark Surface (F6) ☐ Very Shallow Dark Surface (TF12)
□ Black Histic (A3) □ Thin Dark Surface (S9) (MLRA 147, 148) (MLRA 147, 148) □ Hydrogen Sulfide (A4) □ Loamy Gleyed Matrix (F2) □ Piedmont Floodplain Soils (F19) □ Stratified Layers (A5) □ Depleted Matrix (F3) (MLRA 136, 147) □ 2 cm Muck (A10) (LRR N) □ Redox Dark Surface (F6) □ Very Shallow Dark Surface (TF12)
☐ Hydrogen Sulfide (A4) ☐ Loamy Gleyed Matrix (F2) ☐ Piedmont Floodplain Soils (F19) ☐ Stratified Layers (A5) ☐ Depleted Matrix (F3) (MLRA 136, 147) ☐ 2 cm Muck (A10) (LRR N) ☐ Redox Dark Surface (F6) ☐ Very Shallow Dark Surface (TF12)
☐ Stratified Layers (A5) ☐ Depleted Matrix (F3)
2 cm Muck (A10) (LRR N) Redox Dark Surface (F6) Very Shallow Dark Surface (TF12)
☐ Thick Dark Surface (A12) ☐ Redox Depressions (F8)
Sandy Mucky Mineral (S1) (LRR N,
MLRA 147, 148) MLRA 136)
Sandy Gleyed Matrix (S4) Umbric Surface (F13) (MLRA 136, 122) ³ Indicators of hydrophytic vegetation and
Sandy Redox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrology must be present,
Stripped Matrix (S6) Red Parent Material (F21) (MLRA 127, 147) unless disturbed or problematic.
Restrictive Layer (if observed):
Type:
Depth (inches): No No
Remarks:
Remarks.

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Banner Branch Mitigation Site	City/County: Stokes	Sampling	Date: 2019 10-10
Applicant/Owner: Water & Land Solutions		State: NC Sampl	
Investigator(s): G Lankford	Section, Township, Range:		
Landform (hillslope, terrace, etc.): floodplain Lc	ocal relief (concave, convex, none	e): concave-concave	Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.526989	Long: -80.2	200530	Datum: WGS 84
Soil Map Unit Name: Dan River and Comus soils, 0 to 4 per	cent slopes, occa. flooded	NWI classification:	
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 🚺 No 🦳 (If	no, explain in Remarks.)	
Are Vegetation Soil , or Hydrology significantly	y disturbed? Are "Normal C	Circumstances" present?	Yes <u>√</u> No
Are Vegetation , Soil , or Hydrology naturally pr	oblematic? (If needed, ex	plain any answers in Rema	arks.)
SUMMARY OF FINDINGS – Attach site map showing	្ស sampling point location	ns, transects, impor	tant features, etc.
Hydrophytic Vegetation Present? Yes No No	Is the Sampled Area		
Hydric Soil Present? Yes ✓ No No	within a Wetland?	Yes <u>√</u> No	
Wetland Hydrology Present? Yes ✓ No ✓			
Remarks:			
MLRA 136 Southern Piedmont			
wetland point for W8			
HYDROLOGY			
Wetland Hydrology Indicators:	<u></u>	Secondary Indicators (mini	mum of two required)
Primary Indicators (minimum of one is required; check all that apply)		Surface Soil Cracks (B	
Surface Water (A1) True Aquatic F	Plants (B14)	Sparsely Vegetated Co	
High Water Table (A2) Hydrogen Sulf	` ′	✓ Drainage Patterns (B1	
	ospheres on Living Roots (C3)	Moss Trim Lines (B16)	•
Water Marks (B1) Presence of R	educed Iron (C4)	Dry-Season Water Tab	ole (C2)
Sediment Deposits (B2)	eduction in Tilled Soils (C6)	Crayfish Burrows (C8)	
Drift Deposits (B3)	face (C7)	Saturation Visible on A	erial Imagery (C9)
Algal Mat or Crust (B4) Other (Explain	in Remarks)	Stunted or Stressed PI	ants (D1)
Iron Deposits (B5)	Ē	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Ī	Shallow Aquitard (D3)	
Water-Stained Leaves (B9)	Ļ	Microtopographic Relie	
Aquatic Fauna (B13)		FAC-Neutral Test (D5)	
Field Observations:	,		
Surface Water Present? Yes No Depth (inches			
Water Table Present? Yes No Depth (inches			
Saturation Present? Yes No Depth (inches (includes capillary fringe)	s): Wetland Hy	drology Present? Yes	▼ No
Describe Recorded Data (stream gauge, monitoring well, aerial phot	os, previous inspections), if availa	able:	
Remarks:			

Sampling	Point:	272
----------	--------	-----

20" radius	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 20" radius		Species?		Number of Dominant Species
1. Acer rubrum	50	Yes	FAC	That Are OBL, FACW, or FAC: 3 (A)
2				Total Number of Dominant
3				Species Across All Strata: 4 (B)
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 75 (A/B)
6				
	50	= Total Cov	er	Prevalence Index worksheet:
50% of total cover:	20% of	total cover		Total % Cover of: Multiply by:
	20 /6 01	total cover.		OBL species x 1 =
Sapling Stratum (Plot size:)				FACW species x 2 =
1				FAC species x 3 =
2				FACU species x 4 =
3				UPL species x 5 =
4				Column Totals: (A) (B)
5				()
6				Prevalence Index = B/A =
	:	= Total Cov	er	Hydrophytic Vegetation Indicators:
50% of total cover:	20% of	total cover		1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size: 20" radius)	2070 01	total oovoi.		✓ 2 - Dominance Test is >50%
Have an ana	15	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
- Phododondron poriolymonoidos		Yes	FAC	4 - Morphological Adaptations ¹ (Provide supporting
				data in Remarks or on a separate sheet)
3				Problematic Hydrophytic Vegetation ¹ (Explain)
4				
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
	20	= Total Cov	er	Definitions of Five Vegetation Strata:
50% of total cover: 10	20% of	total cover:	4	Tool Mandage and the second of
Herb Stratum (Plot size: 20" radius				Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in.
1. Microstegium vimineum	35	Yes	FAC	(7.6 cm) or larger in diameter at breast height (DBH).
2 Woodwardia virginica	5	No	OBL	Conline Woody plants avaluding woody vines
3. Polygonum sagittatum	5	No	OBL	Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less
4.				than 3 in. (7.6 cm) DBH.
T				Shrub Woody planta evaluding woody vines
0				Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
6				
7				Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size, and woody
8				plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10				Woody vine – All woody vines, regardless of height.
11				woody vine – All woody vines, regardless of neight.
	45	= Total Cov	er	
50% of total cover: 23	20% of	total cover	9	
Woody Vine Stratum (Plot size: 30" radius)	20 /6 01	total cover.		
1 Lonicera japonica	3		FACU	
·· <u>·</u>			1700	
2				
3				
4				
5				Hydrophytic
	_ 3	= Total Cov	er	Vegetation
50% of total cover:	20% of	total cover		Present? Yes V No No
		ioiai covel.		
Remarks: (Include photo numbers here or on a separate s	orieet.)			

SOIL Sampling Point: 272

Profile Desc	ription: (Describe t	o the dep	th needed to docun	nent the i	indicator	or confirm	the absence of inc	licators.)
Depth	Matrix		Redo	x Feature	s			
(inches)	Color (moist)	%	Color (moist)	%	_Type ¹	Loc ²	Texture	Remarks
0-3	7.5YR 3/2	100					<u>L</u>	
3-6	7.5YR 4/2	90	7.5YR 3/4	10	С	PL	<u>L</u>	
6-12	7.5YR 5/2	90	5YR 4/6	10	С	PL	CL	
12-19	7.5YR 4/3	70	7.5YR 4/6	30	С	PL	SCL	
19-23	7.5YR 4/1	80	7.5YR 4/6	20	С	PL	SCL	
-								
1							2	
	oncentration, D=Depl	etion, RM:	=Reduced Matrix, MS	S=Masked	d Sand Gra	ains.	² Location: PL=Por	e Lining, M=Matrix. for Problematic Hydric Soils ³ :
Hydric Soil I			□ p. d. 0. d	(07)				=
Histosol	(A1) ipedon (A2)		☐ Dark Surface ☐ Polyvalue Be		re (S8) (N	II DA 1 <i>1</i> 7		uck (A10) (MLRA 147) Prairie Redox (A16)
☐ Black His			Thin Dark Su					RA 147, 148)
	n Sulfide (A4)		Loamy Gleye			,,		nt Floodplain Soils (F19)
	Layers (A5)		✓ Depleted Mat		` ,			RA 136, 147)
	ck (A10) (LRR N)		Redox Dark	,	,			nallow Dark Surface (TF12)
_ ·	Below Dark Surface	(A11)	Depleted Dar				Other (I	Explain in Remarks)
	irk Surface (A12)	DD N	Redox Depre			L DD N		
	lucky Mineral (S1) (L . 147, 148)	KK N,	Iron-Mangan		es (F12) (LKK N,		
	leyed Matrix (S4)		Umbric Surfa	•	(MLRA 13	6. 122)	³ Indicators	of hydrophytic vegetation and
	edox (S5)		Piedmont Flo					nydrology must be present,
	Matrix (S6)		Red Parent N					sturbed or problematic.
Restrictive L	ayer (if observed):							
Type:								
Depth (inc	ches):						Hydric Soil Prese	ent? Yes V No No
Remarks:								

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Banner Branch Mitigation Site	City/County: Stokes		Sampling Date: 2018 03-09
Applicant/Owner: Water & Land Solutions		State: NC	Sampling Point: 41
Investigator(s): G Lankford	Section, Township, Range: _		
Landform (hillslope, terrace, etc.): floodplain Le	ocal relief (concave, convex, ne	one): concave-co	oncave Slope (%): <1%
Subregion (LRR or MLRA): LRR P Lat: 36.527119	Long:8	0.200942	Datum: WGS 84
Soil Map Unit Name: Dan River and Comus soils, 0 to 4 per	cent slopes, occ. floode	d NWI classific	ation:
Are climatic / hydrologic conditions on the site typical for this time of y	ear? Yes 🗸 No	(If no, explain in R	emarks.)
Are Vegetation Soil, or Hydrology significantl	y disturbed? Are "Norm	al Circumstances" p	resent? Yes No
Are Vegetation, Soil, or Hydrology naturally p	roblematic? (If needed,	, explain any answei	rs in Remarks.)
		_	
SUMMARY OF FINDINGS – Attach site map showin	g sampling point locati	ions, transects	, important features, etc.
Hydrophytic Vegetation Present? Yes No			
Hydrophytic Vegetation Present? Yes No ▼ Hydric Soil Present? Yes No ▼	Is the Sampled Area within a Wetland?	Yes	No ✓
Wetland Hydrology Present? Yes No ✓	_ Within a Wetland:	103	<u> </u>
Remarks:	<u>- </u>		
MLRA 136 Southern Piedmont			
upland data point for W8			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indica	tors (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)		Surface Soil	Cracks (B6)
Surface Water (A1) True Aquatic I	Plants (B14)	_	getated Concave Surface (B8)
High Water Table (A2) Hydrogen Sul	, ,	Drainage Pat	terns (B10)
Saturation (A3) Oxidized Rhiz	ospheres on Living Roots (C3)	_	
Water Marks (B1) Presence of R	educed Iron (C4)	Dry-Season \	Water Table (C2)
Sediment Deposits (B2)	eduction in Tilled Soils (C6)	Crayfish Burr	
Drift Deposits (B3) Thin Muck Su	rface (C7)	Saturation Vi	sible on Aerial Imagery (C9)
Algal Mat or Crust (B4) Other (Explain	in Remarks)	Stunted or St	ressed Plants (D1)
Iron Deposits (B5)		✓ Geomorphic	Position (D2)
Inundation Visible on Aerial Imagery (B7)		Shallow Aqui	tard (D3)
Water-Stained Leaves (B9)			phic Relief (D4)
Aquatic Fauna (B13)		FAC-Neutral	Test (D5)
Field Observations:			
Surface Water Present? Yes No Depth (inche			
Water Table Present? Yes Vo Depth (inche	· ———		
Saturation Present? Yes Ves No Depth (inche	s): <u>-17</u> Wetland	Hydrology Presen	t? Yes No✓
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial pho	tos previous inspections) if a	vailahle:	
Describe Recorded Bata (stream gauge, monitoring well, acrial prio	.os, previous inspections), ii av	valiable.	
Remarks:			
Nomarks.			

VEGETATION (Five Strata) – Use scientific names of plants.

Sampling Point: 41

20" radius	Absolute	Dominant		Dominance Test worksheet:	
Tree Stratum (Plot size: 30" radius) 1. Acer rubrum		Species?		Number of Dominant Species	
	45	Yes	FAC	That Are OBL, FACW, or FAC: 1	۹)
2. Liriodendron tulipifera	35	Yes		Total Number of Dominant	
3				Species Across All Strata: 2	3)
4				Percent of Dominant Species	
5				That Are OBL, FACW, or FAC: 50	4/B)
6					
	80	= Total Cove	er	Prevalence Index worksheet:	
50% of total cover: 40				Total % Cover of: Multiply by:	
Sapling Stratum (Plot size: 30" radius	20 /6 01	iolai covei.		OBL species x 1 =	
1. Prunus serotina	2		FACU	FACW species x 2 =	
				FAC species x 3 =	
2				FACU species x 4 =	
3				UPL species x 5 =	
4				Column Totals: (A)	(B)
5				()	` '
6				Prevalence Index = B/A =	
		= Total Cove		Hydrophytic Vegetation Indicators:	
50% of total cover:	20% of	total cover		1 - Rapid Test for Hydrophytic Vegetation	
Shrub Stratum (Plot size:)	2070 01	total oover.		2 - Dominance Test is >50%	
				3 - Prevalence Index is ≤3.0 ¹	
1				4 - Morphological Adaptations ¹ (Provide suppor	rtina
2				data in Remarks or on a separate sheet)	rung
3				Problematic Hydrophytic Vegetation ¹ (Explain)	
4					
5				¹ Indicators of hydric soil and wetland hydrology mus	et
6				be present, unless disturbed or problematic.	01
	:	Total Cove			
		= Total Cove	er	Definitions of Five Vegetation Strata:	
50% of total cover:				Definitions of Five Vegetation Strata:	
50% of total cover:				Tree – Woody plants, excluding woody vines,	
Herb Stratum (Plot size:)	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in	ı. I).
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH	ı. I).
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines,	l).
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less	l).
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH.	l).
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines,	l).
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH.	l).
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including	l). S
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody	l). S
Herb Stratum (Plot size:) 1 2 3 4 5 6 7	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including	l). S
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height.	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	total cover:		Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height.	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	total cover:	er	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height.	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	total cover:	er	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height.	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	total cover:	er	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height.	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	= Total Cover:	er	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height.	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	= Total Cover:	er	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height.	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	total cover:	FACU	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height.	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	= Total Cover:	FACU	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height.	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	= Total Cover:	FACU	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height. Woody vine – All woody vines, regardless of heigh	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	= Total Cover:	FACU	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height.	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of	= Total Cover:	FACU	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height. Woody vine – All woody vines, regardless of heigh	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2	= Total Cover:	FACU	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height. Woody vine – All woody vines, regardless of heigh	l). s ng y 3
Herb Stratum (Plot size:) 1	20% of 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2 20% of 2	= Total Cover:	FACU	Tree – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and 3 in (7.6 cm) or larger in diameter at breast height (DBH Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, includin herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately ft (1 m) in height. Woody vine – All woody vines, regardless of heigh	l). s ng y 3

SOIL Sampling Point: 41

Profile Desc	cription: (Describe	to the dep	th needed to docur	nent the	indicator	or confirn	m the absence of indicators.)
Depth	Matrix		Redo	x Feature	es		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture Remarks
0-5	7.5YR 3/4	100					SL
5-10	7.5YR 4/4	85	7.5YR 4/6	15	С	PL	SL
10-17	7.5YR 2.5/-		5YR 4/6	15	С	PL	SCL
17-22	7.5YR 5/2		7.5YR 4/6	20	С	PL	SCL
					-		
			-				·
					-		· <u></u>
							· ·
1 _{Tumor} C. C	ancentration D Den	lotion DM	Daduard Matrix M	- Maaka	d Cond C		2 costion: DI Poro Lining M Matrix
Hydric Soil	oncentration, D=Dep	letion, Rivi	=Reduced Matrix, Mi	S=IVIASKE	d Sand G	ains.	² Location: PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soils ³ :
Histosol			☐ Dark Surface	(07)			2 cm Muck (A10) (MLRA 147)
	oipedon (A2)		Polyvalue Be		1) (82) and	MI RΔ 147	
	istic (A3)		Thin Dark Su				(MLRA 147, 148)
	en Sulfide (A4)		Loamy Gleye			,,	Piedmont Floodplain Soils (F19)
	d Layers (A5)		Depleted Ma		(- –)		(MLRA 136, 147)
	uck (A10) (LRR N)		Redox Dark	, ,	F6)		☐ Very Shallow Dark Surface (TF12)
	d Below Dark Surface	e (A11)	Depleted Da	rk Surface	e (F7)		Other (Explain in Remarks)
Thick Da	ark Surface (A12)		Redox Depre	essions (F	⁻ 8)		
	Nucky Mineral (S1) (L	RR N,	☐ Iron-Mangan		ses (F12)	(LRR N,	
	A 147, 148)		MLRA 13				2
	Gleyed Matrix (S4)		Umbric Surfa				³ Indicators of hydrophytic vegetation and
	Redox (S5)		☐ Piedmont Flo				
	Matrix (S6)		Red Parent N	viateriai (i	-21) (MLF	KA 127, 14	7) unless disturbed or problematic.
	Layer (if observed):						
Type: Depth (in	ches).						Hydric Soil Present? Yes No
Remarks:							nyano com riccomir ricci <u>aa</u> no <u>aa</u>
ixemaiks.							

Appendix 10 - Invasive Species Plan

WLS will treat invasive species vegetation within the project area and provide remedial action on a case by-case basis. Common invasive species vegetation, such as Chinese privet (*Ligustrum sinense*) and multiflora rose (*Rosa multiflora*), will be removed to allow native plants to become established within the conservation easement. Invasive species vegetation will be treated by approved mechanical and/or chemical methods such that the percent composition of exotic/invasive species vegetation is less than 5% of the total riparian buffer area. Any control methods requiring herbicide application will be performed in accordance with NC Department of Agriculture (NCDA) rules and regulations. If necessary, these removal treatments (i.e., cutting and/or spraying) will continue until the corrective actions demonstrate that the site is trending towards or meeting the standard monitoring requirement.

Appendix 11 – Approved FHWA Categorical Exclusion Form

October 10, 2018

NC Department of Environmental Quality
Division of Mitigation Services
Attn: Jeff Schaffer, Eastern Supervisor, Project Management
217 West Jones Street, Suite 3000-A
Raleigh, NC 27603

RE: Categorical Exclusion for Banner Branch Mitigation Project, NCDEQ DMS Full-Delivery Project ID #100080, Contract #7610, Roanoke River Basin, Cataloging Unit 03010103, Stokes County, NC

Dear Mr. Schaffer:

The project is located in Stokes County near the Lawsonville Community. In addition, the project is located in the North Carolina Department of Environmental Quality (NCDEQ) Sub-basin 03-02-01, in the Targeted Local Watershed 03010103180010, all of the Roanoke River Basin. The project reaches are along Banner Branch and unnamed tributaries to Banner Branch. Banner Branch flows south to its confluence with Snow Creek near Lawsonville, North Carolina. Banner Branch is listed by the NCDEQ NCDWR as 'C' from its source to Snow Creek.

The Banner Branch Mitigation Project is a full-delivery project for the NCDEQ Division of Mitigation Services (DMS) identified and contracted to provide stream and wetland mitigation credits for permitted, unavoidable impacts in the Roanoke River Basin, Cataloging Unit 03010103. The project will involve the potential restoration, enhancement, preservation, and permanent protection of unnamed tributaries (Reaches UT1-R1, UT1-R2, UT1-R3, UT1A, UT1B, UT1C, UT1D, UT2, UT2A, UT3, BB-R1, BB-R2, BB-R3, UT4-R1 and UT4-R2), totaling over 14,000 linear feet of existing streams. In addition, approximately 4.0 acres of degraded riparian wetlands will be returned to their natural function, utilizing wetland re-establishment, rehabilitation and enhancement approaches by implementing Priority Level I Stream Restoration, livestock exclusion, and limited removal of overburden soil above the hydric soils, and revegetation. In addition, the adjacent riparian wetlands and riparian buffers will be restored and the entire restored corridor will be protected by a permanent conservation easement, approximately 37.5 acres in size, to be held by the State of North Carolina.

The project site consists of a degraded headwater stream and riparian wetland system that flows through a riparian corridor between active agricultural fields and then into Banner Branch, which eventually drains to the Roanoke River. The proposed restoration project not only has the potential to provide at least 12,000 stream mitigation credits and 3.0 wetland mitigation credits, but will also provide significant ecological improvements and functional uplift through habitat restoration, and through decreasing nutrient and sediment loads from the project watershed.

Based on the review of the United States Fish and Wildlife Service (USFWS) county list (06-27-2018), the following species are considered federally-listed in Stokes County:

Species Type	Scientific Name	Common Name	Federal Status Code
Invertebrate	Parvaspina collina	James spinymussel	E
Vascular Plant	Cardamine micranthera	Small-anthered bittercress	E
Vascular Plant	Helianthus schweinitzii	Schweinitz's sunflower	E
Vertebrate	Myotis septentrionalis	Northern Long-eared bat	Т

Definitions of Federal Status Codes:

E = endangered. A taxon "in danger of extinction throughout all or a significant portion of its range." **T = threatened.** A taxon "likely to become endangered within the foreseeable future throughout all or a significant portion of its range."

(Federal status information referenced from https://ecos.fws.gov/ipac/)

Invertebrates

<u> James spinymussel (Parvaspina collina)</u>

Federal Status: Endangered

Habitat: This freshwater mussel is found in the James River drainage and the Dan/Mayo River systems within the Roanoke River drainage in Virginia, North Carolina, and West Virginia. The James spinymussel is a small freshwater mussel slightly less than three inches in length. Adults have a dark brown shell with prominent growth rings and occasionally, short spines on each valve. Young mussels have a shiny yellow shell with or without one to three short spines.

Range: The species historical range included Virginia, West Virginia.

(Species profile information referenced from: https://ecos.fws.gov/ecp/species/2212)

Biological Conclusion: No Effect

Streams were assessed for the presence of freshwater mussels and none nor their associates (e.g. Asian clams) were observed during the stream investigations. Due to the small size and landscape position of the headwater stream systems that comprise the project, suitable habitat was not observed within the project area. A review of the July 2018 NCNHP database indicates no known occurrence within 1.0 mile of the project area.

Vascular Plants

Schweinitz's sunflower (Helianthus schweinitzii)

Family: Asteraceae

Federal Status: Endangered

Best Search Time: late August through October

Description: Schweinitz's sunflower is a perennial that regularly grows approximately $6\frac{1}{2}$ feet tall (though it can be shorter if young or injured) and can occasionally reach heights of 16 feet. It has thickened roots that are specially designed to store starch. The stem is purple, and the upper third bears secondary branches at 45-degree angles. The leaves are arranged in pairs on the lower part of the stem but usually occur singly on the upper part. Leaves grow out from the stem at a right angle, and the tips of the leaves tend to droop. The leaves are thick and stiff, with a rough upper surface. They have broad spiny hairs that are directed toward the tip, and soft white hairs cover the underside. The plant produces small yellow flowers. Schweinitz's sunflower blooms from late August until frost. It's able to colonize through the dispersal of seeds that readily germinate without a dormant period. In good conditions, it can grow 3 to 6 feet in a year and can live for decades.

Habitat: It occurs in full to partial sun and is found in areas with poor soils, such as thin clays that vary from wet to dry. This preference for poor soil helps minimize competition from other species.

Range: Piedmont region of North and South Carolina.

Threats: Habitat destruction, fire suppression, alteration of native habitat, roadside and utility right-of-way maintenance, industrial development, mining, encroachment by exotic species, and highway construction and improvement have all contributed to the decline of Schweinitz's sunflower. This species occurs in many rapidly developing areas within the piedmont region of North and South Carolina. As these areas develop, Schweinitz's sunflower loses habitat.

Biological Conclusion: No Effect

WLS biologists conducted numerous field reviews of the project site during the Winter, Spring and Summer of 2018 and no occurrence or evidence of Schweinitz's sunflower was observed in the project area. Marginal habitat for Schweinitz's sunflower exists within the project area. Based on a review of the NCDEQ Natural Heritage Program's available Natural Heritage Element Occurrences (NHEO) GIS shapefile (https://ncnhde.natureserve.org/content/data-download), updated in July 2018, there are no occurrences within the project area. The implementation of the proposed project is not anticipated to have an adverse effect on the Schweinitz's sunflower.

(Species profile information referenced from:

https://www.fws.gov/asheville/htmls/listed_species/Schweinitzs_sunflower.html)

Small-anthered bittercress (Cardamine micranthera)

Family: Brassicaceae

Federal Status: Endangered

Best Search Time: April through May

Description: Small-anthered bittercress is an erect, slender perennial herb with fibrous roots and one (or rarely more) simple or branched stem growing 7.9-15.8 inches (in) 2-4 decimeters tall. Basal leaves are 0.4-2 in 0.5-2 cm wide. The stem leaves are alternate and mostly unlobed, 0.4-0.6 in 0.5-2 cm wide. The flowers, surrounded by leafy bracts, have four white petals, six stamens, and small, round anthers.

Habitat: Small-anthered bittercress is found in seepages, wet rock crevices, stream banks, sandbars, and wet woods along small streams, in fully to partially-shaded areas.

Range: Small-anthered bittercress is known only from the Dan River basin in north-central North Carolina (Stokes County) and south-central Virginia (Patrick County).

Threats: With a very limited range, and found in close association with water, the plant is threatened by stream impoundments, channelization, water contamination, as well increased stormwater runoff which can abnormally increase the volume and velocity of stream flows, eroding stream banks and beds. Encroachment of invasive exotic plant species, like Japanese honeysuckle, is also a threat. Many remaining sites are adjacent to agricultural fields and pastures. Accidental herbicide drift or run off could be detrimental, as could trampling and erosion on sites where livestock are allowed free access.

Biological Conclusion: No Effect

WLS biologists conducted numerous field reviews of the project site during the Winter, Spring and Summer of 2018 and no occurrence or evidence of Small-anthered bittercress was observed in the project area. Marginal habitat for Small-anthered bittercress exists within the project area. Based on a review of the NCDEQ Natural Heritage Program's available Natural Heritage Element Occurrences (NHEO) GIS shapefile (https://ncnhde.natureserve.org/content/data-download), updated in July 2018, there are no occurrences within the project area. The implementation of the proposed project is not anticipated to have an adverse effect on the Small-anthered bittercress.

(Species profile information referenced from: https://www.fws.gov/raleigh/species/es-small-anthered-bittercress.html)

Vertebrates

Northern Long-eared Bat (Myotis septentrionalis)

Family: Vespertilionidae

Federal Status: Threatened

Description: The northern long-eared bat is a medium-sized bat about 3.0 to 3.7 inches in length but with a wingspan of 9 to 10 inches. As its name suggests, this bat is distinguished by its long ears, particularly as compared to other bats in its genus, Myotis, which are actually bats noted for their small ears (Myotis means mouse-eared).

Northern long-eared bats emerge at dusk to fly through the understory of forested hillsides and ridges feeding on moths, flies, leafhoppers, caddisflies, and beetles, which they catch while in flight using echolocation. This bat also feeds by gleaning motionless insects from vegetation and water surfaces.

Breeding begins in late summer or early fall when males begin swarming near hibernacula. After copulation, females store sperm during hibernation until spring, when they emerge from their hibernacula, ovulate, and the stored sperm fertilizes an egg. This strategy is called delayed fertilization. After fertilization, pregnant females migrate to summer areas where they roost in small colonies and give birth to a single pup. Maternity colonies, with young, generally have 30 to 60 bats, although larger maternity colonies have been observed. Most females within a maternity colony give birth around the same time, which may occur from late May or early June to late July, depending where the colony is located within the species range. Young bats start flying by 18 to 21 days after birth. Adult northern long-eared bats can live up to 19 years.

Habitat: During summer, northern long-eared bats roost singly or in colonies underneath bark, in cavities, or in crevices of both live and dead trees. Males and non-reproductive females may also roost in cooler places, like caves and mines. This bat seems opportunistic in selecting roosts, using tree species based on suitability to retain bark or provide cavities or crevices. It has also been found, rarely, roosting in structures like barns and sheds. Northern long-eared bats spend winter hibernating in caves and mines, called hibernacula. They typically use large caves or mines with large passages and entrances; constant temperatures; and high humidity with no air currents. Specific areas where they hibernate have very high humidity, so much so that droplets of water are often seen on their fur. Within hibernacula, surveyors find them in small crevices or cracks, often with only the nose and ears visible.

Range: The species historical range included Alabama, Arkansas, Connecticut, Delaware, District of Columbia, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, New Hampshire, New Jersey, New York, North Carolina, North Dakota, Ohio, Oklahoma, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Vermont, Virginia, West Virginia, Wisconsin, Wyoming. See below for information about where the species is known or believed to occur.

Threats: White-nose syndrome, a fungal disease known to affect bats, is currently the predominant threat to this bat, especially throughout the Northeast where the species has declined by up to 99 percent from pre-white-nose syndrome levels at many hibernation sites. Although the disease has not yet spread throughout the northern long-eared bats entire range (white-nose syndrome is currently found in at least 25 of 37 states where the northern long-eared bat occurs), it continues to spread. Experts expect that where it spreads, it will have the same impact as seen in the Northeast.

Biological Conclusion: May Affect

WLS biologists conducted numerous field reviews of the project site during the Winter, Spring and Summer of 2018 and no occurrence or evidence of Northern Long-eared Bats was observed in the project area. Based on a review of the NCDEQ Natural Heritage Program's available Natural Heritage Element Occurrences (NHEO) GIS shapefile

(https://ncnhde.natureserve.org/content/data-download), updated in July 2018, and the USFWS Asheville Field Office website (updated September 4, 2018), the project area is located entirely outside of the red highlighted areas (12 digit HUC) that the USFWS has determined the be representative of any area that may require consultation. The implementation of the proposed project is not anticipated to have an adverse effect on the Northern Long-eared Bat.

(Species profile information referenced from: https://ecos.fws.gov/ecp/species/9045)

The implementation of the Banner Branch Mitigation Project is considered a "Ground-disturbing Activity", and therefore the required "Appendix A, Categorical Exclusion Form for Ecosystem Enhancement Program Projects, Version 1.4" "Checklist" (Parts 1 through 3) has been completed and is attached. Copies of required correspondence and supporting documentation, including the following are also attached:

- Project figures and photolog sent to each of the review/regulatory agencies:
 - o Figure 1 Project Location
 - o Figure 2 USGS Topographic Map
 - o Figure 3 NRCS Soils Map
 - o Figure 4 LiDAR Map
 - o Banner Branch Mitigation Project Pre-Restoration Photo Log
- Environmental Data Resources, Inc. (EDR) Environmental Risk Review Report.
- Copy of consultation correspondence with the USFWS through the IPAC system.
- Copy of correspondence with and resulting minimal comments from the NCWRC.
- Copy of correspondence with and resulting finding of "no comment" from the North Carolina State Historic Preservation Office (NCSHPO) due to their finding of no historic resources that would be affected by the project.
- NCSHPO Map of Records.
- Copy of correspondence with and resulting finding regarding farmland conversion from the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS).
- USDA Farmland Conversion Impact Rating Worksheet (Form AD-1006).
- Copy of written landowner correspondence required under the Uniform Relocation Assistance and Real Property Acquisition Policies Act.

Submission of this Categorical Exclusion document fulfills the environmental documentation requirements mandated under the National Environmental Policy Act (NEPA; 40 CFR Parts 1500-1508).

Please contact me if you have any further questions or comments.

Sincerely,

Water & Land Solutions, LLC

Koyne Van Stell

Kayne M. Van Stell

Vice President, Ecosystem Design Services 10940 Raven Ridge Road, Suite 200

Raleigh, NC 27614

Office Phone: (919) 614-5111 Mobile Phone: (919) 818-8481

Email: kayne@waterlandsolutions.com

Appendix A

Categorical Exclusion Form for Ecosystem Enhancement Program Projects

Version 1.4

Note: Only Appendix A should to be submitted (along with any supporting documentation) as the environmental document.

t 1: General Project Information						
Project Name: Banner Branch Mitigation Project						
Stokes County						
DMS Project #100080, DMS Contract #7610						
Water & Land Solutions, LLC						
Kayne VanStell						
10940 Raven Ridge Road, Ste. 200, Raleigh, NC 27614						
kayne@waterlandsolutions.com						
Jeff Schaffer						

Project Description

The Banner Branch Mitigation Project is a full-delivery project for the NCDEQ Division of Mitigation Services (DMS) identified and contracted to provide stream and wetland mitigation credits for permitted, unavoidable impacts in the Roanoke River Basin, Cataloging Unit 03010103. The project will involve the potential restoration, enhancement, preservation, and permanent protection of unnamed tributaries (Reaches UT1-R1, UT1-R2, UT1-R3, UT1A, UT1B, UT1C, UT1D, UT2, UT2A, UT3, BB-R1, BB-R2, BB-R3, UT4-R1 and UT4-R2), totaling over 14,000 linear feet of existing streams. In addition, approximately 4.0 acres of degraded riparian wetlands will be returned to their natural function, utilizing wetland re-establishment, rehabilitation and enhancement approaches by implementing Priority Level I Stream Restoration, livestock exclusion, and limited removal of overburden soil above the hydric soils, and re-vegetation. In addition, the adjacent riparian wetlands and riparian buffers will be restored and the entire restored corridor will be protected by a permanent conservation easement, approximately 37.5 acres in size, to be held by the State of North Carolina. The project site consists of a degraded headwater stream and riparian wetland system that flows through a riparian corridor between active agricultural fields and then into Banner Branch Creek, which eventually drains to the Roanoke River. The proposed restoration project not only has the potential to provide at least 12,000 stream mitigation credits and 3 wetland mitigation credits, but will also provide significant ecological improvements and functional uplift through habitat restoration, and through decreasing nutrient and sediment loads from the project watershed.

For Official Use Only	
Reviewed By:	
10/11/2018	Jeff Schaffer
Date	EEP Project Manager
Conditional Approved By:	
Date	For Division Administrator FHWA
☐ Check this box if there are outstanding issues	
Final Approval By:	01/16
10-11-18	Unhin
Date	For Division Administrator

Part 2: All Projects	
Regulation/Question	Response
Coastal Zone Management Act (CZMA)	
Is the project located in a CAMA county?	Yes
	⊠No
2. Does the project involve ground-disturbing activities within a CAMA Area of	Yes
Environmental Concern (AEC)?	│
3. Has a CAMA permit been secured?	Yes
o. Has a symmetry porting seem seemed.	□ No
	⊠ N/A
4. Has NCDCM agreed that the project is consistent with the NC Coastal Management	Yes
Program?	∐ No
Community Environmental Bases and Communities and Linkility Act (C	⊠ N/A
Comprehensive Environmental Response, Compensation and Liability Act (C	
1. Is this a "full-delivery" project?	⊠ Yes □ No
2. Has the zoning/land use of the subject property and adjacent properties ever been	☐ Yes
designated as commercial or industrial?	⊠ No
	☐ N/A
3. As a result of a limited Phase I Site Assessment, are there known or potential	☐ Yes
hazardous waste sites within or adjacent to the project area?	⊠ No
	□ N/A
4. As a result of a Phase I Site Assessment, are there known or potential hazardous	Yes
waste sites within or adjacent to the project area?	│
5. As a result of a Phase II Site Assessment, are there known or potential hazardous	Yes
waste sites within the project area?	□ No
	⊠ N/A
6. Is there an approved hazardous mitigation plan?	Yes
	□ No
National Historia Processation Act (Section 106)	⊠ N/A
National Historic Preservation Act (Section 106)	☐Yes
 Are there properties listed on, or eligible for listing on, the National Register of Historic Places in the project area? 	⊠ No
Does the project affect such properties and does the SHPO/THPO concur?	Yes
' '	□ No
	⊠ N/A
3. If the effects are adverse, have they been resolved?	∐ Yes
	│
Uniform Relocation Assistance and Real Property Acquisition Policies Act (Uni	
1. Is this a "full-delivery" project?	⊠ Yes
1. Is this a Tull-delivery project:	□ No
2. Does the project require the acquisition of real estate?	⊠ Yes
	☐ No
	□ N/A
3. Was the property acquisition completed prior to the intent to use federal funds?	Yes
	⊠ No
Has the owner of the property been informed:	☐ N/A ☑ Yes
Prior to making an offer that the agency does not have condemnation authority; and	⊠ Yes □ No
* what the fair market value is believed to be?	∏ N/A
	_

Part 3: Ground-Disturbing Activities	Desmanas
Regulation/Question	Response
American Indian Religious Freedom Act (AIRFA)	
1. Is the project located in a county claimed as "territory" by the Eastern Band of Cherokee Indians?	│
2. Is the site of religious importance to American Indians?	Yes
2. 10 the one of foligious importance to functional matarie.	∏ No
	⊠ N/A
3. Is the project listed on, or eligible for listing on, the National Register of Historic	☐ Yes
Places?	□ No □ N/A
A lleve the effects of the project on this site because and depend	+=
4. Have the effects of the project on this site been considered?	☐ Yes ☐ No
	⊠ N/A
Antiquities Act (AA)	
1. Is the project located on Federal lands?	Yes
,	⊠ No
2. Will there be loss or destruction of historic or prehistoric ruins, monuments or objects	☐ Yes
of antiquity?	□No
	⊠ N/A
3. Will a permit from the appropriate Federal agency be required?	☐ Yes
	☐ No
	⊠ N/A
4. Has a permit been obtained?	Yes
	∐ No
	⊠ N/A
Archaeological Resources Protection Act (ARPA)	
Is the project located on federal or Indian lands (reservation)?	Yes
	⊠ No
2. Will there be a loss or destruction of archaeological resources?	☐ Yes ☐ No
	∐ NO ⊠ N/A
3. Will a permit from the appropriate Federal agency be required?	Yes
	∏ No
	⊠ N/A
4. Has a permit been obtained?	Yes
	☐ No
	⊠ N/A
Endangered Species Act (ESA)	
1. Are federal Threatened and Endangered species and/or Designated Critical Habitat listed for the county?	⊠ Yes □ No
	. —
2. Is Designated Critical Habitat or suitable habitat present for listed species?	⊠ Yes □ No
	□ NO □ N/A
3. Are T&E species present or is the project being conducted in Designated Critical	☐Yes
Habitat?	⊠ No
	☐ N/A
4. Is the project "likely to adversely affect" the specie and/or "likely to adversely modify"	Yes
Designated Critical Habitat?	□No
	⊠ N/A
5. Does the USFWS/NOAA-Fisheries concur in the effects determination?	Yes
	☐ No
	□ N/A
6. Has the USFWS/NOAA-Fisheries rendered a "jeopardy" determination?	Yes
	│

Executive Order 13007 (Indian Sacred Sites)	
1. Is the project located on Federal lands that are within a county claimed as "territory" by the EBCI?	☐ Yes ☑ No
2. Has the EBCI indicated that Indian sacred sites may be impacted by the proposed project?	☐ Yes ☐ No ☑ N/A
3. Have accommodations been made for access to and ceremonial use of Indian sacred sites?	☐ Yes ☐ No ☑ N/A
Farmland Protection Policy Act (FPPA)	
1. Will real estate be acquired?	⊠ Yes □ No
2. Has NRCS determined that the project contains prime, unique, statewide or locally important farmland?	⊠ Yes □ No □ N/A
3. Has the completed Form AD-1006 been submitted to NRCS?	∑ Yes ☐ No ☐ N/A
Fish and Wildlife Coordination Act (FWCA)	
1. Will the project impound, divert, channel deepen, or otherwise control/modify any water body?	⊠ Yes □ No
2. Have the USFWS and the NCWRC been consulted?	⊠ Yes □ No □ N/A
Land and Water Conservation Fund Act (Section 6(f))	
1. Will the project require the conversion of such property to a use other than public, outdoor recreation?	☐ Yes ☑ No
2. Has the NPS approved of the conversion?	☐ Yes ☐ No ☑ N/A
Magnuson-Stevens Fishery Conservation and Management Act (Essential Fish	n Habitat)
Is the project located in an estuarine system?	☐ Yes ☑ No
2. Is suitable habitat present for EFH-protected species?	☐ Yes ☐ No ☑ N/A
3. Is sufficient design information available to make a determination of the effect of the project on EFH?	☐ Yes ☐ No ☑ N/A
4. Will the project adversely affect EFH?	☐ Yes ☐ No ☑ N/A
5. Has consultation with NOAA-Fisheries occurred?	☐ Yes ☐ No ☑ N/A
Migratory Bird Treaty Act (MBTA)	
1. Does the USFWS have any recommendations with the project relative to the MBTA?	☐ Yes ☑ No
2. Have the USFWS recommendations been incorporated?	☐ Yes ☐ No ☑ N/A
Wilderness Act	
1. Is the project in a Wilderness area?	☐ Yes ☑ No
2. Has a special use permit and/or easement been obtained from the maintaining federal agency?	☐ Yes ☐ No ☑ N/A

Appendix 12 – Agency Correspondence & Floodplain Checklist

Meeting Minutes

Roanoke 03010103 DMS Full-Delivery Project:

Banner Branch Mitigation Project (DMS Contract #7610, Proj. ID# 100080)

Subject: NCIRT Post-Contract Site Meeting

Date Prepared: September 4, 2018

Meeting Date and Time: August 20, 2018 @ 0930

Meeting Location: On-site (Stokes County, NC)

Recorded By: Kayne VanStell and Scott Hunt

Attendees: USACE: Todd Tugwell (NCIRT)

NCDEQ DWR: Mac Haupt (NCIRT)

NCDEQ DMS: Jeff Schaffer

NCWRC: Travis Wilson (NCIRT) and Andrea Leslie

WLS: Kayne VanStell and Scott Hunt

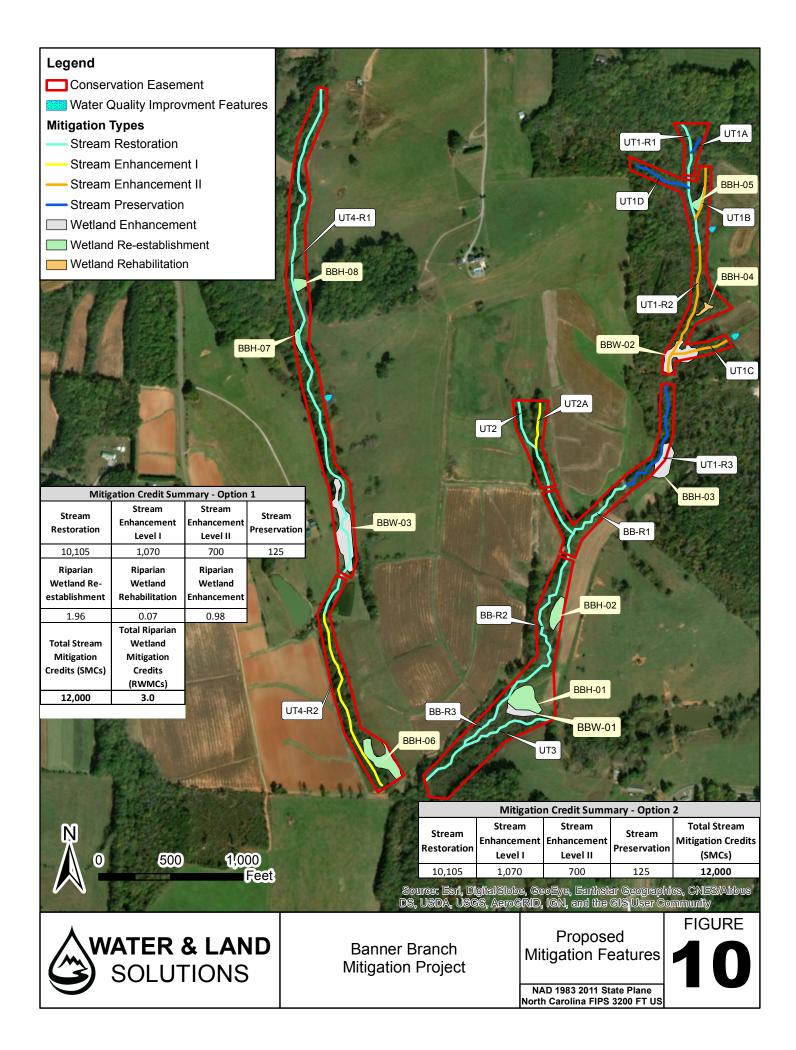
George K. Lankford, LLC: George Lankford

These meeting minutes document notes and discussion points from the North Carolina Interagency Review Team (NCIRT) Post-Contract Site Meeting for the Banner Branch Mitigation Project (Roanoke River Basin, CU 03010103). This full-delivery project was contracted on June 15, 2018, by the North Carolina Department of Environmental Quality (NCDEQ), Division of Mitigation Services (DMS), with Water & Land Solutions, LLC (WLS), under RFP 16-007405. The project site is located in Stokes County, near Lawsonville, North Carolina.

The Banner Branch Mitigation Project (project) Post-Contract Site Meeting began on-site at 0930. Meeting was moved from proposed starting location at Clark Road entrance to pasture area upslope from UT1-R3, due to extremely wet site conditions. Kayne opened meeting with introductions, a project description and summary of the overall mitigation concepts. After the project introduction and overview, attendees toured the project site to review existing conditions and proposed mitigation types, strategies,

and design concepts. The attendees agreed to start reach walks at the existing stream crossing separating UT1-R2 and UT1-R3, traverse clockwise and downstream to end of BB-R3, and then upstream from UT4-R2 to UT4-R1, and across drainage divide to project headwaters at UT1-R1, and then downstream back to meeting starting point. The project site review notes are presented below in the order they were visited.

- 1. UT1-R3: Started walk at existing stream crossing. Travis noted that WLS address typical bankfull culvert requirements and fish passage concerns. Todd asked if proposed buffer width along right floodplain was proposed for 30 or 50 feet. Kayne clarified that 30-foot minimum buffer widths are proposed since Stokes County is a mountain county. The group also discussed that this reach is proposed for Preservation at a 10:1 ratio. Discussion was also held about the wetland functional uplift strategy for the floodplain area along this reach. George noted invasive species vegetation will be treated and raising the bed elevation along Banner Branch would improve hydrology. Todd and Mac noted that a groundwater well should be installed to document pre- post-restoration conditions.
- 2. BB-R1 and BB-R2: These reaches are proposed for Restoration. Mac and George augered to observe soil conditions on the left floodplain area of BB-R1. The group continued walking along BB-R2. Discussion was held to stabilize and construct these reaches in-place, versus the proposed Priority Level I approach and relocating the proposed channel onto the left floodplain, and removing left top of the bank and floodplain spoil piles for backfilling and plugging. Discussion was held about leaving open sections of remnant channel along these reaches as floodplain depressions and habitat features. Travis reminded us that true vernal pools or floodplain depressions should be very shallow (i.e. <1 ft deep). Todd augered and observed soils on the left floodplain approximately midway down BB-R2. Andrea also discussed the idea and possibility of using on-site spoil material to repair/stabilize pasture hillsides against left floodplain of BB-R2. Some general discussion was held regarding agency preference for sites to have 50-foot buffers, versus 30-foot, understanding that mountain counties require a minimum 30-foot buffer.
- 3. BB-R3 and UT3: These reaches are proposed for Restoration. The group discussed approach for stream restoration, as well as corresponding wetland restoration areas BBH01 and BBW01. Kayne and George noted that the polygons in the proposal delimiting the areas proposed for wetland restoration and enhancement are intentionally conservative for credit estimating purposes. This discussion included George explaining his soil boring analyses and preliminary investigation methods in greater detail. All agreed that jurisdictional determinations (JDs) were needed to help determine the appropriate mitigation approaches in areas such as the wetter pasture area that is fenced out from the left floodplain of BB-R3 and UT3. Todd augered and observed soils in this area and noted that the JD will help determine what areas are existing jurisdictional wetlands. Jeff showed that the proposed mapping is near the existing jurisdictional wetlands (unverified) and areas proposed for wetland restoration. Mac and George augered another soil boring further downstream on the right floodplain of BB-R3 and discussed hydric soil characteristics. Todd noted further downstream, on the left floodplain of BB-R3/ UT3, the JDs will be extremely important, and will help determine the proposed project mitigation approaches and extents.


- 4. The attendees completed the field review of reaches UT1-R3, BB-R1, BB-R2, BB-R3, and UT3, as well as the associated riparian wetland mitigation areas BBH-03, BBH-02, BBH-01, and BBW-01. In summary, Mac and Todd discussed the importance of pre-and post-groundwater monitoring/modeling, particularly to support Priority Level I stream restoration versus an approach of heavy stream enhancement within the existing channel. Mac and Todd also suggested that such modeling would help justify that Priority Level I stream restoration is the best approach with regards to stream and wetland functional uplift.
- 5. UT4-R2: The attendees started at downstream end of the reach and traversed upstream along areas proposed for Enhancement Level I. Travis noted that the large culvert at the existing crossing at the downstream end of this project reach needs to be properly designed, sized, and replaced with regards to the typical bankfull culvert requirements and fish passage concerns. Mac noted that by the time you remove the dense stand of Chinese privet along this reach, particularly on the top of banks, it will justify an Enhancement Level I approach. Todd generally agreed, and noted that adding woody bank and toe protection structures to replace the root mass lost due to the Chinese privet root mass removal will be warranted. The group discussed the existing pond reconfiguration at the top of the reach, noting that the pond is currently off-line and will remain off-line, and that the right pond berm/embankment will be moved to allow for adequate proposed buffer and floodplain width. The pond will be improved as an amenity for the landowners.
- 6. UT4-R1: This reach is proposed for Restoration, with most grading activities within the natural valley and existing channel corridor. Mac and Todd discussed the idea of potentially splitting out some reach segments as Enhancement Level 1. WLS generally disagreed with this approach, proposing that the entire reach warrants restoration to provide the maximum functional uplift and to minimize risk. The NCIRT suggested that WLS address and discuss the design rationale and justification in the mitigation plan in order to support this approach. The importance of harvesting and re-using existing natural substrate (gravel, cobble materials) was discussed and stressed. Upstream of the natural bedrock step-pool (knickpoint), Mac and Todd expressed that they have concerns for justifying Restoration along the entire reach, suggesting the splitting mitigation types/approaches versus lumping all into restoration. The attendees moved upstream to a deeply entrenched section of the reach, with Kayne explaining this was representative of the remaining reach length. The group finished the walk along this reach and traversed eastward across drainage divide to project headwaters near UT1-R1.
- 7. UT1-R1 and UT1-R2: The group started walking along UT1-R2, proposed for Enhancement Level II, and walked upstream to UT1-R1, proposed for Restoration. The NCIRT recommended moving the limits of Restoration along UT1-R2 upstream to the culvert crossing, as the condition in that reach below the culvert does not warrant Restoration and is more similar to the proposed Enhancement Level II condition downstream. Upstream of this culvert, Todd recommended changing the mitigation type to Preservation, until the channel conditions become more incised near the old house.
- 8. UT1A: The group agreed to remove this reach from the project, as it does not appear to be jurisdictional.

9. UT1D: NCIRT suggested WLS will need to consider stream jurisdiction carefully, particularly upstream of the headcut. However, as the group walked upstream along the reach, it was noted that the reach is a flowing headwater stream system. The reach walks were completed here, and the attendees went directly back to vehicles due to NCIRT and DMS time constraints. Travis requested that WLS identify opportunities to install the typical water quality treatment basins/ agricultural BMPs where non-jurisdictional drainages intersect the project easement.

Concluding Comments

The above minutes represents Water & Land Solutions' interpretation and understanding of the meeting discussion and actions. If recipients of these minutes should find any information contained in these minutes to be in error, incomplete, please notify the author with appropriate corrections and/or additions within five (5) business days to allow adequate time for correction and redistribution.

EEP Floodplain Requirements Checklist

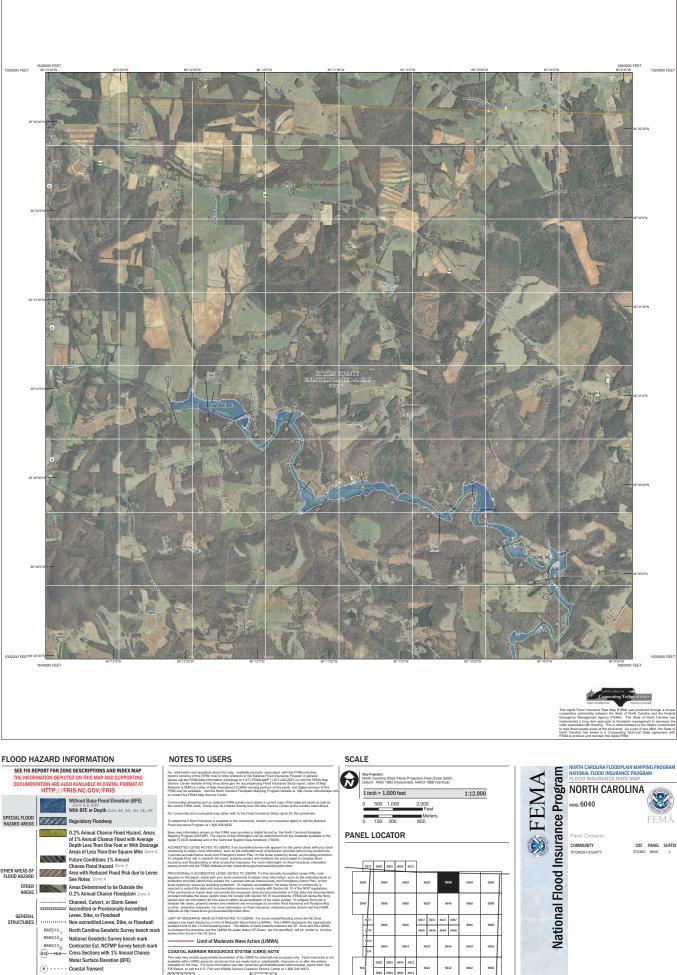
This form was developed by the National Flood Insurance program, NC Floodplain Mapping program and Ecosystem Enhancement Program to be filled for all EEP projects. The form is intended to summarize the floodplain requirements during the design phase of the projects. The form should be submitted to the Local Floodplain Administrator with three copies submitted to NFIP (attn. State NFIP Engineer), NC Floodplain Mapping Unit (attn. State NFIP Coordinator) and NC Ecosystem Enhancement Program.

Project Location

Name of project:	Banner Branch Mitigation Project
Name if stream or feature:	Banner Branch and unnamed tributaries
County:	Stokes
Name of river basin:	Roanoke
Is project urban or rural?	Rural
Name of Jurisdictional municipality/county:	Stokes County
DFIRM panel number for entire site:	6040 (map number 3711604000J, effective date 5/16/2007)
Consultant name:	Water & Land Solutions
Phone number:	919-614-5111
Address:	7721 Six Forks Road, Suite 130 Raleigh, NC 27615

Design Information

The Banner Branch Mitigation Project (Project) is located within a rural watershed in Stokes County, within the Roanoke River Basin and USGS 14-digit HUC 03010103180010. The Project proposes to restore, enhance, and preserve over 15,707 linear feet of stream, and provide a water quality benefit for a 788 acre drainage area. The stream mitigation components are summarized in the table below. The purpose of the Project is to meet water quality improvements described in the River Basin Restoration Priorities and improve overall aquatic resource health.


Reach Name	Length (feet)	Mitigation Type				
UT1-R1	509	Stream Enhancement I/Preservation				
UT1-R2	1,783	Stream Enhancement Level II				
UT1-R3	822	Stream Preservation				
UT1A	410	Stream Enhancement Level II				
UT1B	488	Stream Enhancement Level I/II				
UT1C	220	Stream Preservation/Restoration				
UT2	1,287 Stream Restoration (PI)					
UT2A	289	Stream Enhancement Level I				
UT3	589	589 Stream Restoration (PI)				
BB-R1	808	Stream Restoration (PI)				
BB-R2	1,835	Stream Restoration (PI)				
BB-R3	636	Stream Restoration (PI/PII)				
UT4-R1	4,309	Stream Restoration (PI/PII)				
UT4-R2	1,722	Stream Enhancement Level I				

Floodplain Information

Is project located in a Special Flood Hazard Area (SFHA)?
© Yes © No
If project is located in a SFHA, check how it was determined: ☐ Redelineation
☐ Detailed Study
☐ Limited Detail Study
☐ Approximate Study
□ Don't know
List flood zone designation: Zone X Minimal Flood Risk
Check if applies: ☐ AE Zone
© Floodway

© Floodway
O Non-Encroachment
None
□ A Zone
C Local Setbacks Required
No Local Setbacks Required
If local setbacks are required, list how many feet:
Does proposed channel boundary encroach outside floodway/non-encroachment/setbacks?
○ Yes
Land Acquisition (Check) ☐ State owned (fee simple)
Conservation easment (Design Bid Build)
Conservation Easement (Full Delivery Project)
Note: if the project property is state-owned, then all requirements should be addressed to the Department of Administration, State Construction Office (attn: Herbert Neily, (919) 807-4101)
Is community/county participating in the NFIP program? Yes No
Note: if community is not participating, then all requirements should be addressed to NFIP (attn: State NFIP Engineer, 919-715-8000
Name of Local Floodplain Administrator: Stokes County Planning, David Sudderth Phone Number: 336-593-2439
Floodplain Requirements
This section to be filled by designer/applicant following verification with the LFPA No Action
□ No Rise
Letter of Map Revision
Clowb
☐ Other Requirements

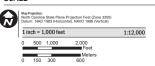
List other requirements: N/a		33
Comments: Project is not in a FEMA zone		
Name: KAYNE VANSTEU Title: 1/D FANTEN DESENDENTES	Signature: Xmlkithel	12

Norn-accredited Levee, Dike, or Floodwall
North Carolina Geodetic Survey bench mark
National Geodetic Survey bench mark
Contractor Est. NCFMP Survey bench mark
Cross Sections with 1% Annual Chance
Water Surface Elevation (BFE) BM5510 _× BM5510 _⊙ BM5510 _⊕ 8 - - - - Coastal Transect

Without Base Flood Elevation (BFE)

--- Coastal Transect Baseline - Profile Baseline - Hydrographic Feature - Limit of Study

- Jurisdiction Box


OTHER FEATURES

CBRS Area

Limit of Moderate Wave Action (LiMWA)

COASTAL BARRIER RESOURCES SYSTEM (CBRS) NOTE
This map may include approximate boundaries of the CBRS for informational available within CBRS areas for structures that are newly built or substantially available within CBRS areas for structures that are newly built or substantially approximate the company of the company o

Otherwise Protected Area

PANEL LOCATOR

		5071	5082	5092	6002	6012									
	50	60	50	180	60	00	6020		8949		6060	6080			
	5968 5988 6508		08	es	28	69	48	6968	6988						
	5977			186	65	ne	6927	6937	6947	6957	6006	6985			
	5976		5976			180		06	6926	6936	6946	6956	6000	0380	
	5975 5974		56	184	65	04	6924		6944		6964	6984			
	5962		5983	5993	6903	6913	6922				6942		6962	6962	
			5982	5992	6902	6912	-	6922		**					
~	~	5971	5981	5991	6901	6911	6921 6931		6940		6960 6980	6980	-		
FORSYTH COUR						NTY									
\ \ \															
_		-													

CID PANEL SUFFIX 370362 6040 J

FEMA

MAP NUMBER 3711604000J